Autonomous and Adaptive Systems

Introduction to Gym

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Introduction to Gym

» Gym is a tool for developing and comparing reinforcement learning
algorithms.

p It Is compatible with different numerical computational frameworks,
such as TensorFlow, PyTorch or Theano.

» The gym library contains a collection of test problems (called
environments) that can be used for working on reinforcement learning
problems.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Goal of Gym

» Gym provides benchmarks for comparing different algorithms and
helps in comparing algorithms that are proposed by different
researchers.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

INnstallation

» In order to install gym in the command line you need to use

> pip install gym

» If you want to install a particular collection of the environments you need to write

> pip install[name of the environment collection]
such as
> pip install [atari]

» To install all the environments you need to write:

> pip install[all]

Autonomous and Adaptive Systems 2019-2020

Mirco Musolesi

Environments

p You can use simply load an environment as follows:
>> import gym

>> env = gym.make(‘CartPole-vl1’)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Cart Pole Problem

» Classic problem in reinforcement learning.

» A pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track.

» The system is controlled by applying a force of +1 or -1 to the cart.
» The pendulum starts upright and the goal is to prevent it from falling over.

» A reward of +1 is provided for every tilmestep that the pole remains
upright.

» The episode ends when the pole is more than 15 degrees from vertical or
the cart moves more than 2.4 units from the centre.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Environments

import gym

env = gym.make(“CartPole-v1”)
env.reset()

for _ in range(1000)

env.render()

env.step(env.action space.sample()) # random action

env.close()

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Neuronlike Adaptive Elements That Can Solve
Difficult Learning Control Problems

ANDREW G. BARTO, MEMBER, IEEE, RICHARD S. SUTTON, aAND CHARLES W. ANDERSON

Abstract—1It is shown how a system consisting of two neuronlike
adaptive elements can solve a difficult leaning control problem. The task is
to balance a pole that is hinged to a movable cart by applying forces to the
cart’s base. It is assumed that the equations of motion of the cart—pole
system are not known and that the only feedback evaluating performance is
a failure signal that occurs when the pole falls past a certain angle from the
vertical, or the cart reaches an end of a track. This evaluative feedback is

Manuscript received August 1, 1982; revised April 20, 1983. This work
was supported by AFOSR and the Air Force Wright Aeronautical
Laboratory under Contract F33615-80-C-1088.

The authors are with the Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01003.

of much lower quality than is required by standard adaptive control
techniques. It is argued that the learning problems faced by adaptive
elements that are components of adaptive networks are at least as difficult
as this version of the pole-balancing problem. The learning system consists
of a single associative search element (ASE) and a single adaptive critic
element (ACE). In the course of learning to balance the pole, the ASE
constructs associations between input and output by searching under the
influence of reinforcement feedback, and the ACE constructs a more
informative evaluation function than reinforcement feedback alone can
provide. The differences between this approach and other attempts to solve
problems using neuronlike elements are discussed, as is the relation of this
work to classical and instrumental conditioning in animal learning studies
and its possible implications for research in the neurosciences.

0018-9472 /83 /0900-0834$01.00 ©1983 IEEE

Autonomous and Adaptive Systems 2019-2020

Mirco Musolesi

Action

Agent Environment

State

Reward

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020

Action

Agent Environment

Observation

Reward

Mirco Musolesi

The step() Function

» The most important function in Gym is step().

» step() receives in input the action to be taken and return a quadruple
(observation, reward, done, info):

» observation is an object representing the representation of the

state of the environments. Examples are pixels from a camera, joint
angles and joint velocities of a robot, current state of a board of a
game, etc.

» reward (which is implemented using a float) is the amount of

reward achieved by the previous action. Remember that the goal of
reinforcement learning is to maximise the total reward, i.e., this value.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

The step() Function

» done is a boolean that is used to understand when it’s time to

reset the environment. The majority of tasks are divided into
episodes. done equals to true indicates that the episode has
terminated.

» info is a dictionary (dict) and contains diagnostic information.

» The process get started by calling reset ().

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Typical Structure of an Gym program

import gym
env = gym.make(“CartPole-v1”)
for i_episode in range(20):
observation = env.reset()
for t in range(100):
env.render()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if (done):
print(“Episode finished after {} time steps”.format(t+l))
break

env.close()

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Spaces

» Every environment comes with an action space and an
observation space.

>>> import gym

>>> env = gym.make(“CartPole-v1”)
>>> print(env.action space)
Discrete(2)

>>> print(env.observation_space)

Box(4,)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Spaces

» The Discrete space allows a fixed range of non-negative numbers,
so in this case valid actions are either O or 1.

» The Box space represents an n-dimensional box, so valid
observations will be an array of 4 numbers.

» We can also check the value of the bounds using the techniques
described in the following slide.

» You can find more information about other action spaces in the
documentation.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Spaces

>>> print(env.observation space.high)

[4.8000002e+00 3.4028235e+38 4.1887903e-01
3.4028235e+38]

>>> print(env.observation space.low)

[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01
-3.4028235e+38]

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Environments

» Open Gym provides a variety different algorithms:

» Basic algorithms

» 2D environments (e.g., Lunar Lander).

» Atari games

» Control systems (also based on the Mujoco physics simulator)

p Text

Autonomous and Adaptive Systems 2019-2020

References

» OpenAl Gym website http://www.gym.openai.com

» Chapter 18 of Aurelien Geron. Hands-On Machine Learning with
Scikit-Learn, Keras & TensorFlow. Second Edition.2019. O’Reilly.

Autonomous and Adaptive Systems 2019-2020

http://www.gym.openai.com

