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ABSTRACT
The mobile phone represents a unique platform for interac-
tive applications that can harness the opportunity of an im-
mediate contact with a user in order to increase the impact
of the delivered information. However, this accessibility does
not necessarily translate to reachability, as recipients might
refuse an initiated contact or disfavor a message that comes
in an inappropriate moment.

In this paper we seek to answer whether, and how, suitable
moments for interruption can be identified and utilized in a
mobile system. We gather and analyze a real-world smart-
phone data trace and show that users’ broader context, includ-
ing their activity, location, time of day, emotions and engage-
ment, determine different aspects of interruptibility. We then
design and implement InterruptMe, an interruption manage-
ment library for Android smartphones. An extensive exper-
iment shows that, compared to a context-unaware approach,
interruptions elicited through our library result in increased
user satisfaction and shorter response times.
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INTRODUCTION
Mobile phones are ubiquitous, highly personal devices: the
number of mobile cellular subscriptions is almost equal to the
number of people on the planet [1], and the phones are, for
most of the day, with their owners as they go about their daily
routine. Moreover, mobile phones are far from merely being
voice communication devices. Modern smartphones enable
always-on e-mail, online social network and instant messag-
ing communication. Therefore, the mobile phone represents
the most direct point of contact with a person.
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While the attractive properties of mobile phones indicate that
nowadays almost anyone can be reached at all times, the util-
ity of the resulting interruptions to the user are debatable.
Take instant messaging (IM), for example. While Garrett and
Danziger argue that IM helps office workers to quickly obtain
task-relevant information [14], Cutrell et al. find that irrele-
vant messages result in prolonged task completion times [9].
That interruptions at wrong times lead to reduced worker per-
formance, increased errors and stress is by no means unique
to IM; the effect has been observed with other means of com-
munication as well [5]. However, while in the past people
reorganized their work schedules, or sought isolated loca-
tions in search for uninterruptibility [30], pervasive technolo-
gies make it hard to escape unwanted interruptions. At the
same time, nowadays a large gamut of smartphone applica-
tions tend to initiate contact with the user. From restaurant
recommendation to health and behavior tracking, from per-
sonalized advertisements to video conferencing applications.
These applications often run in parallel to each other, and
to other services such as a battery monitoring service, alarm
clock, SMS, and phone’s voice service. The ever-increasing
number of reasons to notify a user, together with no intelli-
gence that would discern if the moment for interruption has
come or not, threaten to create a cacophony of notifications
that would be of little utility to the user.

In this work we tackle the problem of designing intelligent
interruption mechanisms for mobile devices. We concentrate
on sensor-enabled devices such as smartphones, since the sen-
sors provide information about the surrounding context of the
user, aspects of which include location, activity, collocation
with other users, to name a few. We hypothesize that this
context determines user’s interruptibility, but at the same time
we claim that the interruptibility is a complex property and
should be discussed from various aspects. We collect and an-
alyze real-world data sets of mobile user interruptibility, and
through an extensive machine learning-based study identify
links between the context and the presence of user’s reaction,
between the context and a timely reply, and between the con-
text and the sentiment that a user has towards the interruption.

We then funnel our findings into a practical implementation
of an interruption mechanism for mobile devices – Inter-
ruptMe, a library for intelligent user notification for the An-
droid operating system. InterruptMe collects relevant sensor
data for context recognition, builds classifiers for identifying
opportune moments for interruption, and integrates with the
Android notification mechanism. The classifiers are instanti-
ated within the library, can be personalized for each user, and



can evolve over the course of the application lifetime. While
designing the library we pay attention to restrictive factors in
mobile computing, such as limited battery charge and com-
puting resources. A month-long experiment with ten subjects
shows that, compared to a context-unaware approach, Inter-
ruptMe notifications lead to a faster user response time, and
more favorably ranked moments to interrupt.

RELATED WORK
The importance of timing an interruption has been recog-
nized in psychology in the past: by analyzing task switching
processes researchers has shown that interruptions coming in
different phases of task execution lead to different levels of
disruption [27]. Moreover, in their study of instant messag-
ing, Cutrell et al. demonstrate that the main task users are
working on can be significantly disrupted if IM interruptions
occur at inappropriate times [9]. To gauge suitable moments
for sending a message, Avrahami and Hudson devise a sta-
tistical model of user responsiveness to an IM interruption.
Their model uses desktop PC interaction events, such as key
press and mouse movement events, as features in a response
time classifier [4].

Opportune moments for interruption can be more accurately
determined if a user’s wider context is taken into account.
Thus, Horwitz et al. use an external camera and microphone
to infer user’s availability in an office setting [18]. The out-
come of this work is a Bayesian network that infers the user-
defined cost of interruption from audio-visual features. In
another early work Fogarty et al. investigate which sensors
should be constructed in order to efficiently infer interrupt-
ibility [12]. They embrace the Wizard of Oz technique, where
human subjects simulate sensors by manually coding infor-
mation from audio and video recordings. Despite the ap-
proach that allows examination of sensors that are yet to be
implemented in reality, the authors find that simple sensors
often provide sufficient information to infer interruptibility.

The above work dealt with a posteriori recognition of op-
portune moments to interrupt. First systems to implement
on-the-fly construction of interruptibility models include Lil-
sys [6] and BusyBody [19]. However, both systems rep-
resent purely research platforms with custom hardware and
the lack of support for overlying applications. Nevertheless,
BusyBody proved valuable for refining the machine learn-
ing aspects of interruptibility management. Using Busy-
Body, Kapoor and Horvitz demonstrate a decision-theoretic
approach for probe scheduling, so that a user interruptibility
model can be built with the least number of interruptions [23].
Iqbal and Bailey developed OASIS, a system that allows no-
tifications to be deferred until suitable points for interrup-
tion are identified. Desktop PC interaction features, such
as switching to a mail client, application downloaded, and
similar, are used in the moment classification [21]. How-
ever, unlike previous work that strived to establish a direct
link between recorded or sensed features and interruptibility,
Iqbal and Bailey concentrate on recognizing breakpoints in
the tasks, as previous research identified task boundaries as
the most suitable moments for interruption [3, 20].

Ho and Intille [17] investigate the interruption burden in case
of mobile notifications. Their study uses on-body accelerom-
eters, and triggers interruptions only when a user switches her
activity. The authors find that moments of changing activity,
as inferred by the accelerometers, represent times at which
an interruption results in minimal annoyance to the recipient.
In [37] Ter Hofte studies interruptibility with smartphones,
yet does not employ mobile sensing, but builds a model of in-
terruptibility from self-reported location, company and activ-
ity information. Fischer et al. demonstrate that interruptions
coming immediately after the episodes of mobile phone activ-
ity, such as a phone call completion or a text message sending
event, result in a more responsive user behavior [10]. Pielot et
al. collected a data set of text messages exchanged via smart-
phones together with the associated phone usage context [31].

The existing work established user–phone interaction
episodes as representable indicators of opportune moments
to interrupt. These episodes represent natural task bound-
aries, e.g. a completed phone call, and consequently good
moments to interrupt. In this work we do not restrict to iden-
tifying task switching moments, but hypothesize that many
other opportunities can be uncovered if full mobile sensing is
employed. Finally, the existing work concentrates on a post-
mortem analysis of interruption traces, while we build a sys-
tem that allows real-time mobile notification management on
the smartphone.

REASONING ABOUT INTERRUPTIONS
Interruptions are an indispensable part of everyday life. Tasks
that we perform consist of both individual and interactive ac-
tivities, often without a strict boundary between the two. In-
terruptions are valuable for bringing in relevant information
for the current task and for notifying the recipients of im-
portant changes [30]. The mobile phone represents a great
platform for interactive applications, which can harness the
opportunity of an immediate contact with a user in order to
increase the impact of the delivered information.

Our goal is to develop mechanisms to identify opportune
moments for mobile device-based interruptions. In oppor-
tune moments we maximize the success of delivering content.
First, however, we must define what a successful interruption
is, and form verifiable hypotheses about what constitutes the
stimulus – reaction relationship. We consider a system where
a stimulus comes in a form of a notification on a user’s mobile
device. A reaction to the notification happens when a user re-
sponds to the content delivered through the notification, and
need not be instantaneous. Although broad, this definition
does not embrace all mobile interruption cases, such as phone
calls. However, it closely resembles email, SMS and online
social network (OSN) interruptions.

Identifying Opportune Moments for Interruption
The success of delivering information through an interruption
can be measured from various perspectives. First, we can in-
vestigate responsiveness and term an interruption successful
if it induces a reaction from the subject. This measure is ap-
propriate for cases where a piece of information should not
be overlooked or ignored, irrespective of the user’s sentiment



towards the timing of the interruption. For example, the goal
of important public safety queries is for them to be reacted
upon, whether or not the user preferred to be interrupted at the
moment of notification or not. Yet, we can specify a notifica-
tion goal further, so that a mere existence of a reaction is not
sufficient, and the reaction has to arrive within a certain time
interval. This flavor of responsiveness is relevant in the case
of an interruption that reminds a user to take a medication,
as its effectiveness falls off with the time delay between the
prescribed time and the moment when the user reacts to the
reminder. A significant body of previous work used respon-
siveness as the evaluation metric for interruption [4, 21, 10,
33]. Yet, responsiveness does not reveal whether the subject
welcomed the interruption or not. The sentiment that a re-
cipient has towards the interruption is especially important in
marketing applications, where an obtrusive interruption can
lead to unfavorable perception of the advertised brand [32].
Self-reported sentiment towards the moment of interruption
was used in previous work by Fogarty et al. [13, 12] as well
as by Ho and Intille [17] and Fischer et al. [11]. Since mul-
tiple definitions of interruption success figure in real world
applications, we group the above metrics and consider the
following objectives in our interruptibility model:

• Reaction presence. We aim to predict if a recipient will
react to an interruption.

• Time to reaction. We aim to predict if a recipient will
react to an interruption within a given time interval.

• Sentiment. We aim to predict a recipient’s attitude to-
wards a moment in which a notification comes.

A separate line of research considers the performance on the
main task after an interrupted user reverts to it, as a metric
for the timeliness of an interruption [15, 21, 34]. Our ex-
periments were done “in the wild”, and in general we cannot
measure aspects pertaining to an unknown main task.

Context – Response Hypothesis
A mobile user’s context is described in part by physical prop-
erties of the setting, such as the location, movement, and time.
But for interruptibility analysis the context also includes the
internal state of the user, such as his engagement with a spe-
cific activity, social environment and emotions. While pre-
vious work in the field of interruptibility modeling identified
ties between the context in which a user is, and the related
level of interruptibility [18, 19, 13, 12, 37], different views
on what constitutes the relevant context were not considered.
In this work, we capture following flavors of the context and
hypothesize how they relate to notification reaction:

• Notification context. The context in which a notification
is sent determines an interruption success.

• Response context. The context in which a reaction is
recorded determines an interruption success.

• Notification-response context change. In case of a suc-
cessful interruption, the context changes from the notifi-
cation to the reaction.

• Notification context variation. The variation of context
at the notification time indicates an interruption success.
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Figure 1. Per-user distribution of answered and unanswered notifica-
tions in the SampleMe dataset.

The existing literature largely considered the notification con-
text, while Ho and Intille analyzed the notification context
variation [17]. It is worth noting that these works did not
involve smartphone sensing. In fact, to the best of our knowl-
edge, our work is the first to investigate notification interrupt-
ibility in relation to smartphone-sensed context. It is also the
first to explore the remaining two aspects of the context.

MOBILE INTERRUPTIONS DATA
To answer the research questions posed in the previous sec-
tions we rely on a real world data on human interruptibility.
We acquire such data from SampleMe – an Android expe-
rience sampling method (ESM) application we designed to
initiate interruptions, record the context, and collect user re-
sponses to the interruptions.

SampleMe Dataset
SampleMe is built on top of EmotionSense [25] and the
SensorManager, TriggerManager and ESDataManager li-
braries [26]. The application notifies the user about a survey,
which consists of questions related to user’s attitude towards
being interrupted, his location, activities, company, and emo-
tions (Figure 2(a) shows the first page of the survey). The
notifications are announced with a default ringtone/vibration
from the mobile phone, and an icon shown in the notification
bar. The application is also sensing user’s GPS coordinates,
Bluetooth and WiFi environment, and the phone’s accelerom-
eter. Context sensing is performed once a notification is sent
to a phone, and once a user replies to the survey. In Table 1 we
list the groups of features we record. Due to the limitations
of Android sensing, for example, the inability to sense from
a busy sensor, or an occasional failure to lock to the GPS,
context data is not complete for all the notification instances.

Data collection was carried out for two weeks among 20 adult
subjects, who received a modest monetary reward for their
participation, where “participation” was defined as having
the application running on their phones, and no requirements
were made on actually reacting to notifications. SampleMe
was running alongside other applications that the participants
use on their phones. We recruited subjects from three conti-
nents, from both sexes, and from the age span 20 to 37 years
old. Eight notifications were sent to each participant per day
at random times between 8 am and 10 pm local time. All of
the subjects persisted through the whole duration of the study.

To create an incentive to respond, but avoid forcing responses,
we integrate an emotion map with the application. The map,
such as the one shown in Figure 2(b), displays the geographic



Group Features

Time Time of day, weekend indicator, time into experiment.

Accelerometer Mean, variance and mean crossing rate of the accelerome-
ter readings. Activity variation around the notification time.#

Activity change from notification to response.*+

Location Descriptive location: “Residential”, “Work”, or “Public”.
Location change from notification to response.*+ Bluetooth
fingerprint change from notification to response.*+ WiFi fin-
gerprint change from notification to response.*+

Company* Company indicator: “alone”, “not alone”.

Activity
Engagement*

Descriptive activity: “Work related”, “Leisure”, or “Mainte-
nance”. How important is the activity? How interesting is the
activity? How challenging is the activity? How skilled is the
user wrt the activity? How concentrated the user is? User’s
desire to do something else.

Emotions* How happy, sad, angry, frightened and neutral user is?

Table 1. Feature groups from the SampleMe dataset. Marked with *

are features available for answered notifications only; marked with + are
characteristic for a context change from notification to reaction; marked
with # characterize variation of context at the notification time.

distribution of emotion intensity. The density of displayed
information increases with the number of surveys answered.
The behavior with respect to interruptions varied significantly
among users. In total 2334 notifications with surveys were
sent, out of which 906 were answered. SampleMe was de-
signed to automatically restart on a phone boot event, yet, if
the battery was drained, or if a user forcibly quit the applica-
tion, notifications would not be received. In Figure 1 we show
the number of notifications received and reacted upon (sur-
veys answered) for each of the 20 subjects. Each answered
survey revealed the user sentiment towards the interruption,
as one of the questions in the survey explicitly asked the par-
ticipants if the current interruption came at the right moment.

We sample GPS both at the time when an interruption is sent,
and when the corresponding survey is replied to. Using the
OpenStreetMap API [28] we get addresses that correspond
to the recorded coordinates in both cases. In the survey, one
of the questions asks a user to label the current location as
“Residential”, “Work”, or “Public”. We assign that label to
the address inferred from user’s current coordinates. This is
done for all answered surveys in the dataset. Next, we iterate
over the set of addresses recorded at notification times, and in
case that the same address is observed in the set of already la-
belled addresses from the survey answers, we back-propagate
the label to the address recorded at a notification time.

MODELLING INTERRUPTIBILITY
To model the interruptibility of a mobile user we apply a
series of machine learning techniques and test the assump-
tions about context and response we laid out in Reason-
ing About Interruptions Section. Our goal is to predict the
actual outcome (interruptibility) AOi at an interruption in-
stance (notification that is sent out) i, using N sensed fea-
tures f1, ..., fN that describe the current context. We use a
machine learning model g((~f)) that takes as an input a vec-
tor ~f i = (f i

1, ..., f
i
M ),M ≤ N of selected features’ val-

ues at instance i to obtain the predicted outcome POi, i.e.,
POi = g(~f i). We use the open-source WEKA [16] and

(a) Survey. (b) Emotion map.

Figure 2. SampleMe application screenshots.

MOA [7] machine learning toolkits to build the interruptibil-
ity models. Function g corresponds to an actual classifier,
such as naive Bayesian, Bayesian network, boosting, or other.

Evaluation of Interruptibility Models
We use a trace-driven simulator to evaluate the performance
of the models. The simulator input includes notification tim-
ing and content of related answers, and recorded contexts
from the SampleMe dataset. At each instance i, the simu-
lator queries a model of interruptibility g(~f i) with the related
sensed context, described by ~f i, to infer if the current mo-
ment is an opportune moment for interruption, i.e. to decide
whether to activate the current notification or not. In case the
predicted notification outcome (POi) is favorable, the notifi-
cation is activated. If the actual outcome of the activated no-
tification (AOi) satisfies an objective function, which means
that the user either reacted to the notification, reacted within
a certain time frame, or reacted with a certain sentiment, we
consider that the moment was indeed opportune, and that the
interruption was successful. For each instance we inspect
the activated notifications and keep track of all the instances
where a notification is successful. At any point, we can calcu-
late precision, i.e., the proportion of the instances recognized
by the model as opportune that were indeed opportune, and
recall, i.e., the proportion of all the opportune instances that
our model labelled as opportune. We are predominantly inter-
ested in the precision as our main goal is to design a “calm”
system that does not interrupt at inappropriate times, and we
assume that opportunities for interruption are ample.

We evaluate different classifiers g, and depending on the hy-
pothesis that is being tested, use different input features ~f
and objective functions (as defined in Reasoning About Inter-
ruptibility Section). The first hypothesis we propose, i.e., the
notification context determines the outcome, relies on time,
accelerometer, and location groups of features from Table 1
(except for those features marked with #, + or *). When test-
ing the second hypothesis, i.e., whether the outcome of the



Classifier Precision Recall

AdaBoost 0.64 0.41

Bayesian net 0.58 0.37

Naive Bayes 0.57 0.52

Baseline 0.39 0.38

Table 2. Notification context de-
termines reaction presence.

Classifier Precision Recall

AdaBoost 0.46 0.10

Bayesian net 0.54 0.04

Naive Bayes 0.52 0.04

Baseline 0.27 0.26

Table 3. Notification context de-
termines reaction sentiment.

notification depends on the context recorded at the time of a
user’s response, we use all the features from Table 1 except
for those marked with + or #. Features marked with + reflect
the change in context between the moment of notification and
the moment of response, and are used for testing our third hy-
pothesis that the context changes from a notification to a reac-
tion in case of a successful interruption. The final hypothesis
we test is that the variation of context at the time of notifica-
tion indicates the interruption outcome. In SampleMe we take
fine-grained accelerometer readings five minutes before and
up to five minutes after each notification. We calculate the
activity variation level and use it as a feature in the analysis
(feature marked with # in Table 1).

Depending on one of the objective functions from the list
presented earlier, we label the outcome AOi of each of the
instances in the dataset as a binary successful or unsuccess-
ful. Thus, when considering reaction presence, we label as
successful any instance where a user responded to the noti-
fication; when considering time to reaction, we label as suc-
cessful any instance where a user responded no later than td
after a notification; when considering reaction sentiment, we
label as successful any instance where a user indicated that
the interruption was not irritating beyond a given threshold.
We first experiment with batch learning, where the dataset is
treated as a bag of unordered notifications, a subset of which
is used for classifier training. Next, we move to online learn-
ing where we preserve the order of notifications and let a clas-
sifier learn through exploration. Finally, we evaluate the prac-
ticality of the interruption modeling approach.

Batch Learning
We start by testing the hypothesis that the notification context
determines the outcome of the interruption. For the outcome
function, we first select reaction presence. From the WEKA
toolkit we select naive Bayesian, Bayesian network, and Ad-
aBoost classifiers [8]. We perform ten-fold cross validation,
where 90% of the samples are used for classifier training; the
remaining are ran through the simulator which infers the out-
come of the notification based on the selected features (~f ).
Table 2 summarizes the precision and recall averaged over
ten runs for both datasets. From the precision values we ob-
serve that of all the moments our model labelled as oppor-
tune for interruption, around 60% indeed resulted in a user
reaction. The precision improves as the sophistication of the
model is increased (from a naive Bayesian, over a Bayesian
network, to a boosting-based classifier). To put this result in
a perspective, we implement a baseline classifier that calcu-
lates the ratio of training set interruptions which resulted in
a user reaction, and then in the simulator activates a notifica-
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Figure 3. Notification context determines time to reaction. The x-axis
denotes the time limit for the reaction prediction, i.e., whether the user
reacts within the given time period.

tion with the probability that corresponds to that ratio. The
baseline does not take the context into account, and performs
significantly worse than any of the context-trained classifiers.
We again test whether the notification context determines the
reaction, this time with a different objective function – time
to reaction. In Figure 3 we show the ability of the models
to predict if a user will react within a given time threshold
td. We observe that the laxer requirements with respect to the
prediction horizon lead to a more precise prediction.

Next, we experiment with inferring the sentiment that a user
has towards interruption from the context recorded at the noti-
fication time. In SampleMe the sentiment was recorded as an
answer to the question “Is this a good moment to interrupt?”
on a four-point Likert scale with the following labels: not at
all, a little, somewhat, and very much. For convenience, we
define as opportune any moment that the user labelled as a
little suitable, or above. In Table 3 we show the experimen-
tal results on the SampleMe dataset – the task is harder, and
the precision is lower than in the case when only the presence
of the reaction is predicted (Table 2), yet some improvement
with respect to baseline is still observable.

We now evaluate the influence of the context at the time of
response on the outcome of the interruption. In this case, we
have a single meaningful outcome function – reaction senti-
ment. The other two outcome functions, the response pres-
ence and time to reply are trivially satisfied at the time when
the context is recorded. We experiment with different defini-
tions of an opportune moment to interrupt. First, we term a
moment as opportune if in the corresponding survey the user
labelled the moment as a little suitable, or above. Then, we
tighten the definition by considering a moment to be oppor-
tune only if the user labelled it as somewhat or very much
suitable. Finally, we define the moment as opportune only if
the user labelled it as very much suitable for interruption. In
Figure 4 we show the precision of inference with a chang-
ing threshold of acceptable interruption sentiment. The pre-
cision falls off as we tighten the definition of an opportune
moment. This behavior is understandable, as the dataset gets
heavily skewed towards moments that are not opportune. In
Table 4 we show the distribution of recorded sentiment in the
SampleMe dataset. In case the classifiers have to identify
moments that are very much suitable for interruption, only
4.58% of the data points are labelled as successful. The small
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Sentiment Not at all A little Some Very much

Interruptions 1700 (72.84%) 377 (16.15%) 150 (6.43%) 107 (4.58%)

Table 4. Distribution of sentiment in the SampleMe dataset. A large
majority of messages were not answered (we assign such interruptions
as not at all appropriate) or arrived at moments that users labelled as
not at all appropriate.

number of such points in the data set could also explain why
boosting achieves low precision in this case, since for good
performance boosting requires a richer training set.

We hypothesize that there is a relationship between
notification-response context change and a user reaction. In
SampleMe we record the context both at the time of notifica-
tion, as well as at the time of a user response. We calculate the
change in the reported GPS location, accelerometer features,
Bluetooth and WiFi environment for the two context readings
for each answered notification. The GPS change is expressed
in meters, accelerometer change is represented by the inten-
sity of a vector of accelerometer mean, variance and MCR
between the two readings, and Bluetooth and WiFi change
is expressed with the Jaccard distance between the sets of
sensed devices recorded at the two context points. The only
meaningful outcome function is sentiment towards interrup-
tion. We define a moment as opportune if the user labelled
it as a little suitable for interruption or above. We split the
dataset instances into two groups, opportune and others, ac-
cording to the outcome, and perform a t-test between them in
order to compare mean feature values in the two groups. A
significant difference between the means would indicate that
our hypothesis that the context changes from notification to
reaction is correct. In Table 5 we show mean (M) and stan-
dard deviation (SD) of accelerometer, GPS, Bluetooth and
WiFi change metrics for the two groups, along with the re-
sults of t-tests that compare the mean values of those met-
rics between the two groups1. A difference in the means is
found only if the significance of the tests p is lower than a
threshold (often equal to 0.05 in practice). In our case, the
change in the Bluetooth environment is significantly different
between opportune and non-opportune moments for interrup-
tion (t(341.27) = 2.53, p = 0.01). For any other feature,
the difference between the means is not significant. The re-
sults should be taken with caution. The granularity of con-
text change that we capture in our experiments might be in-

1We report statistics according to the American Psychological As-
sociation standards: T-test statistics are reported with the degree of
freedom in parentheses, t-value, and the significance level.

Feature Opportune Others T-test

Acc change M=0.45
SD=0.33

M=0.44
SD=0.34

t(720)=0.26,
p=0.80

GPS change M=448.65
SD=4690.76

M=150.63
SD=837.37

t(759)=0.95,
p=0.34

BT change M=0.33
SD=0.46

M=0.23
SD=0.42

t(341.27)=2.53,
p=0.01

WiFi change M=0.27
SD=0.38.76

M=0.22
SD=0.32

t(522.41)=1.87,
p=0.06

Table 5. Notification-response context change is related to reaction.

Classifier td → ∞ td = 180min td = 120min td = 60min

AdaBoost 0.52, 0.36 0.44, 0.33 0.39, 0.29 0.05, 0.05

Baseline 0.39, 0.38 0.38, 0.38 0.37, 0.37 0.35, 0.35

Table 6. Notification context variability determines reaction presence.
Each cell in the table contains the precision and recall values.

sufficient to discern user’s sentiment towards an interruption.
On the other hand, establishing a bond between a more ro-
bust outcome, such as whether the reaction was present at all,
would require frequent context sensing which was not per-
formed in the SampleMe data collection experiment, due to
energy constraints of smartphone sensing.

In the last hypothesis, motivated by Ho and Intille’s earlier
work in which the authors show that on-body accelerome-
ters can be used to infer activity breakpoints, thus oppor-
tune moments for interruption, we hypothesize that the varia-
tion of context at the time of notification indicates opportune
moments for interruption [17]. In order to measure context
changes we take fine-grained accelerometer readings from
five minutes before to five minutes after each notification.
We then calculate a vector that consists of the mean, variance
and the mean crossing rate in each one-minute window and
measure the Euclidean distance between vectors recorded in
subsequent time windows. We take the maximum observed
distance as a measure of activity change at the notification
time. We report the results with varying time-to-react thresh-
old (td). We also test the reaction presence by setting td to
infinity. In Table 6 we show the precision and recall of in-
terruption inference. The only feature in the classifier is a
real number that represents the measure of activity change.
We show results for AdaBoost classifier, as other models per-
formed significantly worse. Of the instances activated by
AdaBoost 52% resulted in a reaction, which is significantly
higher than the baseline. At the same time, AdaBoost cap-
tures, just like the baseline, about a third of all opportune in-
terruption instances in the trace. However, unlike the previous
work, we did not find a significant correlation between the in-
terruptibility and activity change with a stricter definition of
the opportune moment for interruption: once we require a re-
action within a time frame of one, two or three hours, the
prediction is not better than the baseline.

Online Learning
The classifiers we have considered so far are static: once
trained, they are not modified with subsequent notification-
outcome observations. Online classifiers allow model update
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Figure 5. Notification context determines reaction presence (personal-
ized online classification).

as new data instances are observed. This kind of learning is
attractive for mobile interruption inference for the following
reasons. First, human behavior and activities might change
over time, for example as a person moves from one job to an-
other. Second, in real-world applications training data are of-
ten unavailable. With online learning the classifier can evolve
throughout the course of the experiment. Finally, and related
to the previous two points, online classifiers are suitable for
personalized interruptibility inferences. A classifier trained
on data coming from a single person is likely to be more accu-
rate in recognizing that person’s behavior than a general clas-
sifier built upon data gathered from diverse populations [24].
The main drawback, however, is the limited amount of train-
ing data that we can collect from a single user. With online
classifiers we can bootstrap a personalized classifier with a
model built on a joint dataset, and then refine it with data
coming from a single person as their data pours in.

We use online classifiers implemented by the MOA machine
learning toolkit. The simulator sequentially goes over inter-
ruption data ordered in time; as in the previous experiments,
at each data instance i the simulator queries a classifier g with
the current context ~f i to predict the outcome of the notifica-
tion POi, thus whether the notification should be activated
or not. Now, each activated notification, and its AOi (which
might be different from POi) are used for online classifier
training. We investigate the performance of three online clas-
sifiers, naive Bayesian, Hoeffding tree, an online tree-based
algorithm, and OzaBoost, an online version of a boosting ap-
proach [29]. The classifiers are trained to recognize the pres-
ence of the user reaction from the context recorded at the no-
tification time. At the same time, we also test the potential
of personalized classifiers by training a joint classifier for one
day of the dataset, and then refining a separate copy of it on
each of the individual user’s data for the rest of the experi-
ment. Figure 5 shows the precision of the classifiers (one day
of common training and the first day during which the pre-
cision is not stabilized are not shown). All the tested classi-
fiers perform better than the baseline, however, a simple naive
Bayesian approach seems to be sufficient for online inference.

Interruptibility inference on a mobile device, such as a smart-
phone, is limited by the resources available on the platform,
most notably battery capacity. Sensing context is often the
most energy hungry operation in the interruptibility infer-
ence process. The battery life of continuously sensing smart-
phone reduces up to three times with accelerometer, and up

T A L T & A T & L A & L all

Precision 0.73 0.56 0.54 0.70 0.70 0.58 0.72

Recall 0.34 0.72 0.49 0.35 0.36 0.70 0.36

Table 7. Impact of different sensing modalities on accuracy of reaction
presence inference from notification context. Different combinations of
time (T), location (L) and activity (A) features are analyzed.

to twenty times with the GPS sensor on [2]. Substantial en-
ergy savings can be achieved if reliable interruptibility infer-
ence can be done with low-power sensors. We use OzaBoost
online classifier and investigate the precision and recall with
different groups of context features used for classification.
We restrict our analysis to time, location and activity features
from Table 1. The results do not reveal a clear superiority of a
single feature group or a combination of groups (Table 7). Re-
lying on solely time features, which can be obtained with vir-
tually no energy overhead, leads to a higher precision, com-
pared to using only location or activity features. However,
the portion of activated successful interruptions is lower than
if only activity or location features are used.

Practical Considerations
Our evaluation efforts so far have been geared towards the
practical usability of an intelligent interruption mechanism.
Thus, we evaluated the precision of delivering interruptions,
rather than merely classifying is at successful or not. We also
used online learning and personalized classification, and we
evaluated the inference with different sensing modalities.

The results we obtained can be summarized as follows. First,
the context at the notification time can be used to infer the
reaction presence, and the user’s sentiment towards reaction,
with a significantly higher precision than the baseline (Ta-
bles 2 and3). In addition, unlike Ho and Intille did with
body-worn sensors, with smartphone accelerometers we were
not able to reliably detect activity boundaries, thus oppor-
tune moments for interruption. Second, the comparison of a
batch-trained common classifier (Table 2), and personalized
online classifiers (Figure 5) reveals higher precision of the lat-
ter. Moreover, a naive Bayesian classifier, which is straight-
forward to implement and naturally supports online classi-
fication, performs almost as well as more complex options.
Finally, our analysis of classification with different sensing
modalities (Table 7) reveals that the additional precision en-
abled by energy expensive sensors, such as GPS, is not nec-
essarily justified from the resource efficiency point of view.

THE INTERRUPTME LIBRARY
Smartphones are naturally suited for self-contained interrupt-
ibility inference: sensing, learning and notification can all
happen on the same device. Compared to inference per-
formed on a remote server, locally executed inference algo-
rithms can keep raw sensor data on the device, thus reduce
data usage, energy consumption, and privacy concerns. De-
spite these benefits, the implementation of an interruption
mechanism for smartphones is not straight-forward due to the
inherent limitations of smartphones and peculiarities of mo-
bile platforms. Obstacles include phone’s limited energy stor-
age and computing capabilities, bootstrapping, training and



dissemination of individual and group models of interrupt-
ibility, and operation in an environment that disfavors long-
running tasks characteristic for server-side applications.

InterruptMe is our open-source Android library that enables
identification of opportune moments for interruption2. The li-
brary allows the overlaying application to be notified of such
moments, so that an appropriate action can be triggered. The
Interruption Manager is the core of the library, holds a model
of interruptibility and exposes a publish-subscribe API that
notifies the application about opportune moments for inter-
ruption. To recognize these moments Interruption Manager
maintains a model of interruptibility in the form of a classifier
that establishes the relationship between the sensed context
and interruptibility. InterruptMe periodically senses the con-
text using a third party sensing library [25], and queries the
classifier with the sensed data. The classifier is instantiated
from a general purpose machine learning (ML) library we
built3, from which we use an online naive Bayesian classifier.
If an opportune moment for interruption is recognized the In-
terruption Manager notifies the application via a callback. In
addition, the manager allows the application to provide feed-
back about the outcome of the interruption. The feedback
can include the user reaction or sentiment to the interruption,
which will in turn be used to train and refine the interruptibil-
ity model, thus update the classifier. In the current implemen-
tation we train the classifier with the reported sentiment, more
specifically, to recognize “very good” moments to interrupt.

InterruptMe is designed to be a light-weight library for in-
telligent notification management. InterruptMe library con-
sists of 926 lines of Java code. The general purpose ML li-
brary it uses consists of 954 lines of code. The memory foot-
print of InterruptMe on an Android Nexus 4 phone accounts
to 13.195 MB and around 48 thousand objects, compared to
14.070 MB and around 60 thousand objects allocated by a
stub application running the WEKA Android port. The fre-
quency of smartphone sensing and interruptibility inference
in InterruptMe can be configured in order to save energy. In
addition, InterruptMe harnesses the SensorManager library’s
ability to reconfigure sensing once the battery level is below
a certain threshold. In our current implementation we use
time and activity features from Table 1. Android OS disfa-
vors long-running applications. Therefore, we instantiate the
library in a background service. The service is periodically
checked, and re-instantiated if needed. For persistence, Inter-
ruptMe keeps a copy of the interruptibility model in a JSON-
formatted file on the phone. The same file can also be used
to initialize a classifier for a user that just joined the system.
The general goal, however, is to support the evolution of a
common model for multiple users, and subsequent personal-
ization of each of the model’s copies.

EXPERIMENTAL EVALUATION
To evaluate the ability of InterruptMe to recognize opportune
moments for interruption, we embed the library within the
SampleMe application. The library communicates with a no-
tification manager and decides on the notification delivery
2bitbucket.org/veljkop/intelligenttrigger
3github.com/vpejovic/MachineLearningToolkit
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Figure 6. Per-user distribution of answered and unanswered notifica-
tions in the N of 1 trial.

timing. InterruptMe evolves a personalized interruptibility
classifier on the mobile, however, we also allow the library
to override the intelligent interruption model and send notifi-
cations randomly, as in our initial SampleMe trial.

We ran a month long trial of SampleMe with 10 subjects,
eight male and two female, aged between 22 and 26, all grad-
uate students. The application was augmented with the In-
terruptMe library, but the other aspects of the original Sam-
pleMe, including the emotion map screen and the form of
notification, were preserved. To ensure that SampleMe sur-
veys are answered honestly the students were given a course
assignment that involved analyzing the data trace collected by
their phones. There were no requirements on the amount of
individual data needed for a successful assignment comple-
tion, and the subjects were told to use their phones as usual
during the experiment. To compare the utility of InterruptMe
managed notifications with those that were received at ran-
dom moments we perform an N of 1 randomized trial [35].
In such an experiment, we alternate days when notifications
about surveys are managed through the InterruptMe library
with days when notifications are received randomly. In the
original SampleMe run we noticed that individual reactions to
notifications differ drastically (see Figure 1). The N of 1 trial
helps us avoid the bias in response reactions that would skew
the results if we were to employ a test method where the users
are split into two groups according to the notification policy.

Each phone starts with a clean slate model of interruptibility
that is trained every time a user reacts to a notification, i.e.,
fills out a survey. In this trial, our goal is to identify opportune
moments for interruption as defined by a user’s sentiment.
We train the classifier with a positively labelled instance in
case a user states that the moment is “very good” to inter-
rupt; otherwise, we train the classifier with a negative label.
In addition, non-answered notifications are labelled as non-
opportune moments for interruption once a new notification
comes in. We set a minimum interval of 10 minutes between
any two successive notifications. We also limit the maxi-
mum number of notifications per day to 10, while activate
random moment notifications with a probability that leads to
six expected notifications per day. A total of 1285 notifica-
tions were received over all participants, out of which 763
resulted in a completed survey. The sample is approximately
equally divided between random and InterruptMe-guided no-
tifications. The distribution of notifications per user is shown
in Figure 6. Due to technical problems, some users did not
receive all the notifications in the first ten days of the experi-

bitbucket.org/veljkop/intelligenttrigger
github.com/vpejovic/MachineLearningToolkit
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Figure 8. CDF of minimum reported sentiment.

ment, however, the losses were evenly distributed between the
notification groups. In this analysis, we allow three weeks for
the InterruptMe classifier to be trained, and perform the anal-
ysis on the data coming from the last week of the experiment.

Responsiveness
We first examine the time users took to react to a notifica-
tion. In Figure 7 we show a CDF of reaction times, for an-
swered surveys of all the users, for both methods of notifi-
cation. InterruptMe-based notifications result in the response
time of 12 minutes on the average, while random notifica-
tions on the average take 22 minutes to respond to. The
significance of the difference was confirmed with a t-test:
t(141.02) = 1.90, p = .06. The distribution also shows a
non-negligible portion of surveys that are answered after a
long delay. Such delayed answers can lead to a false impres-
sion when it comes to InterruptMe’s ability to identify oppor-
tune moments for interruption. A survey answered in a mo-
ment long after the notification has been received will not pro-
vide information about the user’s sentiment towards the orig-
inal interruption moment. Moreover, we believe that the lack
of a timely answer is an indicator that the original moment
was not a good moment to interrupt. In the rest of the section,
when considering a user-reported sentiment, we concentrate
on surveys that were answered no later than ten minutes after
the corresponding notification was received. Ten minute is
also the minimum interval between consecutive interruptions
in our experiment, thus by restricting the maximum response
delay to this value we ensure that all notifications are treated
as independent samples of interruptibility and are not directly
affecting (overwriting) each other.

Sentiment towards interruption moments
The InterruptMe classifier is trained to recognize moments
that users labelled as “very good” to interrupt at. When con-
sidering the correctness of the classifier we have to take into
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Figure 9. Mean sentiment towards an interruption versus number of
interruptions in the preceding two-hour period for all the notifications
sent during the experiment. The sentiment towards the last received
notification falls off as the user copes with an increasing number of in-
terruptions in a limited preceding time period. A notification can be
preceded by at most nine other notifications in a day. A closer investiga-
tion reveals that when preceded by nine other notifications in a two-hour
window the notification often lingers for a substantial time before being
answered, therefore, acting like an isolated notification.

account that an answer to the question about current inter-
ruptibility is given on a four-point Likert scale. Thus, higher
the user rated the moment, the better the classifier is. In
the application we recorded the sentiment as an integer tak-
ing its value from zero, indicating a “not at all” good, to
three, indicating a “very good” moment to interrupt. We are
aware that the relationship among the labels need not be a
linear one. However, the users were required to input the
value via a slider where interruptibility labels were linearly
ordered, thus, for the sake of further analysis we consider
the reported interruptibility as a linear numeric variable. The
mean value of reported interruptibility is higher, albeit not on
the 90% level of significance, for InterruptMe-based notifi-
cations than for randomly scheduled ones: 1.32 versus 1.21,
on a [0-3] scale. In Figure 8(a) we show a CDF of the min-
imum user reported sentiment towards the interruption mo-
ment. InterruptMe-based answered notifications are more fa-
vorably received, with 26.4% of them being marked as “very
good” moment to interrupt, compared to 15.4% for randomly
scheduled notifications. The difference diminishes as we re-
lax the requirement for the minimum sentiment value, as seen
by a higher portion of random messages received with the
minimum sentiment value of “a little” interruptible or better.

Amount of Interruptibility
Interruptibility is often associated with user’s frustration [13,
11]. In this experiment we did not explicitly ask users about
their frustration and annoyance, but we suspect that these are
reflected in the way users answer the moment sentiment ques-
tion in the survey. We hypothesize that the recent exposure to
interruptions determines user frustration, therefore, sentiment
towards interruptions in the experiment.

In Figure 9 we plot the mean sentiment for an interruption
moment versus the number of interruptions received in a two-
hour time period that preceded the moment. In this general
analysis we do not evaluate the behavior of the InterruptMe
classifier, thus we use the whole month-long data set, and we
also account for non-answered messages by assigning them a
value zero - “not at all” suitable for interruption. The number
of notifications preceding the current one is limited to nine,



as we have capped the total number of surveys per day to
ten. The figure shows that isolated notifications tend to be
more favorable than the ones received after a large number of
recent notifications. For example, isolated notifications lead
to more than twice as favorable sentiment, as compared to
notifications that are preceded by eight other notifications in
the two-hour interval. The only exceptions are notifications
received after nine others. A closer investigation revealed that
these are answered after a much longer delay (avg. answer
time 71 minute) than the other notifications (avg. answer time
24 minutes), essentially acting like isolated notifications.

In contrast to random-based notifications that are received at
random moments uniformly picked at the beginning of each
day, in the InterruptMe-based real-time notification system a
decision to trigger a notification is made dynamically and de-
pends on the sensed context. However, the context can remain
in the same, favorable, state for an extended period of time, in
which case our application will deliver notifications back-to-
back, and, as shown in Figure 9, exhaust the interruptibility
of the user, which manifests through a lower reported sen-
timent. Note that the same “grouping” effect is unlikely to
happen with context-oblivious random interruptions.

To evaluate the ability of InterruptMe to recognize opportune
moments, but control for the effect of the amount of user in-
terruptibility, we now restrict the dataset to notifications that
were delivered in isolation, i.e., when no other notifications
appeared for at least two hours before the current notifica-
tion time. Figure 8(b) shows the CDF of user-reported in-
terruptibility in this case. Compared to Figure 8(a), the gap
between InterruptMe-based and random notifications is even
larger, with the mean value of sentiment in the former case be-
ing 1.57, and 1.20 in the latter; however, the difference is still
not on the 90% level of significance. In addition, the median
sentiment towards InterruptMe-selected opportune moments
is “somewhat” suitable for interruption, whereas it is “a little”
suitable in the case of randomly selected moments.

DISCUSSION AND LIMITATIONS
Human interruptibility is a complex multifaceted issue, and in
this study we investigate it by observing different outcomes
of an interruption, and capturing a range of contextual fea-
tures. Still, the complexity of the problem necessitates that
certain views on the interruptibility were not considered in
the study design. InterruptMe was designed to recognize if
an opportune moment for interruption has come. While we
indeed get a higher overall sentiment and a faster response to
mobile notifications scheduled through InterruptMe, we also
identify the frequency of interruption as a key parameter in-
fluencing a user sentiment towards interruption. To the best
of our knowledge the existing work in the area of mobile HCI
has not consider the amount of interruptibility, yet. The im-
pact of the frequency of interruption has been investigated
by Speier et al [36], where the authors show detrimental im-
pact of frequent interruptions on the on the main task perfor-
mance. While we have no means of measuring the main task
performance in our non-controlled study, we hypothesize that
the awareness of the performance degradation leads to an in-
creased frustration and lower reported sentiment.

In this study we were predominantly motivated with the case
where the content of the message cannot be adjusted to the
user’s interest, e.g. a smoking cessation digital behavioral
change intervention (dBCI) must deliver a potentially annoy-
ing content. Therefore, we did not consider neither the origin
nor the content of the interruption when identifying oppor-
tune moments. Often, however, humans judge their interrupt-
ibility based on the interrupter and the usefulness of the de-
livered information [30]. The content is also important, as
its relevance to the current task impacts the demand it has on
the main task the user is working on, as well as on how fa-
vorable the interruption will be [15, 22]. When it comes to
mobile interruptions, Fischer et al. show that content’s rel-
evance, entertainment, actionability, and interest determine
user’s attitude towards interruptions [11]. In a large scale
study of mobile notifications, Shirazi et al. find that noti-
fications are considered important if they are about specific
people or events [33]. Juxtaposing ours with the two stud-
ies by Fischer and Shirazi points out the importance of joint
consideration of interruption design and delivery processes.

Finally, we design our study to measure responsiveness – a
user’s feedback reaction to a notification. Responsiveness is
an important aspect of interruptibility, especially for commu-
nication applications [4]. Attentiveness describes the level of
attention that the user has towards an incoming interruption.
Detecting high attentiveness moments can be valuable for ap-
plications that benefit from the fact the user merely acknowl-
edged the interruption, such as reminders. Attentiveness is
less suited to be captured by a smartphone, since it does not
necessarily elicit a recordable reaction. Nevertheless, a re-
cent study by Pielot et al. established a link between some
manifestations of attentiveness and features related to user’s
interaction with the phone [31].

CONCLUSIONS
In this paper we presented the design, implementation and
evaluation of InterruptMe, a smartphone library that empow-
ers an overlying application with personalized, evolving in-
telligent interruption models. The design of the library is
based on an in-depth study of human interruptibility. We
found that from the systems design point of view, a simple
resource efficient online learner can serve as a basis for rec-
ognizing opportune moments for interruption. A month long
experimental evaluation of InterruptMe demonstrated that our
library represents a good starting point for identifying oppor-
tune moments for interruption. The experiments also revealed
that such moments cannot be considered in isolation, and that
users’ sentiment towards an interruption depends on the re-
cently experienced interruption load. In future, we plan to ex-
amine more sophisticated models that take interruption load
into account, and consider the interruption content and origi-
nator when it comes to opportune moment identification.
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