
EPITELLA: Improving the Gnutella Search Algorithm through
Epidemic Spreading Models for Complex Networks

Holger Kampffmeyer, Mirco Musolesi and Cecilia Mascolo
Department of Computer Science, University College London

Gower Street, London, WC1E 6BT, United Kingdom
{h.kampffmeyer|m.musolesi|c.mascolo}@cs.ucl.ac.uk

Abstract

Search algorithms in unstructured P2P networks such as
Gnutella use flooding-based techniques for communication
and, as a consequence, they produce high message over-
head. More dynamic algorithms such as Gnutella’s Dy-
namic Query Protocol take into account the user’s desired
number of results and network topology properties to in-
crease scalability. However, these algorithms only work
well for popular files and often fail to locate rare content.

In this paper, we introduce EPITELLA, an enhanced
Gnutella which uses a search algorithm based on epidemic-
style information dissemination techniques, that shows
good performance in finding both rare and popular files.
It exploits the structure of the underlying network in order
to maximise its search horizon and minimise the number of
needed search messages. The presented simulation results
show that EPITELLA is more exhaustive in finding rare files
and produces less overhead in finding popular files, com-
pared to Gnutella.

1 Motivation and Background

Peer-to-peer (P2P) systems have attracted a great deal of
attention in recent years. While what appeals to users is the
possibility of unlimited sharing and exchange of files, P2P
systems also attract the research community due to the chal-
lenges that their decentraliined structure imposes. Much re-
search has been carried out in the area of topology charac-
teristics and measurements, and the development of faster
and better search algorithms. P2P networks can be mainly
subdivided in two categories: unstructured and structured.
In unstructured P2P there is no control over locations of
files in the network. Examples of unstructured networks are
Gnutella [1], and FastTrack to which Kazaa connects to [5].

The Gnutella P2P network [2], with a user base of over
2.2 million users in March 2006 [5], is one of the top three

popular P2P file sharing applications, primarily used to ex-
change music, movies and software. Locating items in a
network is an important part in the operation of P2P net-
works. When a user wants to search for a file, a QUERY
message containing the user specified search string is sent
to every node the peer is connected to. A node receiving the
QUERY message matches the search string against the lo-
cally stored file name and broadcasts the message further. If
there is a match, the node answers with a QUERYHIT mes-
sage. A QUERYHIT message contains information neces-
sary to download the file, such as the number of hits, the IP
address of the responding node and the download speed.

Before the introduction of the Gnutella protocol v0.6 in
2002 [2], every node in the network played the role of an
equal peer. This resulted in the overloading of peers with
slow Internet connection and, generally, in large message
overhead, as each node had to forward every message to
every neighbour. These scalability problems were improved
with the introduction of the two-tier overlay architecture.

With the introduction of the two-tier overlay architec-
ture, the Gnutella developer community [1] implemented
specialised roles for peers in the network. In this model,
a small subset of nodes become ultrapeers, responsible for
routing all messages and for shielding the leaf peers that are
connected to them from the network traffic. To become an
ultrapeer, a node must provide sufficient bandwidth and up-
time and must not be firewalled. Ultrapeers are connected,
in average, to 30 other peers [12, 14], while leaf peers hold
only a small number of connections (≤ 3) to ultrapeers.
Leaf peers, on the other hand, concentrate on providing
files. Information about the files the nodes share are up-
loaded to the ultrapeer. An ultrapeer forwards only those
QUERIES to its leaf pears that have matching files. The
introduction of the two-tier topology was the first step to
improve the scalability and performance of Gnutella by re-
ducing search message overhead. In order to improve the
Gnutella performance, the Dynamic Query Protocol (DQP)
was introduced to limit the flooding of query messages.
The Dynamic Query Protocol reduces message overhead by

1

considering the popularity of the queried file and by lower-
ing the used message TTL.

The goal of this protocol is to only gather enough re-
sults to satisfy the user’s needs (typically 50 to 200 results).
The DQP delegates all search responsibilities to the ultra-
peers. Every leaf peer commits its file list to the ultrapeer it
is connected to. When an ultrapeer receives a search query
from an attached leaf node, it starts a dynamic query which
consists of two steps: first it sends a query message with a
low TTL that is flooded outwards, decreasing the TTL each
time it is forwarded until the TTL expires. This is called
a probe query, meant to give an idea of the popularity of
the file. Depending on the results the ultrapeer receives, a
second query is started with a higher TTL. This process is
repeated until the desired number of results is reached or the
ultrapeer gives up. However, the DQP may have poor per-
formance especially in case of rare files in terms of message
overhead.

In this paper we propose EPITELLA, a decentralised,
unstructured search algorithm, which uses epidemic-style
information dissemination techniques to control the num-
ber of query messages and to fine-tune the dissemination
process. The approach is based on recent results of com-
plex networks theory and models of epidemics spreading.
We present simulation results that show that EPITELLA
is more exhaustive in finding rare files and produces less
overhead in finding popular files, compared to the Dynamic
Query Protocol currently used in Gnutella.

The reminder of this paper is organised as follows. We
describe the EPITELLA search algorithm in Section 2. The
evaluation in Section 3 shows that our algorithm produces
better search results for rare files, and produces less over-
head in finding popular files compared to Gnutella. Sec-
tion 4 concludes the paper, summarising its contribution.

2 EPITELLA

Epidemic algorithms represent an effective solution to
disseminate information in distributed systems[9] and we
argue they are also suitable for P2P networks. In fact, there
is a strong analogy between information dissemination in
distributed systems and epidemic transmission in communi-
ties. Diseases are transmitted by contacts between infected
individuals and susceptible (i.e, that can be potentially in-
fected) individuals. The spread of an epidemic can also be
used to model replication and dissemination of information
in a P2P system. The highly resilient nature of epidemics
can be used to ensure the reliability and robustness of an
epidemic algorithm. In a community, only a few infected in-
dividuals are sufficient to spread the disease to a large num-
ber of members in a very short time. The analogy becomes
even more evident when the content of the information is
malicious as in the case of computer viruses [8].

Epidemiologists have found that there is a critical thresh-
old for the propagation of a disease throughout a popula-
tion dependent on the infectivity of the disease [6]. Any
epidemic less infectious than this threshold will inevitably
die out, whereas those above the threshold will increase ex-
ponentially. Recent study in complex network theory have
also linked this threshold to the structure of the network [7].
For example, in scale-free networks this threshold is zero.
That is, all viruses, even those that are weakly contagious,
will spread and persist in the system.

2.1 The Infection Spreading Model

The epidemic dissemination algorithm that we adopt as
a basis for a search algorithm in a Gnutella-like overlay net-
work, is inspired by the work presented in [11], which was
applied to mobile ad hoc networks. The core of the epi-
demic dissemination algorithm is the Susceptible-Infective-
Removed (SIR) infection spreading model, proposed by
Kermack and McKendrick in 1927. A simplified version
is the Susceptible-Infective-Susceptible SIS model [6]: ac-
cording to it, an individual can be in two possible states:
infected (i.e., an individual is infected with a disease), and
susceptible (i.e., an individual can potentially get infected).
In this simplified model, we do not consider the case of
nodes that cannot be infected again after recovering from
the disease (i.e., the recovered state) or because they disap-
peared from the system (i.e., they are isolated or died).

We map the model onto P2P networks, by substituting
the population of individuals with the nodes of the network.
A host is considered infected, if it holds a message, and
susceptible, if it does not. If the message is deleted from
the host, the host becomes susceptible again. The dynamics
of the infectives and susceptibles in a scenario composed
of N(t) active hosts (i.e., not failed), can be described by
means of a system of differential equations:8>>>>>>>>>>>><>>>>>>>>>>>>:

dS(t)

dt
= −βS(t)I(t) + γ(t)I(t)

dI(t)

dt
= βS(t)I(t) − γ(t)I(t)

dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(1)

where:
• I(t) is the number of infected hosts at time t;
• S(t) is the number of susceptible hosts at time t;
• β is the average number of contacts with susceptible

hosts that leads to a new infected host per unit of time
per infective in the population;

• γ is the average rate of removal of infectives from cir-
culation per unit of time per infectives in the popula-
tion;

2

• φ is the failure rate (i.e., the probability that one host
fails per unit of time).

If we solve the system by using the initial condition I(t) =
I0 (where I0 is the number of initial hosts infected), we
obtain that the number of infectives at time t is described
by the following equation:

I(t) =
I0eαβt

1 +
I0

α
(eαβt − 1)

(2)

with α = N(t) −
γ

β
. N(t) is considered approximately

constant during the entire epidemic process described by
the system 1, since we assume that the failure process is
stationary considering the interval of time during which the
epidemics spreading happens (i.e., we assume N(t) ≈ N∗

with N∗ equal to the number of hosts present in the system
at the beginning of the epidemics). In our case the initial
condition is I0 = 1: this represents the first copy of the mes-
sage that is inserted in its buffer by the sender. This result
can be used to calculate the number of infectives at instant
t with a given infectivity β and a given removal rate γ, or,
more interestingly for our purposes, β and γ can be tuned
in order to obtain a certain epidemics spreading, after a spe-
cific length of time has passed. The infectivity β is the fun-
damental parameter of the message replication algorithm.
In fact, a certain infectivity β can be selected in order to ob-
tain, at time t∗, a number of infectives (i.e., hosts that have
received the message) equal to I(t∗) or, in other words, a
percentage of infectives1 equal to I(t∗)/N(t∗). The param-
eter γ can be interpreted as the deletion rate of the messages
from the buffer of the hosts. We assume sufficient dimen-
sioned buffers so we do not need to delete messages from
the buffer during the dissemination process. We therefore
assume γ = 0.

In homogeneous networks, such as random graphs2, the
node degree k for each node can be approximated quite pre-
cisely with the average degree of connectivity 〈k〉 of the
network. Therefore, in case of homogeneous networks, in
order to take into account the effect of the connectivity, it is

possible to substitute β with λ
〈k〉
N

. λ represents the proba-

bility of infecting a neighbouring host. 〈k〉
N gives the prob-

ability of being in contact with a certain host. Thus, we
have separated, in a sense, the event of being connected to a
certain host and the infective process [7], and it is therefore
possible to calculate λ as function of I(t∗) and 〈k〉. Finally,
it is interesting to note that in homogeneous networks, ev-
ery host knows its value of k and, consequently, of 〈k〉. We

1Note that β = f(I(t)) is not defined for I(t) = N(t). Therefore,
from a practical point of view, in the case of a message sent to all the hosts
of the system, we will use the approximation I(t) = N(t)−ε, with ε > 0,
in the expression used to calculate β.

2The degree distribution of a random graph is a binomial distribution
with a peak at P (〈k〉).

will exploit this property to tune the spreading of message
replicas in the system.

2.2 EPITELLA Search Algorithm

We now describe the EPITELLA search algorithm; the
algorithm takes into account the desired number of search
results and the popularity of the queried file and tunes the
dissemination of the query messages accordingly. We ex-
ploit a two-step search process inspired by the Gnutella’s
Dynamic Query Protocol, to dynamically adapt our algo-
rithm to different file popularities.

In a P2P network such as Gnutella, messages are sent
from a source A to its neighbours in a flooding-based man-
ner. To avoid the overhead produced by flooding the mes-
sage to each neighbour, we use the results described in Sec-
tion 2.1 to only deliver a message from A to a percentage
of nodes Ψ, by time t∗. In fact, more formally, given an
expected percentage of hosts which has to be infected equal
to Ψ, the value of β in order to obtain I(t∗) = ΨN can be
calculated.

Firstly, a probe search limited to a small number of hosts
is triggered in order to get an estimation of the file popular-
ity. A second query is designed, by taking into account the
number of responses from the probe search, to generate just
enough results to satisfy the users needs (typically 50 to 150
number of results). In case of popular files, where the probe
query already delivers a sufficient number of results, no sec-
ond query is sent and the search process stops immediately.

However, there is a major difference between the De-
livery Query Protocol used in Gnutella and our search ap-
proach. Instead of using a higher or lower TTL value to
adapt to rare or popular files, we use the parameter β of
the epidemic model to fine-tune the dissemination of the
query. The EPITELLA algorithm also takes into considera-
tion other network parameters such as the number of nodes
N and their connectivity k. In case of a poorly connected
overlay the algorithm is able to adapt the dissemination pro-
cess to still make sure a sufficient number of nodes receive
the query.

Recent studies [15] have found that files in Gnutella are
randomly distributed in the network. Therefore, a simple
proportion is used to evaluate the probe query and to choose
a sufficient value of the reliability parameter for the second
query:

Rprobe

Rdesired
=

Ψprobe

Ψdesired
(3)

Hence:

Ψdesired =
ΨprobeRdesired

Rprobe
(4)

3

Rprobe is the number of results that are returned from the
probe query, and Rdesired is the number of results the user
wants to receive. Ψprobe is the value of the Ψ parameter
for the probe query (i.e., the percentage of hosts that are
reached by the probe query). Ψdesired is the percentage of
hosts that need to be reached in order to have the desired
number of results.

For example, let us consider a network composed of
10000 nodes and let us suppose that we would like to re-
trieve 100 results. Given the number of hosts in the network
and the average link distribution, we calculate the value of β
that is necessary and sufficient to reach a given small num-
ber of nodes in the probe phase (for example 500, equal to
5% of the total number of hosts). Then, let us suppose that
the probe search returns 50 results. In order to obtain the de-
sired 100 results, using the simple formula above, we need
to reach 10% of the nodes of the system. Then, we calculate
the infectivity needed to reach this percentage of hosts and
we spread the message using this infectivity.

This simple solution provides the best results if the files
are perfectly uniformly distributed in the network, since it
is able to retrieve the desired number of results with the
minimal message overhead. The accuracy of the protocol is
also a function of the size of the probe sample and the pop-
ularity of the file for statistical reasons. The choice of the
best values of Ψprobe can be performed experimentally. It is
also possible to use different values of Ψprobe for different
popularity of files. In fact, if the files is highly popular, a
low value of Ψprobe is able to provide accurate results. On
the flip side, it is necessary to use higher values of Ψprobe

for files with a low popularity. The popularity of a file can
be set by the user or can be retrieved automatically by the
system. For example, a possible method for estimating file
popularity is presented in [10]. In general, as the size of the
population of the probe sample and the number of nodes
increases, the accuracy of the protocol will increases. We
will discuss some simulation results about all these issues
in Section 3.

Each time a node wants to send a new message over the
network, the system must calculate the infectivity λ which
is necessary and sufficient to spread the information with
the desired reliability (that has to be chosen in the range
[0,1]), in a specified time interval, evaluating the average
degree of connectivity and the number of nodes of the net-
work. The time interval is measured in logical time unit
(or rounds). The calculation of the infectivity using the epi-
demic model is also based on logical time units. One logical
time unit corresponds to a physical time unit (for example
0.01 seconds). At every round, the dissemination process is
executed.

The message’s unique identifier, the value of the calcu-
lated infectivity, the expiration time that indicates when the
message needs to get deleted from the network (i.e., at the

end of the search after the total number of round of the epi-
demic spreading) are inserted into the header of the mes-
sage and the message is stored in the node which creates
the message.

To implement EPITELLA, we adapt the Dynamic Query
Protocol implementation of PHEX [4], a Gnutella client
written in Java, into PeerSim [3]. PeerSim is a Java frame-
work designed to experiment with large scale P2P overlay
networks. Its simulator architecture is highly scalable (i.e.,
it is able to support a high number of network nodes), and,
through its component based structure, fully configurable.
This makes it easy to join together different pluggable build-
ing blocks. For Gnutella, we use the PHEX message imple-
mentation. Instead of using a TTL field as in the Gnutella
message implementation to control the validity of the mes-
sage, we can use the expiration time and delete the epidemic
message at time t∗.

3 Evaluation

In order to evaluate the epidemic algorithm we present
some preliminary simulation results gathered using Peer-
Sim. We show that the Epidemic Algorithm can be applied
as an effective search algorithm which can compete against
Gnutella’s search engine. We compare the Epidemic Al-
gorithm as a search algorithm in a Gnutella-like network
with Gnutella’s Dynamic Query Protocol. For a reference,
we also show a comparison between the EPITELLA Search
and Flood Search, a flooding-based algorithm that was used
in the early Gnutella implementations.

We choose a Random Graph network as the basic over-
lay network for our experiments with Gnutella. In fact, as
described in Section 1, only ultrapeers are responsible for
searching the Gnutella network. Therefore, we only con-
sider the ultrapeer overlay in our simulations. In [14, 13],
Stutzbach and alii have found that this ultrapeer-layer forms
a stable core-layer, whose nodes are connected randomly.
This top-level overlay forms a stable core, with a spike in its
connectivity degree distribution around 30. This means, we
can approximate the Gnutella ultrapeers topology through
a Random Graph with an average degree of connectivity
〈k〉 = 30. To compare EPITELLA Search with the Gnutella
Search, we consider three parameters which are fundamen-
tal for an efficient, reliable and slim search algorithm:
• Deviation from desired to received results: This is the

error of the number of results the user wants with re-
spect to the actually number of received results. The
lower this deviation is, the more effective is the search.

• Sent messages: This is the number of overall sent mes-
sages in the network. The less messages a query needs
to successfully return the number of desired results, the
more efficient an algorithm is.

• Sent/Received ratio: This is the number of sent mes-

4

(a) Gnutella vs. EPITELLA Search

(b) Flood Search vs. EPITELLA Search

Figure 1. Comparison of the deviation from
desired results (100) in Gnutella, Flood
Search and EPITELLA Search, with a variable
number of files in the network.

sages, divided by the number of received results. A
low sent / received ratio means a highly efficient query.

Each of these parameters are evaluated in a network with
10000 nodes, using an average degree of connectivity 〈k〉 =
30, and a time period of t∗ = 100 rounds. Each of the pa-
rameters is printed as a function of number of items in the
network that is the file popularity. Apparently, the over-
head produced by a high deviation of desired results and
the resulting number of sent messages is far higher for pop-
ular files. On the other hand, a low sent/received ratio is
only meaningful in combination with a low deviation of de-
sired results. For a user, it is more important to receive the
desired number of results, so it is acceptable for a query
to need more query messages for rare files. The potential
in saving messages lies in finding popular files efficiently,
without producing high overhead.

The system counts the overall number of sent messages,
the number of query hit messages and calculates the devi-
ation from the desired number of results. Each simulation
for each sample consists of 50 experiments, each experi-
ment takes 200 rounds (100 rounds for the probe and the
standard search phase, respectively). For the Flood Search,
a TTL-constrained search algorithm similar to the one used
in early Gnutella implementations, we use a TTL = 7,
which is the maximum value the TTL field is allowed to
have [2]. Figure 1.a shows the deviation from the number

(a) Gnutella vs. EPITELLA Search

(b) Flood Search vs. EPITELLA Search

Figure 2. Comparison of the sent messages
in Gnutella, Flood Search and EPITELLA
Search, with a variable number of files in the
network.

of desired results a user wants (in our case 100 results).
With increasing file popularity the EPITELLA Search is
far closer to the number of desired results than Gnutella,
meaning that Gnutella still produces a considerable over-
head when searching for popular files. The efficiency of
EPITELLA Search becomes more apparent when compared
to Flood Search in Figure 1.b: while the deviation of de-
sired results appears to stay almost constant in EPITELLA
Search, Flood Search produces a linear increase of the re-
sult deviation. This clearly shows the advantage of the dy-
namic two-step process of EPITELLA Search and DQP.
For popular files, the flooding-based algorithm produces far
more results a user is ever likely to use. Figure 2.a shows
the overall number of sent messages of EPITELLA Search
and Gnutella using the same simulation settings as in Fig-
ure 1. For popular items again, EPITELLA Search shows
its supremacy. It needs significantly less messages than
Gnutella. The particular behaviour of Gnutella is caused by
the use of a TTL-based search. The number of obtained re-
sults is higher than the desired ones. In this case the search
is extended to a higher distance (i.e. TTL), but this results
not only in a higher number of results but also in a higher
associated overhead. Then, after 7000, with a lower TTL,
Gnutella is able to retrieve the desired number of results
with a more limited exploration. This reduces the deviation
from the number of desired results and the overhead. The

5

(a) Gnutella vs. EPITELLA Search

(b) Flood Search vs. EPITELLA Search

Figure 3. The sent/received message ratio
in Gnutella, Flood Search and EPITELLA
Search, with a variable number of files (items
to search) in the network.

magnitude of savings of messages is even more impressive
in Figure 2.b, when compared to the sent messages of Flood
Search. Figure 3.a shows the sent/received ratio of Gnutella
and EPITELLA Search. The performance of both of the
algorithms are very similar for popular files. EPITELLA
Search exhibits a slightly higher sent/received ratio for rare
files. This is a wanted behavior, because the user is inter-
ested in actually retrieving search results, if there are files in
the network that match the user’s query. It is therefore ac-
ceptable to send more search messages than Gnutella sends,
if the results are better and more search results are produced.
In these experimentation, we used different values of Ψprobe

for different values of file popularity, with 1% for low, 7%
for medium and 15% for high popularity. However, it may
happen that the popularity of a file cannot be retrieved with
a good accuracy.

The results show that the EPITELLA search algorithm
performs well and is able to produce better results than even
the highly optimised Dynamic Query algorithm of Gnutella.
While the Gnutella search algorithm is optimised for the
specific topology characteristic of the current Gnutella net-
work, our EPITELLA is not restricted to any specific net-
work characteristic. It works best in a highly connected
Random Graph network (for statistical reasons), but due to
its dynamic adaptation mechanisms, it is also able to handle
less connected graphs.

4 Conclusions

In this work we have introduced a search algorithm based
on epidemic-style information dissemination [11]. Being
inspired by the two-step process of Gnutella’s Dynamic
Query Protocol we have designed a search algorithm that
relies on a probabilistic dissemination techniques based on
epidemiological models in complex networks. We have im-
plemented this algorithm using PeerSim, a Java-based P2P
simulator. Finally, we have compared this solution with
Gnutella’s approach and with a flooding based search algo-
rithm. As an evaluation, simulation results have been given
for all three search algorithms.

References

[1] Gnutella Development Forum, March 2006. http://www.the-
gdf.org/wiki/.

[2] Gnutella Dynamic Query Protocol v.0.6, March 2006.
http://www.the-gdf.org.

[3] PeerSim Project Webpage, March 2006.
http://peersim.sourceforge.net/.

[4] PHEX Gnutella Client, March 2006. http://phex.kouk.de.
[5] Slyck - File Sharing News and Info, March 2006.

http://www.slyck.com.
[6] R. M. Anderson and R. M. May. Infectious Diseases of Hu-

mans: Dynamics and Control. Oxford University Press, 1992.
[7] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespig-

nani. Dynamic Patterns of Epidemic Outbreaks in Complex
Heterogeneous Networks. Journal of Theoretical Biology,
2005.

[8] T. M. Chen and J.-M. Robert. Worm Epidemics in High-
Speed Networks. IEEE Computer, pages 48–53, June 2004.

[9] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Mas-
souli. Epidemic Information Dissemination in Distributed
Systems. IEEE Computer, May 2004.

[10] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and
I. Stoica. Enhancing P2P File-Sharing with an Internet-Scale
Query Processor. In Proceedings of VLDB’04, pages 432–
443, 2004.

[11] M. Musolesi and C. Mascolo. Controlled Epidemic-style
Dissemination Middleware for Mobile Ad Hoc Networks. In
Proceedings of MOBIQUITOUS’06. ACM Press, July 2006.

[12] D. Stutzbach and R. Rejaie. Characterizing the Two-Tier
Gnutella Topology. June 2005.

[13] D. Stutzbach, R. Rejaie, and A. H. Rasti. On the long-term
evolution of the Gnutella network. In Proceedings of 8th
IEEE Global Internet Symposium, April 2006.

[14] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstruc-
tured overlay topologies in modern P2P file-sharing systems.
In Proceedings of IMC’05, October 2005.

[15] S. Zhao, D. Stutzbach, and R. Rejaie. Characterizing files
in the modern Gnutella network: A measurement study. In
SPIE/ACM Multimedia Computing and Networking, January
2006.

6

