
Autonomous and Adaptive Systems

Introduction to TensorFlow

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

TensorFlow and Keras

‣ TensorFlow is an end-to-end open source platform for machine
learning.

‣ Current version is 2.0.

‣ It can be used with various high-level APIs like Keras.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Data Representations for Neural
Networks

‣ Keras is based on the Numpy library.

‣ Numpy is one of the fundamental packages in Python for scientific computing.

‣ It contains:

‣ efficient abstractions for N-dimensional arrays;

‣ functions for managing N-dimensional arrays;

‣ tools for integrating C/C++ and Fortran code;

‣ linear algebra and Fourier transform operations;

‣ random number generators.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Numpy Tensors

‣ Multi-dimensional arrays in Numpy are called tensors.

‣ Tensors are a sort of generalisation of the concept of matrix that you know.

‣ There are different types of tensors:

‣ Scalars (0D tensors)

‣ Vectors (1D tensors)

‣ Matrices (2D tensors)

‣ (3D) tensors

‣ 4D+tensors

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Scalars (0D Tensors)

‣ A tensor that contains only one number is called a scalar (or scalar tensors, or 0D tensor).

‣ In Numpy, a float32 or float64 number is a scalar tensor (or scalar array).

‣ The number of axes (also called dimension or rank) of a scalar tensor is 0 (obtained through
ndim).

>>>	import	numpy	as	np	

>>>	x	=	np.array(256)	

>>>	x	

array(12)	

>>>x.ndim	

0

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Vectors (1D Tensors)

‣ An array of numbers is called a vector or 1D tensor.

>>>	x	=	np.array([1,	2,	3,	4,	5])	

>>>	x	

array([1,	2,	3,	4,	5])	

>>>	x.ndim	

1

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Matrices (2D Tensors)

‣ An array of vectors is a matrix, or 2D tensor. A matrix has two axes
(rows and columns).

>>>	x	=	np.array([1,	2,	3,	4],	

																	[5,	6,	7,	8],	

																	[9,	10,	11,	12])	

>>>	x.ndim	

2

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

3D Tensors and Higher-Dimensional
Tensors

‣ If you take an array of matrices, you obtain a 3D tensor.

>>>	x	=	np.array([[[1,	2,	3,	4,	5],	

																			[6,	7,	8,	9,	10],	

																			[11,	12,	13,	14,	15]],	

																		[[16,	17,	18,	19,	20],	

																			[21,	22,	23,	24,	25],	

																			[26,	27,	28,	29,	30]],	

																		[[31,	32,	33,	34,	35],	

																			[36,	37,	38,	39,	40],	

																			[41,	42,	43,	44,	45]]])	

>>>	x.dim	

3	

‣ If you then take an array of 3D tensors, you obtain a 4D tensor.

‣ And if you take an array of 4D tensors, you obtain a 5D tensor and so on.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Key Attributes

‣ A tensor is defined by three key attributes:

‣ Number of axes (rank): a 3D tensor has three axes and a matrix of two axes. A batch
of 2D images had 3 dimensions (more about batches soon).

‣ Shape: this is a tuple of integers that describes how many dimensions the tensor has
along each axis. For example, in the previous examples, the previous matrix example
has shape (3,	5)	and the 3D tensor example has shape (3,	3,	5). A vector has
a shape with a single element, such as (5,), whereas a scalar has an empty shape
().

‣ Data type (usually called dtype in Python). This is the type of the data contained in
the tensor. For instance, a tensor’s type could be float32, uint8, float64 and so
on.

‣ No strings (because tensors are in pre-allocated contiguous memory segments)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example: MNIST Dataset

>>>	from	tensorflow.keras.dataset	import	mnist	

(train_images,	train	labels),	(test_images,	test_labels)	=	
mnist.load_data()	

>>>	print	(train_images).shape()	

(60000,	28,	28)	

>>>	print(train_images.dtype())	

uint8	

We have a 3D tensor of 8-bit integers (60000 matrices of 28x28 integers). Each matrix is a
greyscale image with coefficients between 0 and 255.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example: MNIST Dataset

import	matplotlib.pyplot	as	plt	

import	tensorflow	

from	tensorflow.keras.datasets	import	mnist	

(train_images,	train_labels),	(test_images,	test_labels)	=	mnist.load_data()	

digit	=	train_images[42]	

plt.imshow(digit,	cmap=plt.cm.binary)	

plt.show()

‣ Let’s display the 42th digit in the 3D tensor using Matplotlib.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Manipulating Tensors

‣ In the previous example, we selected a specific digit alongside the
first axis using the syntax train_images[i]. Selecting specific
elements in a tensor is called tensor slicing.

‣ The following example selects digits from 10 to 100 (with 100 not
included) and put them in an array of shape (90, 28, 28).

>>>	my_slice	=	train_images[10:100]	

>>>	print(my_slice.shape)	

(90,	28,	28)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Data Batches

‣ In general the first axis (axis 0, because indexing starts at 0) in
data sensors is the sample axis.

‣ In MNIST examples are images of digits.

‣ In deep learning we usually process batches. The following returns
batches of MNIST digits with batch size of 128:

>>>	batch	=	train_images[:128]	

>>>	batch	=	train_images[128:256]	

>>>	batch	=	train_images[128*n:128*(n+1)]

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Key Components

‣ The key components of a network in Keras are:

‣ Layers, which are combined in a network (model);

‣ The input data and corresponding targets;

‣ The loss function, which defines the feedback signal used for
learning;

‣ The optimiser, which determines how the the network is trained.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example

import	tensorflow	as	tf	
mnist	=	tf.keras.datasets.mnist	

(x_train,	y_train),(x_test,	y_test)	=	mnist.load_data()	
x_train,	x_test	=	x_train	/	255.0,	x_test	/	255.0	

model	=	tf.keras.models.Sequential([
		tf.keras.layers.Flatten(input_shape	=	(28,	28)),	
		tf.keras.layers.Dense(128,	activation	=	'relu'),	
		tf.keras.layers.Dropout(0.2),	
		tf.keras.layers.Dense(10,	activation	=	'softmax')	
])	

loss_fn	=	tf.keras.losses.SparseCategoricalCrossentropy(from_logits	=	true)	

model.compile(optimizer='adam',	
														loss=	loss_fn,	
														metrics=['accuracy'])	

model.fit(x_train,	y_train,	epochs=5)	
model.evaluate(x_test,	y_test)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example

Flatten Dense SoftmaxInputs

0
1
2
3
4
5
6
7
8
9

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example (after training)

Flatten Dense SoftmaxInputs

0
1
2
3
4
5
6
7
8
9

0
0.9
0
0
0
0
0

0.1
0
0

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example of Pair Used for Training

Flatten Dense SoftmaxInputs

0
1
2
3
4
5
6
7
8
9

0
1
0
0
0
0
0
0
0
0

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Layers

‣ The fundamental data structure in neural networks is the layer.

‣ A layer is a data-processing module that takes in input one or more
tensors and that outputs one or more tensors.

‣ Some layers are stateless, but more frequently layers have a state,
i.e., the layer’s weights.

‣ Different layers are appropriate for different tensor formats and
different types of data.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Layers

‣ Different layers are appropriate for different tensor formats and
different types of data.

‣ For instance simple vector data (2D tensors) are often processed by
densely connected layers (Dense class in TensorFlow/Keras).

‣ Sequence data (3D tensors) are typically processed by recurrent
layers (LSTM layer in TensorFlow/Keras).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Layers Compatibility

‣ Building deep learning Tensorflow/Keras is done by clipping together compatible
layers to form useful data-transformation pipelines.

‣ The notion of layer-compatibility here refers specifically to the fact the every layer will
only accept input tensors of a certain shape and will return output tensors of a
certain shape

‣ Let us consider the following example:

from	keras	import	layers	

		tf.keras.layers.Flatten(input_shape=(28,	28)),	

‣ In this case we are creating a layer that will only accept 28 x 28 tensor that will
flatten into a 784 vector.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Layers Compatibility

‣ Let us consider now:

		tf.keras.layers.Dense(128,	activation=‘relu')	

‣ This layer will return a tensor where first dimension has been transformed
to be 32. This layer can only be connected downstream to a layer that
expects 128-dimensional vectors as input.

‣We do not specific the input shape argument. The layer automatically
infers its input shape as being the output shape of the layer that comes
before.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

.

import	tensorflow	as	tf	
mnist	=	tf.keras.datasets.mnist	

(x_train,	y_train),(x_test,	y_test)	=	mnist.load_data()	
x_train,	x_test	=	x_train	/	255.0,	x_test	/	255.0	

model	=	tf.keras.models.Sequential([
		tf.keras.layers.Flatten(input_shape=(28,	28)),	
		tf.keras.layers.Dense(128,	activation='relu'),	
		tf.keras.layers.Dropout(0.2),	
		tf.keras.layers.Dense(10,	activation='softmax')	
])	

loss_fn	=	tf.keras.losses.SparseCategoricalCrossentropy(from_logits	=	true)	

model.compile(optimizer='adam',	
														loss=	loss_fn,	
														metrics=['accuracy'])	

model.fit(x_train,	y_train,	epochs=5)	
model.evaluate(x_test,	y_test)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Dropout

‣ Dropout is a regularisation techniques for avoiding overfitting in deep
learning,

‣ It is based on removing (dropping) units in neural networks.

‣ Practically, it consists in randomly select a randomly fraction of inputs
to 0 (0.2 in the example) at each update during training time.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example

import	tensorflow	as	tf	
mnist	=	tf.keras.datasets.mnist	

(x_train,	y_train),(x_test,	y_test)	=	mnist.load_data()	
x_train,	x_test	=	x_train	/	255.0,	x_test	/	255.0	

model	=	tf.keras.models.Sequential([
		tf.keras.layers.Flatten(input_shape=(28,	28)),	
		tf.keras.layers.Dense(128,	activation='relu'),	
		tf.keras.layers.Dropout(0.2),	
		tf.keras.layers.Dense(10,	activation='softmax')	
])	

loss_fn	=	tf.keras.losses.SparseCategoricalCrossentropy(from_logits	=	true)	

model.compile(optimizer='adam',	
														loss=	loss_fn,	
														metrics=['accuracy'])	

model.fit(x_train,	y_train,	epochs=5)	
model.evaluate(x_test,	y_test)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Adam Optimizer

‣ Adam is a method for efficient stochastic optimisation of the weight which
requires limited memory.

‣ In particular, the methods computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the
gradients.

‣ The first moment is the mean.

‣ The second moment is the variance

‣ The name Adam derives from adaptive moment estimation.

‣ It is particularly suited for the optimisation of stochastic objectives with high-
dimensional spaces.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Other Optimizers

‣ There is a variety of optimizers, which implement a variety of
algorithms that have been presented in the literature in the past years.

‣ You can also find a “vanilla” stochastic stochastic gradient descent
called sgd.

‣ In sgd you can set the learning rate as follows:

optimiser=keras.optimizers(lr=0.1)

‣ You can find all the optimisers under keras.optimizers.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example

import	tensorflow	as	tf	
mnist	=	tf.keras.datasets.mnist	

(x_train,	y_train),(x_test,	y_test)	=	mnist.load_data()	
x_train,	x_test	=	x_train	/	255.0,	x_test	/	255.0	

model	=	tf.keras.models.Sequential([
		tf.keras.layers.Flatten(input_shape	=	(28,	28)),	
		tf.keras.layers.Dense(128,	activation	=	'relu'),	
		tf.keras.layers.Dropout(0.2),	
		tf.keras.layers.Dense(10,	activation	=	‘softmax')	
])	

loss_fn	=	tf.keras.losses.SparseCategoricalCrossentropy(from_logits	=	true)	

model.compile(optimizer	='adam',	
														loss	=	loss_fn,	
														metrics	=	['accuracy'])	

model.fit(x_train,	y_train,	epochs=5)	
model.evaluate(x_test,	y_test)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Loss Function: Sparse Categorical Cross
Entropy

‣ It measures the distance between two probability distributions.

‣ In this case, it measures the distance between the probability distribution
output by the network and the true distribution of the network.

‣ By minimising the distance between these two distributions you train the
network to output a value that is as close as possible to the true value.

‣ The mathematical formula is as follows:

J(w) = −
1
N

N

∑
i=1

[yilog(̂yi) + (1 − yi)log(1 − ̂yi)]

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Other Losses

‣We use the sparse categorical cross entropy loss because we have
sparse labels (i.e., for each instance, there is just a target class index,
from 0 to 9 in this case) and the classes are exclusive.

‣ Instead if we have one target probability per class for each instance
(such as one-hot vectors, e.g., a vector with all zeros except for the
corresponding class, i.e., 1 let’s say in correspondence to 4 and 0 for
the others), we will use categorical cross-entropy.

‣ In case of binary classification (with one or more binary labels) we will
use the sigmoid (logistic) activation function instead of a softmax layer.

‣ You can find the documentation about the available losses under
tf.keras.losses.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Example

import	tensorflow	as	tf	
mnist	=	tf.keras.datasets.mnist	

(x_train,	y_train),(x_test,	y_test)	=	mnist.load_data()	
x_train,	x_test	=	x_train	/	255.0,	x_test	/	255.0	

model	=	tf.keras.models.Sequential([
		tf.keras.layers.Flatten(input_shape	=	(28,	28)),	
		tf.keras.layers.Dense(128,	activation='relu'),	
		tf.keras.layers.Dropout(0.2),	
		tf.keras.layers.Dense(10,	activation='softmax')	
])	

loss_fn	=	tf.keras.losses.SparseCategoricalCrossentropy(from_logits	=	true)	

model.compile(optimizer='adam',	
														loss=	loss_fn,	
														metrics=['accuracy'])	

model.fit(x_train,	y_train,	epochs=5)	
model.evaluate(x_test,	y_test)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Metric: Accuracy

‣ The accuracy function calculates how often predictions matches
labels.

‣ It keeps two variables internally, one for the total account and one for
the actual correct predictions.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Model Summary

‣ The model’s summary() displays all the model’s layers, including
each layers name (which is automatically generated unless you set it).l
its output shape and its non-trainable parameters.

‣ For example the first “dense layer” in our example has 784*128=
100352 parameters for the weights plus 128 parameters for the
noise.

‣ Remember the formula

 for each layeryi = ∑
j

wjxj + bj

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

>>>	model.summary()	

Model:	"sequential"	

Layer	(type)																	Output	Shape														Param	#				
===	
flatten	(Flatten)												(None,	784)															0										

dense	(Dense)																(None,	128)															100480					

dropout	(Dropout)												(None,	128)															0										

dense_1	(Dense)														(None,	10)																1290							
===	
Total	params:	101,770	
Trainable	params:	101,770	
Non-trainable	params:	0	

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Model Layers

‣ It is possible to access the layers and getting the values of the
weights.

‣ This might be particularly important for debugging.

‣ The connection weights are usually initialised randomly and the
biases to zero.

‣ Please note that you can set the initial values of the weights and the
biases (see documentation for that, not needed in general).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Model Layer

>>>	model.layers		

[<tensorflow.python.keras.layers.core.Flatten	at	
0x1112f25d0>,	
	<tensorflow.python.keras.layers.core.Dense	at	
0x65c386690>,	
	<tensorflow.python.keras.layers.core.Dropout	at	
0x65c41bd10>,	
	<tensorflow.python.keras.layers.core.Dense	at	
0x65c41bed0>]	

>>>	hidden1.name	

‘dense’

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Weights

>>>	hidden1	=	model.layers[1]	
>>>	weights,	biases	=	hidden1.get_weights()	
>>>	weights	

array([[0.0067068	,		0.0444955	,	-0.06906993,	...,		0.01917812,	
									0.0571864	,	-0.05091941],	
							[0.07298902,		0.03879048,	-0.07611574,	...,	-0.0537806	,	
									0.04074715,		0.00973181],	
							[0.01252006,	-0.01403704,	-0.0160231	,	...,		0.01923724,	
									0.05250163,		0.01036092],	
							...,	
							[0.02924076,		0.02288403,	-0.05628259,	...,	-0.00877253,	
								-0.00582412,		0.04741878],	
							[0.04770205,		0.00977071,	-0.04665522,	...,		0.05703158,	
								-0.0407013	,		0.06358352],	
							[0.06874896,		0.06481764,	-0.07729561,	...,	-0.03910512,	
									0.07737378,		0.06048525]],	dtype=float32)	

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Biases

>>>	biases	

array([0.15436447,	-0.10200647,	-0.21357839,		0.21006949,	-0.03842947,	
								0.12271099,		0.06399174,		0.08149339,	-0.06964093,		0.01241389,	
							-0.13083696,		0.01591714,		0.09653516,		0.11157246,		0.10728992,	
								0.02496499,		0.04548947,	-0.06404063,		0.00701183,		0.02384211,	
								0.1734516	,		0.02672073,		0.00857907,		0.00574968,	-0.17148587,	
							-0.03355813,		0.00542628,		0.0633577	,		0.11311906,		0.08636814,	
							-0.16180542,		0.01927859,		0.1280381	,	-0.02355766,		0.04206759,	
								0.08186771,	-0.04619434,		0.13776259,		0.05937123,	-0.1820551	,	
							-0.08898257,		0.01036496,		0.06565045,		0.02765695,		0.10485286,	
							-0.13002615,	-0.02703019,		0.01211506,		0.04039115,		0.09769704,	
								0.02093072,		0.13398051,	-0.12281404,		0.08231556,	-0.01917284,	
								0.04910273,	-0.00876658,		0.08874512,		0.10410592,	-0.00363306,	
							-0.01080153,		0.12881082,		0.00631847,		0.1724271	,	-0.02265261,	
								0.21790975,		0.03310108,	-0.11083294,	-0.00176234,	-0.20714733,	
								0.014523		,		0.16850016,		0.10065471,		0.22509257,	-0.05203338,	
								0.02265464,		0.01207699,		0.04100839,		0.0889826	,		0.13444117,	
								0.09707657,		0.22076793,	-0.11211801,		0.09468664,	-0.00847345,	
								0.15046684,		0.09202639,	-0.158566		,	-0.12476195,		0.03112048,	
								0.06387051,	-0.00093352,	-0.16877012,	-0.0276502	,	-0.0544424	,	
							-0.07698131,		0.05069286,		0.04499756,		0.11598568,		0.02794787,	
								0.03360102,		0.03794497,		0.22851145,	-0.08310112,		0.11295109,	
								0.08821745,		0.02148618,		0.0684126	,	-0.08671904,		0.08890733,	
							-0.1351053	,	-0.02953506,	-0.02828003,		0.08103541,		0.01204334,	
							-0.1303266	,	-0.23609331,	-0.04407614,		0.00159562,		0.13649496,	
							-0.03989958,	-0.03431396,	-0.11035573,		0.03475453,		0.0170306	,	
							-0.05985961,	-0.04696511,		0.22284533],	dtype=float32)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Prediction

‣We can use the predict() method of model to make predictions on new instances.

‣ For example, we can consider the digit in position 42 and print the corresponding probabilities:

>>> digit = x_test[42:43]

>>> y_prob = model.predict(digit)

>>> y_prob.round(2)

array([[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]], dtype=float32)

‣ Alternatively we can predict the class directly associated to that output (numerical here, but there are methods
to associate labels as well):

>>>	y_pred	=	model.predict_classes(digit)	

>>>	print(y_pred.round(2))	

4

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

‣ Neural networks gives you great flexibility, but that is also their main drawback.

‣ You can use a variety of network architectures, you can change number of layers, number of
neurons per layer, the type of activation function to use in each layer, the weight initialisation logic,
etc.

‣ How do you select these parameters?

‣ This is a search problem: a variety of methods are possible:

‣ Grid search

‣ Randomised search

‣…

‣ Scikit-Learn offers a series of functions for grid search (GridSearchCV) and randomised
search (RandomizedSearchCV). I would invite you to take a look at them.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

‣ A randomised search is not efficient. There are a variety of techniques and tools for
optimising the parameters by “zooming” on certain ranges, etc.

‣ A variety of tools is available:

‣ Hyperopt

‣ Hyperas

‣ Talos

‣ Spearmint

‣…

‣ Companies also provide this optimisation as a service in the cloud (see Google Tuning).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

‣ Hyperparameter tuning is still an active area of research.

‣ Recent proposals also include evolutionary algorithms, i.e., algorithms
that mimic biological systems based on reproduction, mutation,
recombination and selection. Solutions are selected through a
“survival” of the fitness in a population of potential candidates:

‣ See Population Based Training (PBT) by DeepMind

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

References

‣ Chapters 1-3 of Francois Chollet. Deep Learning with Python.
Manning 2018.

‣ Chapter 10 of Aurelien Geron. Hands-On Machine Learning with
Scikit-Learn, Keras and TensorFlow. Second Edition. O’Reilly 2019.

‣ TensorFlow Official Documentation website.

