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Abstract—Sensor-based sleep monitoring systems can be used
to track sleep behavior on a daily basis and provide feedback
to their users to promote health and well-being. Such systems
can provide data visualizations to enable self-reflection on sleep
habits or a sleep coaching service to improve sleep quality. To
provide useful feedback, sleep monitoring systems must be able
to recognize whether an individual is sleeping or awake. Existing
approaches to infer sleep-wake phases, however, typically assume
continuous streams of data to be available at inference time. In
real-world settings, though, data streams or data samples may
be missing, causing severe performance degradation of models
trained on complete data streams. In this paper, we investigate
the impact of missing data to recognize sleep and wake, and
use regression- and interpolation-based imputation strategies to
mitigate the errors that might be caused by incomplete data.
To evaluate our approach, we use a data set that includes
physiological traces – collected using wristbands –, behavioral
data – gathered using smartphones – and self-reports from 16
participants over 30 days. Our results show that the presence
of missing sensor data degrades the balanced accuracy of the
classifier on average by 10-35 percentage points for detecting
sleep and wake depending on the missing data rate. The impu-
tation strategies explored in this work increase the performance
of the classifier by 4-30 percentage points. These results open up
new opportunities to improve the robustness of sleep monitoring
systems against missing data.

Index Terms—Wearable Sensors, Missing Data, Sleep and
Wake Recognition, Machine Learning

I. INTRODUCTION

Sleep has a pivotal effect on people’s performance, memory,
recovery, mental health, and physical health [1, 2]. Given
the potential risks of sleep deprivation and the benefits of
good sleep routines, researchers have long studied this type of
human behavior. The availability of truly unobtrusive wearable
devices led to an increasing attention on the design and

development of systems that monitor users’ sleep-wake phase
in real-world settings. Besides promoting introspection about
sleep routine [1], systems able to capture users’ sleep habits
in the real world can also provide recommendations for a
better sleep quality as well as prevent distractions by avoiding
notifications to be delivered during sleep [3].

To enable the design and implementation of such features
of sleep monitoring systems, it is necessary to recognize sleep
in a robust manner, which is the focus of this work.

Sensor data collected in real-world settings is, however,
rarely continuous and uninterrupted. Even in a controlled set-
ting, and despite employing the best data collection practices,
data losses often occur (e.g., in [4]). As a result, this leads to
missing data, which refers to ”the data value that is not stored
for a variable of the observation of interest” [5]. For instance,
accelerometer sensor is of interest in sleep monitoring systems
and missing data refers to the data points that are not present
from this sensor for a specific time point.

An example scenario to depict the missing data challenge
may be an individual taking off their sleep monitoring device
to take a shower. The sensors on the watch might still record
accelerometer data, even if it is noisy (e.g., all flat), and after
some time the device may run out of battery leading to missing
accelerometer data. Missing data might occur also because
the user does not wear the device that measures sensor data
(e.g., due to forgetting, or charging) [6, 7, 8], the device gets
broken [7, 8, 9], there are intermittent disconnections of the
device to the network [10] or the device has hard energy saving
constraints [7, 8] as well as a consequence of the presence and
removal of noisy sensor data [11, 12].

Collection of mobile and wearable sensor data in real-world
scenarios unfortunately leads to inevitable problems with miss-
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ing data [8, 12]. When more than one data stream is needed
for sleep monitoring, the problem of missing data becomes
even more pronounced. This is because the intersection of
data streams with complete data becomes smaller and smaller,
which leads to the loss of valuable information from the
available sensor data. Indeed, long-term data collections have
shown that ”only half of the collected data” could be used for
the data analysis [12].

A simple and common solution to handle missing data is
sample deletion [6, 10, 13, 14]. Sample deletion refers to
discarding the data samples with missing data points and run
the model on the remaining data [13, 14]. While this technique
is effective and straightforward, it leads to a significant amount
of data loss that is crucial for data-hungry machine learning
models. Additionally, it can introduce bias in the results if the
missingness of the data is not completely at random (e.g., is
not due to device malfunction or data transfer error) [13, 15].

An alternative approach is to ignore the missing data
points and perform the data analysis on the remaining part
of the data [10]. For instance, in classical machine learning
pipelines, features can be extracted only on the available data.
However, this technique could result in significant performance
degradation of the model trained with all the data present.

To address the limitations of the approaches mentioned
above, recently researchers investigated the impact of im-
putation strategies, i.e., replacing missing sensor data with
substituted values [7, 10, 12, 16]. Imputation strategies allow
researchers to obtain a more complete data set and enable sleep
monitoring systems to run continuously. Existing work that use
imputation strategies, however, have mainly been tested using
data from a context different of what we explore in this paper –
e.g., mood prediction [12], physical activity recognition [6, 9],
social anxiety [7] – or from data derived from a different set
of sensors i.e., heart rate, breathing rate, number of steps [10],
social media [17] – which might have different implications.
Indeed, a simple data imputation technique might be sufficient
for one data source, but not for another. For instance, skin
temperature sensor data might be more static, thereby, filling
missing data with a simple technique (e.g., most frequent
value) might be sufficient. On the contrary, accelerometer data
is more dynamic, so filling in missing data with a simple
technique might not be sufficient. In addition, such techniques
do not consider the impact of additional data sources to address
the problem of missing data, which could help to maintain the
robustness of sleep monitoring systems.

Several researchers have used sensor data to create models
for recognizing sleep and wake [1, 18, 19, 20, 21]. However,
to our knowledge there is no study that addresses the data
messiness and algorithmic challenges of various data sources
to achieve the goal of sleep detection. Thus, how missing
data impacts model’s performance and how best to handle in-
complete data for maintaining the accuracy of sleep detection
remains an open question.

In this work, we comprehensively investigate the impact
of missing data and imputation strategies for sleep and wake
classification using a data set collected over one month from

16 participants. We propose using sensor-specific missing data
imputation techniques because the dynamics of a sensor might
be different from another sensor.

In summary, we make the following contributions:
• We analyze the impact of missing wearable sensor data

points for sleep and wake recognition and observe that
missing data degrades the performance of the classifier
by 4-30%. To the best of our knowledge, this is the first
work to investigate this problem for sleep detection.

• We investigate interpolation- and regression-based impu-
tation strategies to mitigate the problem of missing raw
sensor data. Our results show that interpolation impu-
tation strategy provides a higher classification accuracy
by 10 percentage points in comparison to no imputation,
even when 50% of data is missing.

• We explore whether other data sources (e.g., phone usage,
hour of the day) could help to address the missing
data problem. Our results show that in case of missing
wearable sensor data, context information could be used
to maintain the performance of the model to detect sleep.

II. RELATED WORK

Several researchers have demonstrated the capability of
sensor data to recognize whether a person is sleeping or awake
[18, 21, 22, 23]. These techniques are tested in curated and
homogeneous data. Thus, such models might be overoptimistic
about what can be achieved in real-world settings. Indeed, it
might be challenging to use such models in any real-world
sleep monitoring system where the data is frequently missing.

A few existing approaches address the problem of missing
data in sensor-based sensing systems [6, 7, 9, 12, 16, 17]. Saha
et al. [17],propose a framework to predict missing social media
data using other available data streams, such as, e.g., heart
rate variability, stress, and physical activity. Their approach
leads to an average improvement of 14% across all models to
predict personality traits and affect. Jacques et al. [12] propose
to use a multimodal autoencoder to impute missing features
and achieve better mood prediction results. In comparison to
these approaches, we address the missing raw sensor data
points problem, instead of the missing features or missing data
stream. Handling missing raw data points allows researchers
to avoid the issue of missing data early on in the data analysis
pipeline.

A few researchers have used a variety of methods to handle
incomplete, missing data for sensor-based human behavior
recognition [7, 16]. Rashid et al. [7] demonstrate the capability
of data imputation strategies (e.g., matrix completion, multiple
imputation) to increase the model’s performance for predicting
social anxiety using phone sensor data. The use of imputation
strategies leads to a decrease of prediction error by 22%. In
this work, we also investigate the impact of the imputation
strategies to handle the missing data problem. In contrast, we
focus on a different classification task using wearable sensor
data (e.g., accelerometer, temperature, electrodermal activity).

Only a few studies have examined the impact of the data
imputation on the performance of the model for detecting



human behavior [7, 12, 16, 17]. For instance, researchers
have shown the capability of imputation strategies to increase
the performance of cooking activity recognition [16], mood
prediction [12], as well as personality traits and affect recog-
nition [17]. In contrast, we examine the impact of missing
data and their imputation for sleep and wake recognition.
Understanding the impact of missing data and imputation
strategies is crucial to inform sleep monitoring systems about
the type of strategy to follow in case of missing data. The
imputation strategy to apply might differ from one sensor to
another. For instance, for signals that are static (e.g., skin
temperature) a simple imputation approach might be sufficient,
however, the same method might not perform well for signals
that are dynamic (e.g., accelerometer).

III. METHOD

A. Data set

In this work we use the data set presented in [24]. The
goal of the work presented in [24] is to investigate the role of
personalized and population models for sleep/wake and sleep
quality recognition using sensor data. The data set contains
physiological, behavioral and self-reports gathered from 16
participants (11 females and 5 males of age in the range
19 to 35 years old) over one month. The occupation of the
participants is: students (10), workers (3), PhD students (2)
and Post-Doc (1).
Physiological data. The data set contains physiological data of
participants collected using the Empatica E4 wristband1 [25]
worn on the non-dominant hand. The E4 contains four sensors
that measure: the electrodermal activity (EDA), skin temper-
ature (TEMP), 3-axis acceleration (ACC) and blood volume
pulse (BVP). The E4 measures such data with a sampling
frequency of 4 Hz, 4Hz, 32Hz and 64Hz, respectively.
Behavioral data. The data set contains also behavioral data
collected from phone sensors. Behavioral data was collected
using an Android application, called SleepApp. The data set
contains: time of phone lock/unlock events, screen on/off,
application from which a notification arrived and whether the
notification was clicked or not, proximity of the phone screen
to any surface, and ambient light intensity. Information regard-
ing the notifications was collected using the implementation
of MyTraces app presented in [26].
Self-reports. Participants reported their sleep and wake up
times as well as sleep quality score using the validated
and standardized Pittsburgh Sleep Quality Index (PSQI) [27]
questionnaire and diaries as a common procedure in the
literature [19, 22, 28]. Participants chose between three tools
to provide self-reports: the SleepApp installed on participant’s
smartphone; an online survey accessible form diary accessible
from participant’s laptop; or a pen-and-paper diary. Figure 1
shows an example of the SleepApp application.

Existing studies have shown that physiological and behav-
ioral data collected from wearable sensors can be used to
detect whether a user is sleeping or awake [19, 22, 28].

1https://www.empatica.com/research/e4/.

Fig. 1. Interface of the SleepApp Android application used to collect self-
reports regarding sleep and wake up times as well as sleep quality.

In this paper we also focus on recognizing sleep and wake
using physiological (e.g., EDA, TEMP and ACC data) and
behavioral data (e.g., phone sensor data). We select a subset
of the data set presented in [24] to be able to directly compare
the classification results with existing work (e.g., [19, 24])
considering missing data.

B. Data analysis

To recognize sleep and wake, we set up a binary classifica-
tion pipeline. The pipeline consists of signal processing and
machine learning steps described as follows.
Data cleaning and preprocessing. We consider two types of
data, namely, wristband and phones data.
Wristband sensors. To preprocess the EDA signals, we follow
common preprocessing steps from the literature [11, 29, 30,
31, 32]. In particular, we filter the signal using a first order
Butterworth low-pass filter with a cut-off frequency of 0.6
Hz similar to [11] to remove high frequency fluctuations. To
obtain further information from the EDA signal, we decom-
pose the signal into tonic, the slowly changing component, and
phasic component, characterized by peaks in correspondence
to a stimuli, using the cvxEDA method proposed by Greco et
al. [33]. We down-sample the ACC signals to 4Hz similar to
the sampling frequency of EDA and TEMP sensors.
Phone sensors. Proximity sensor embedded on the phone
return the absolute distance of the phone to an object in cm or
a categorical value representing whether the object was ”near”
or ”far” from the phone. The maximum range of proximity
sensor differs across phones. To make the data collected from
different phones (participants) comparable to each other, we
compute the ratio of the phone distance as measured by the
proximity sensor to the maximum distance of the phone.
Segmentation and labeling. We use participants’ self-reports
to label the sensor data with the sleep and wake class. We
first divide the continuous traces of sensor data into 10-minute
non-overlapping windows. We use a window of 10 minutes
because similar studies have shown that the median sleep
latency or transition time from wake to sleep is approximately
10 minutes [22]. We assign the label sleep to all the windows
of the signal included between the self-reported time indicating
the user going to sleep and the corresponding self-report
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indicating the user to have waken up. The remaining windows
are assigned to the wake class. The resulting data set includes
13519 windows in the sleep and 12774 in the wake class.

Missing data generation. To address the problem of missing
data, it is crucial to understand the reason behind the absence
of data. Feng and Narayanan [10] noticed two missing patterns
of real-world sensor data: 1) random missing data points
(Random) and 2) complete missing data over a continuous
period of time (Chunks). To induce the missing data pattern,
we eliminate sensor data points at 10, 25 and 50 percentages
following these two techniques. There are three mechanisms
of missing data: 1) missing completely at random (MCAR)
– if the probability of missing is the same for all cases –, 2)
missing at random (MAR) – if the probability of being missing
is the same only within groups defined by observed data –
and 3) missing not at random (MNAR) – when the missing
values do not only depend on the observed values but also
the unobserved ones – [5, 15]. To impute the missing data,
most imputation strategies require having MCAR condition
[5, 7, 15]. To ensure that the data set conforms to the MCAR
condition, we intentionally select recordings without missing
data in the data set and randomly mimic missing data. We
eliminate 10, 25, and 50 percent of sensor data in a window
as in [9, 10]. For instance, to eliminate a chunk of sensor
data points we randomly select a data point within a window
and discard the next 25% of the data points in the window.
Similarly, to implement the Random technique, we randomly
select 25% of the sensor data points within a window and
discard them. When using multiple sensors, we discard the
selected data points from all sensors assuming that the data
from all sensors in a device would be missing at once. Data
might be missing at Random, for instance, due to the presence
and removal of noisy data and in Chunks due to user not
wearing the device for a specific amount of time.

Missing data imputation. To handle missing data points, we
investigate several imputation strategies which can be grouped
into two categories: regression-based and interpolation-based
[7, 13, 14]. Regression-based techniques predict the missing
values of a target variable based on the other available vari-
ables in the data set. Interpolation-based methods instead fill
in missing data with a placeholder value such as, e.g., zero,
mean, median. In this work we explore the impact of Zero,
Most frequent and Padding interpolation-based methods as
well as Iterative regression-based method [13, 14]. Zero and
Most frequent methods impute missing data points using a zero
or the most frequent value of the sensor. Padding replaces
missing data with the last measured value from the sensor,
known also as ”last observation carried forward” [7]. For the
Regressor strategy, we consider the data points corresponding
to missing values as a target of a regression model and use
the data of other sensors as input to the model [14]. We
apply the same technique to the test set as suggested in [14].
We model each data source with missing data points as a
function of other available data sources. The missing data
points of a sensor are then predicted using the regressor. We

use the IterativeImputer2 class from scikit-learn to implement
the Regressor imputation strategy. Fig. 2 presents an example
of the EDA signals and the missing data imputation strategies
explored in this work.

We do not apply the missing data analysis steps to phone
sensor data because it is difficult to determine whether there
was no event or whether the data was actually missing. Instead,
we investigate whether the available phone sensor data can
help to maintain the classification performance in case of
missing wristband sensor data.
Feature extraction. We consider three types of features,
physiological, behavioral and context ones.
Physiological features. From each sensor of the wristband we
extract three groups of features: time, frequency- and time-
frequency domain, similar to [11, 24, 34, 35]. The features
in time-domain representation include, statistical features such
as, e.g., the min, max, median, variance, dynamic range, mean
and standard deviation of the first derivative, difference be-
tween the last and first sensor value, and the slope of the signal.
We derive the same statistical features also from wavelets
coefficients extracted at three different time scales 4Hz, 2Hz
and 1Hz, as in [11], to which we refer to as time-frequency
domain features. To capture the periodicity of sensor data, we
transform each data stream into the frequency-domain using
the Fast Fourier Transform (FFT) [35] and extract features in
this domain similar to [35]. We then compute features such as,
e.g., the direct current component (DC), the sum of spectral
coefficients, the information entropy and the energy of the
signal. We compute the time-, frequency- and time-frequency
domain features from the EDA, the tonic component of the
EDA, the TEMP, and from each axis of the ACC sensor.

We extract further characteristics of the phasic component
of the EDA using the EDAExplorer3 [34] and EDArtifact4 [11]
tool-kits. We extract peaks-related features (e.g., the number of
peaks, amplitude of the peak, peak rise and decay time, peak
width) similar to [11, 34]. Several researchers have shown that
EDA signals contain periods of high frequency activity, known
as storms, during the night and in particular during deep sleep
[19, 36]. Burch et al. [37] define storms as ”regions of EDA
signal with a burst of high frequency peaks”. To detect storms
and epochs, we use the definition from Sano et al. [38]. In
particular, an EDA peak epoch refers to a region of EDA with
more than 4 peaks per minute, whereas an EDA storm refers to
regions where EDA peak epochs last for more than 10 minutes.
We further extract features related to the storms and epochs
such as a storm or epoch flag, similar to [19]. We extract in
total 173 features from physiological signals.
Behavioral features. From phone sensor data we extract in
total 13 features. The features include the total number of
notifications clicked by the user during the 10-minute window,
total number of times the user unlocks the phone, the number
of times the screen is on, and the minimum, maximum, mean,

2https://scikit-learn.org/stable/modules/generated/sklearn.impute.
IterativeImputer.htmlIterativeImputer

3https://github.com/MITMediaLabAffectiveComputing/eda-explorer
4https://github.com/shkurtagashi/EDArtifact
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https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://github.com/MITMediaLabAffectiveComputing/eda-explorer
https://github.com/shkurtagashi/EDArtifact


Fig. 2. Example of the electrodermal activity signals in the presence of all the data (No missing data), eliminating 25% of the data points (Missing
data chunk) and replacing missing data with several imputation strategies (e.g., Zero, Interpolation).

mode and standard deviation of the proximity and the light
sensors over the session.
Context features. There are two main components that de-
termine sleep and wake up time: circadian rhythm and
homeostatic sleep dive [1, 3]. Circadian rhythm promotes
wakefulness during the day and sleep during the night and
is synchronized to the time of the day. Homeostatic sleep
drive refers to the pressure of sleep linearly building up in
the brain while being awake and decreasing during sleep [1].
These two components have shown to improve sleep and
wake recognition [1]. In this work, we investigate the impact
of such information to recognize sleep and wake in case of
missing sensor data. To encode the time information, we first
extract the hour of the day from the timestamp of a sensor
data point measurement. We then compute the cosine and
sine functions on the hour of the day, by first normalizing it
between 0 and 2π, to preserve the cyclical nature of the time
of the day. Considering that sleep and wake up time changes
throughout the week, we also extract the day of the week and
day type (e.g., weekday or weekend) from the timestamp of a
sensor data point measurement.
Classifiers. We investigate the performance of models built
with the Gradient Boosting (GB) algorithm [39] because it has
shown to perform best for sleep and wake classification in [24].
Additionally, it has shown competitive performance to neural
networks in several machine learning competitions [40, 41].
We compare the performance of the GB classifier with and
without missing data, to understand the impact of missing data
in the classification task. We further investigate the impact of
features in classifier’s predictions using the SHapley Additive
exPlanations (SHAP), as in [21].
Evaluation procedure. We follow common procedures in
machine learning for sensor data to evaluate the performance
of our approach [42], i.e., leave-one-subject-out (LOSO) ap-
proach. LOSO trains a classifier with the data of all users,
except one which is kept as a test data. We repeat the same
procedure for all the users. This technique ensures that the
physiological data of the same user is not present both in train
and test sets simultaneously, investigating the generalizability
of the approach. In the training phase, we re-scale the features
using the z-score standardization technique5 and account for
the imbalance nature of our data set by oversampling the
minority class (e.g., wake class) to the majority class using

5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html
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Fig. 3. Balanced accuracy of the GB classifier on the whole data set (No
missing data), with 10% of the missing data in the training and test sets
(Train & Test), and with missing data only on the test set (Test).

the synthetic minority oversampling technique (SMOTE) [43],
as a common procedure in machine learning [14].
Evaluation metrics. We evaluate the classifiers using the
balanced accuracy (BA) proposed in [44] and used in [45].
BA refers to the mean of recall score of a classifier for the
both the majority and minority class [45].

IV. RESULTS AND DISCUSSION

In this section, we first discuss the impact of missing
data in sleep and wake classification. We then compare the
performance of the GB classifier with and without missing
data. We further investigate whether phone sensor data and
context information can help to mitigate the missing data
problem.
Impact of missing data in sleep and wake detection. In these
experiments, we study the impact of missing data points within
a window to classify sleep and wake using the GB model. Fig.
3 reports the accuracy using the features from the ACC, EDA,
TEMP or the three combined (All) using the complete data
set (No missing data) as well as the data set with missing
data points both in the train and test set (Train & Test)
or only the test set (Test). The BA when using all, ACC,
EDA, or TEMP sensor is 90, 89, 82 and 79, respectively. In
case of 10% of missing data points in both the train and test
set, the accuracy of the GB classifier drops to 80, 72, 79, 64.
A more realistic scenario is when the data set used to train
the classifier is complete, while the test set contains missing
data. We refer to this scenario as the Test in Fig. 3. From the
figure we observe that the performance of the classifier for all
sensors drops to 50%, which is not significantly higher than a
random guess classifier. These results indicate that the model
is not robust against incomplete data and hint at the need of
addressing this problem.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Fig. 4. Performance of the GB classifier, in terms of BA, using the whole
data set (missing data rate = 0), and eliminating 10%, 25% and 50% of the
sensor data points in a window using the Random technique.

Fig. 4 presents the performance of sleep detection model
depending on the percentage of missing data. The performance
of the model to detect sleep is the highest when all sensor data
is present. For instance, using the ACC, EDA and TEMP the
BA of the GB classifier to detect sleep is 90%. Even a small
percentage of missing data in a window (e.g., 10%) causes a
reduction of 10 percentage points of the performance of the
model. We observe that the multimodal approach (e.g., using
ACC, EDA, and TEMP together) and EDA are more robust to
missing data in comparison to the ACC and TEMP sensors. We
believe the lower impact in the multimodal model is because of
the effect of missing data in one data source to be compensated
by the data from other data sources. The performance of the
model using only ACC or TEMP sensor data decreases as
the number of missing data points increases. The presence of
missing data is more critical for dynamic signals (e.g., for
ACC) rather than the EDA sensor.
Comparison of missing data imputation strategies. We
investigate whether the imputation strategies can mitigate the
impact of missing data to recognize sleep and wake from
wearable sensors. Table I reports the performance, in terms of
BA, of the GB classifier trained with features extracted from
missing data (Random or Chunks) and replacing missing
data with the interpolation- and regression-based imputation
strategies. The majority of imputation strategies (e.g., inter-
polation, regressor, most frequent) perform better than no
imputation at all hinting at the need of using such strategies for
a more robust sleep and wake recognition. Imputing missing
data with a zero value, which is a common procedure, leads
to no significant improvement in the classification results. In
all cases, except for EDA with a missing data rate of 25%,
the interpolation imputation strategy provides the highest per-
formance for distinguishing between sleep and wake classes.
Imputing data that misses randomly with interpolation leads
to an improvement of around 11, 4, 16 and 10 percentage
points for ACC, EDA, TEMP and All sensors combined, in
comparison to no imputation at all. Overall, the interpolation
is comparably effective when data is missing in chunks. This
implies that interpolation strategy not only recovers missing
data, but also preserves the statistical characteristics of the
original time series, which are essentially needed for post-
analysis of the signal (e.g., classification task). According to
the results from a t-test (p < 0.05), the classification results
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Fig. 5. Balanced accuracy of the GB classifier with 10% of the missing
data (Missing data) as well as adding features extracted from the phone
sensors (Phone) or context information (Time) to the classifier.

using padding strategy are significantly higher than zero and
regression-based imputation. Padding is also higher than most
frequent strategy in majority of experiments except for TEMP
and EDA sensors.

The top five most selected features using the complete data
set and the imputed data set (e.g., with 10% of missing data)
is the same. The five most frequently selected features in all
iterations are the standard deviation of the first derivative of x,
y and z axis of the ACC sensor, the maximum value of the x-
axis and the mean value of the tonic component of EDA. The
most selected features when using the data set with missing
data points (e.g., 10% of missing data) is different. The top
five features in this case are the difference between the last
and first sensor data point in a window for x, y, z and EDA
as well as the number of EDA peaks in the window.
Impact of context information and phone sensor data.
We investigate the impact of phone sensor data (e.g., amount
of light, phone usage, number of notifications clicked) and
context information (e.g., hour of the day, day of the week,
weekday or weekend) to mitigate the missing data problem
in wearable sensors. Fig. 5 presents the classification results
of GB classifier to recognize sleep and wake trained with
wearable sensor data with a missing rate of 50% (Missing data)
as well as adding behavioral features extracted from the phone
sensors (Phone) and context information regarding the time
(Time). The time information – including the hour of the day,
day of the week and type of the day (weekday or weekend) –
is the most informative context information for detecting sleep
stage. These results suggest that context information could be
helpful to maintain the performance of the model to distinguish
sleep and wake in case of missing wearable sensor data.

V. LIMITATIONS AND FUTURE WORK

While our results show that it is feasible to use imputation
strategies to handle missing data used to detect sleep, further
research is needed to overcome the limitations of our work.

The first limitation stems from considering sleep detection
as a binary classification problem. Our approach can be used to
recognize sleep-wake stages, but not more detailed stages like,
e.g., rapid eye movement (REM), non-rapid eye movement
(NREM). However, to be able to recognize fine-grained sleep
stages, it is first required to have a robust sleep-wake recogni-
tion approach, which is the focus of this work. Also, collecting



TABLE I
MEAN (AND STANDARD DEVIATION) ACCURACY OF THE GB CLASSIFIER FOR SLEEP AND WAKE RECOGNITION USING DATA FROM ACC, EDA, TEMP

SENSORS AND THE THREE COMBINED. THE PERFORMANCE IS INVESTIGATED WITH MISSING DATA (None) AT DIFFERENT RATES (E.G., 10, 25, AND 50%)
AND REPLACING MISSING DATA USING THE DIFFERENT IMPUTATION TECHNIQUES (E.G., Zero, Most frequent, Interpolation, Regressor).

Missing data rate: 10%
None Zero Most frequent Padding-interpolation Regressor

Random Chunks Random Chunks Random Chunks Random Chunks Random Chunks
ACC 67.8 (9.2) 72.6 (3.3) 67.7 (9.2) 72.5 (3.3) 86.8 (3.6) 87.8 (3.5) 89.2 (3.6) 88.9 (3.8) 86.7 (3.7) 88.1 (3.7)
EDA 78.5 (6.0) 77.5 (7.3) 78.4 (6.1) 79.3 (6.4) 81.2 (5.9) 81.7 (6.5) 82.4 (6.3) 82.2 (5.9) 79.0 (5.4) 79.6 (6.4)
TEMP 62.0 (5.7) 64.7 (4.7) 62.1 (7.4) 64.8 (5.9) 77.5 (8.6) 76.5 (4.1) 78.8 (8.1) 78.9 (8.1) 71.4 (10.8) 68.2 (12.0)
All 79.4 (7.4) 79.5 (6.4) 79.8 (5.7) 80.5 (4.6) 88.3 (4.0) 88.7(8.1) 89.7 (3.6) 89.8 (3.7) 87.7 (4.5) 88.7 (3.9)

Missing data rate: 25%
None Zero Most frequent Padding-interpolation Regressor

Random Chunks Random Chunks Random Chunks Random Chunks Random Chunks
ACC 65.3 (11.0) 72.5 (3.4) 65.3 (11.1) 72.7 (3.5) 86.7 (3.3) 87.4 (3.4) 89.0 (3.4) 88.6 (3.7) 86.4 (3.9) 87.4 (4.5)
EDA 78.4 (6.8) 79.0 (6.4) 78.6 (6.5) 78.9 (6.3) 81.7 (6.1) 80.5 (6.6) 81.6 (6.6) 81.5 (6.1) 77.6 (6.3) 79.7 (6.3)
TEMP 60.0 (8.3) 64.7 (5.3) 60.0 (8.3) 64.8 (5.6) 76.9 (7.6) 76.7 (7.9) 78.9 (8.1) 78.7 (7.7) 70.9 (7.9) 70.6 (9.6)
All 79.6 (6.1) 80.4 (4.6) 80.1 (5.8) 80.6 (4.7) 87.8 (3.9) 88.4 (4.1) 89.4 (4.0) 89.3 (3.9) 86.9 (4.4) 88.4 (4.3)

Missing data rate: 50%
None Zero Most frequent Padding-interpolation Regressor

Random Chunks Random Chunks Random Chunks Random Chunks Random Chunks
ACC 58.8 (10.4) 72.6 (3.3) 58.9 (10.5) 72.9 (3.4) 85.2 (3.6) 85.4 (3.8) 89.1 (3.6) 87.7 (3.1) 85.5 (4.2) 86.1 (3.6)
EDA 77.9 (5.5) 78.8 (6.3) 77.8 (5.7) 78.3 (6.7) 78.8 (6.8) 79.0 (7.1) 81.3 (6.3) 80.5 (6.4) 71.5 (6.9) 76.0 (9.4)
TEMP 54.5 (5.8) 64.8 (4.5) 54.6 (6.0) 64.7 (4.6) 76.8 (9.1) 77.0 (8.5) 78.8 (7.8) 77.9 (8.0) 68.1 (11.0 ) 68.1 (10.7)
All 78.6 (4.9) 79.7 (6.0) 78.3 (4.8) 80.2 (5.2) 87.1 (3.9) 87.2 (3.1) 89.4 (3.8) 88.8 (3.6) 85.8 (6.2) 87.1 (4.2)

ground-truth data for detailed sleep stages requires the use of
cumbersome sensors, which might interfere with the behavior
of users in everyday life settings [19, 21]. Further, we explored
the impact of missing data using only the GB classifier. While
GB has shown to perform best in similar classification tasks
[11, 24, 41], in future work, we plan to investigate the impact
of missing data for other types of classifiers (e.g., deep neural
networks) and the generalizability of our approach to other
classification problems. Lastly, our approach has been tested
with data of healthy participants and these findings might not
generalize to other types of populations (e.g., people with
sleep disorders). Further research is needed to understand the
generalizability of our approach to different populations.

VI. CONCLUSIONS

In this work we investigate the impact of missing data
for recognizing sleep and wake using wearable sensor data.
Our results show that the presence of missing data signifi-
cantly decreases the accuracy of gradient boosting classifier
by 10-35 percentage points. To mitigate this problem, we
use interpolation- and regression-based imputation strategies.
Our results show that the model’s performance to recognize
sleep and wake is higher by 4-30 percentage points when
using imputation strategies. We believe these results open up
new opportunities for designing and developing robust sleep
monitoring systems to provide continuous feedback to the user
and to maintain their accuracy in case of missing sensor data.
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privacy. Our long-term goal is to design and develop sleep
monitoring systems that can support people in everyday life
in a privacy-preserving manner.

ACKNOWLEDGEMENT

This work is partially supported by the Swiss National
Science Foundation (SNSF) through the grant 205121 197242
for the project “PROSELF: Semi-automated Self-Tracking
Systems to Improve Personal Productivity”.

REFERENCES

[1] M. Altini and H. Kinnunen, “The Promise of Sleep: A Multi-Sensor
Approach for Accurate Sleep Stage Detection Using the Oura Ring,”
Sensors, vol. 21, no. 13, p. 4302, 2021.

[2] M. Borazio and K. Van Laerhoven, “Predicting Sleeping Behaviors in
Long-term Studies With Wrist-Worn Sensor Data,” in International Joint
Conference on Ambient Intelligence. Springer, 2011, pp. 151–156.

[3] F. Wahl and O. Amft, “Data and Expert Models for Sleep Timing and
Chronotype Estimation from Smartphone Context Data and Simula-
tions,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (PACM IMWUT), vol. 2, no. 3, pp. 1–28, 2018.

[4] E. D. Chinoy, J. A. Cuellar, K. E. Huwa, J. T. Jameson, C. H. Watson,
S. C. Bessman, D. A. Hirsch, A. D. Cooper, S. P. Drummond, and R. R.
Markwald, “Performance of Seven Consumer Sleep-tracking Devices
Compared with Polysomnography,” Sleep, vol. 44, no. 5, 2021.

[5] H. Kang, “The Prevention and Handling of the Missing Data,” Korean
Journal of Anesthesiology, vol. 64, no. 5, p. 402, 2013.

[6] A. Saeed, T. Ozcelebi, and J. Lukkien, “Synthesizing and Reconstruct-
ing Missing Sensory Modalities in Behavioral Context Recognition,”
Sensors, vol. 18, no. 9, p. 2967, 2018.

[7] H. Rashid, S. Mendu, K. E. Daniel, M. L. Beltzer, B. A. Teachman,
M. Boukhechba, and L. E. Barnes, “Predicting Subjective Measures
of Social Anxiety from Sparsely Collected Mobile Sensor Data,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (PACM IMWUT), vol. 4, no. 3, 2020.

[8] H. Luo, P.-A. Lee, I. Clay, M. Jaggi, and V. De Luca, “Assessment of
Fatigue Using Wearable Sensors: A Pilot Study,” Digital Biomarkers,
vol. 4, no. 1, pp. 59–72, 2020.



[9] T. Hossain, M. Ahad, A. Rahman, and S. Inoue, “A Method for Sensor-
Based Activity Recognition in Missing Data Scenario,” Sensors, vol. 20,
no. 14, p. 3811, 2020.

[10] T. Feng and S. Narayanan, “Imputing Missing Data in Large-Scale
Multivariate Biomedical Wearable Recordings Using Bidirectional Re-
current Neural Networks With Temporal Activation Regularization,” in
2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). IEEE, 2019, pp. 2529–2534.

[11] S. Gashi, E. Di Lascio, B. Stancu, V. D. Swain, V. Mishra, M. Gjoreski,
and S. Santini, “Detection of Artifacts in Ambulatory Electrodermal Ac-
tivity Data,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (PACM IMWUT), vol. 4, no. 2, pp. 1–31,
2020.

[12] N. Jaques, S. Taylor, A. Sano, and R. Picard, “Multimodal Autoen-
coder: A Deep Learning Approach to Filling in Missing Sensor Data
and Enabling Better Mood Prediction,” in 2017 Seventh International
Conference on Affective Computing and Intelligent Interaction (ACII).
IEEE, 2017, pp. 202s–208.

[13] A. Burkov, The Hundred-page Machine Learning Book. Andriy Burkov
Quebec City, Can., 2019.

[14] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’Reilly Media, 2019.

[15] J. Di, C. Demanuele, A. Kettermann, F. I. Karahanoglu, J. C. Cappelleri,
A. Potter, D. Bury, J. M. Cedarbaum, and B. Byrom, “Considerations
to Address Missing Data When Deriving Clinical Trial Endpoints From
Digital Health Technologies,” Contemporary Clinical Trials, vol. 113,
p. 106661, 2022.

[16] S. Gashi, E. Di Lascio, and S. Santini, “Multi-class Multi-label Classi-
fication for Cooking Activity Recognition,” in Human Activity Recogni-
tion Challenge. Springer, 2021, pp. 75–89.

[17] K. Saha, M. D. Reddy, V. das Swain, J. M. Gregg, T. Grover, S. Lin,
G. J. Martinez, S. M. Mattingly, S. Mirjafari, R. Mulukutla, K. Nies,
P. Robles-Granda, A. Sirigiri, D. W. Yoo, P. Audia, A. T. Campbell,
N. V. Chawla, S. K. D’Mello, A. K. Dey, K. Jiang, Q. Liu, G. Mark,
E. Moskal, A. Striegel, and M. de Choudhury, “Imputing Missing Social
Media Data Stream in Multisensor Studies of Human Behavior,” in 2019
8th International Conference on Affective Computing and Intelligent
Interaction (ACII), 2019.

[18] A. Sano and R. W. Picard, “Comparison of Sleep-Wake Classifica-
tion Using Electroencephalogram and Wrist-Worn Multi-Modal Sensor
Data,” in 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, 2014.

[19] A. Sano, W. Chen, D. Lopez-Martinez, S. Taylor, and R. W. Picard,
“Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neu-
ral Networks,” IEEE Journal of Biomedical and Health Informatics,
2018.

[20] I. Perez-Pozuelo, B. Zhai, J. Palotti, R. Mall, M. Aupetit, J. M. Garcia-
Gomez, S. Taheri, Y. Guan, and L. Fernandez-Luque, “The Future of
Sleep Health: A Data-driven Revolution in Sleep Science and Medicine,”
NPJ Digital Medicine, vol. 3, no. 1, pp. 1–15, 2020.

[21] B. Zhai, I. Perez-Pozuelo, E. A. Clifton, J. Palotti, and Y. Guan, “Making
Sense of Sleep: Multimodal Sleep Stage Classification in a Large, Di-
verse Population Using Movement and Cardiac Sensing,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(PACM IMWUT), vol. 4, no. 2, pp. 1–33, 2020.

[22] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong,
“Toss’N’Turn: Smartphone as Sleep and Sleep Quality Detector,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), 2014, pp. 477–486.

[23] C.-Y. Hsu, A. Ahuja, S. Yue, R. Hristov, Z. Kabelac, and D. Katabi,
“Zero-effort In-home Sleep and Insomnia Monitoring Using Radio
Signals,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (PACM IMWUT), vol. 1, no. 3, pp. 1–18, 2017.

[24] S. Gashi, L. Alecci, E. Di Lascio, M. E. Debus, F. Gasparini, and
S. Santini, “The Role Of Model Personalization for Sleep Stage and
Sleep Quality Recognition Using Wearables,” IEEE Pervasive Comput-
ing, 2022.

[25] M. Garbarino, M. Lai, D. Bender, R. W. Picard, and S. Tognetti,
“Empatica E3–A Wearable Wireless Multi-sensor Device for Real-time
Computerized Biofeedback and Data Acquisition,” in Proceedings of
the International Conference on Wireless Mobile Communication and
Healthcare (MobiHealth 2014), 2014.

[26] A. Mehrotra, F. Tsapeli, R. Hendley, and M. Musolesi, “MyTraces: In-

vestigating Correlation and Causation Between Users’ Emotional States
and Mobile Phone Interaction,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (PACM IMWUT), vol. 1,
no. 3, pp. 1–21, 2017.

[27] D. J. Buysse, C. F. Reynolds III, T. H. Monk, S. R. Berman, and D. J.
Kupfer, “The Pittsburgh Sleep Quality Index: A New Instrument for
Psychiatric Practice and Research,” Psychiatry research, vol. 28, no. 2,
pp. 193–213, 1989.

[28] Z. Chen, M. Lin, F. Chen, N. D. Lane, G. Cardone, R. Wang, T. Li,
Y. Chen, T. Choudhury, and A. T. Campbell, “Unobtrusive Sleep
Monitoring Using Smartphones,” in 2013 7th International Conference
on Pervasive Computing Technologies for Healthcare and Workshops.
IEEE, 2013, pp. 145–152.

[29] J. Hernandez, I. Riobo, A. Rozga, G. D. Abowd, and R. W. Picard,
“Using Electrodermal Activity to Recognize Ease of Engagement in
Children During Social Interactions,” in Proceedings of the International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2014), 2014.

[30] E. Di Lascio, S. Gashi, and S. Santini, “Unobtrusive Assessment of
Students’ Emotional Engagement During Lectures Using Electrodermal
Activity Sensors,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (PACM IMWUT), vol. 2, no. 3,
2018.

[31] W. Boucsein, Electrodermal Activity. Springer Science & Business
Media, 2012.

[32] Society for Psychophysiological Research Ad Hoc Committee on Elec-
trodermal Measures, W. Boucsein, D. C. Fowles, S. Grimnes, G. Ben-
Shakhar, W. T. Roth, M. E. Dawson, and D. L. Filion, “Publication
recommendations for electrodermal measurements,” Psychophysiology,
vol. 49, no. 8, pp. 1017–1034, 2012.

[33] A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, “cvxEDA: A
Convex Optimization Approach to Electrodermal Activity Processing,”
IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 797–
804, 2015.

[34] S. Taylor, N. Jaques, W. Chen, S. Fedor, A. Sano, and R. Picard,
“Automatic Identification of Artifacts in Electrodermal Activity Data,”
in Engineering in Medicine and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE. IEEE, 2015.

[35] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, “Preprocessing
Techniques for Context Recognition from Accelerometer Data,” Per-
sonal and Ubiquitous Computing, vol. 14, no. 7, pp. 645–662, 2010.

[36] K. Asahina and K. Omura, “Phenomenological Study of Paradoxical
Phase and Reverse Paradoxical Phase of Sleep,” The Japanese Journal
of Physiology, vol. 14, no. 4, pp. 365–372, 1964.

[37] N. R. Burch, “Data Processing of Psychophysiological Recordings
(Discussant: Harold W. Shipton),” NASA Special Publication, vol. 72,
p. 165, 1965.

[38] A. Sano and R. W. Picard, “Quantitative Analysis of Electrodermal
Activity During Sleep,” Sleep, vol. 1, no. 2Q, p. 3Q, 2012.

[39] T. Chen and C. Guestrin, “Xgboost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2016). ACM, 2016, pp.
785–794.

[40] F. Chollet, Deep Learning with Python. Simon and Schuster, 2017.
[41] M. Gjoreski, V. Janko, G. Slapničar, M. Mlakar, N. Reščič, J. Bizjak,
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