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Neurocognitron and Convolutional Neural 
Networks

‣ Neuroscience can be an inspiration for the design of novel 
architectures and solutions. 

‣ The basic idea of having multiple computational units that become 
intelligent via their interactions with each others is inspired by the 
brain. 

‣ The neurocognitron introduced by Fukushima can be considered as a 
basis for the modern convolutional networks architectures. 

‣ The neurocognitron was the basis of the modern convolutional 
network architectures (see Yann LeCun et al.’s LeNet architecture).
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Connectionism

‣ The second wave of neural network research was in 1980s and started in the 
cognitive science. It was called connectionism or parallel distributed processing. 

‣ This followed the first winter (mid 70s-1980). 

‣ The focus was on devising models of cognition combining symbolic reasoning and 
artificial neural network models. 

‣Many ideas are inspired by Hebb’s models. 

‣ The idea of distributed representation, i.e., using the raw data without devising 
features or pre-categorisation of the inputs was introduced by this research 
movement. 

‣ The other key contribution of connectionism was the development of the back-
propagation algorithm for training neural networks, which is central in deep learning.
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Second AI Winter and Current AI Summer

‣ The second wave of neural networks lasted until mid 1990s.  

‣ Loss of interest and lot of disappointment due to unrealistic goals 
led to a new “winter”. 

‣ During the second winter, a lot of work continued especially in 
Canada (and NYU). 

‣ The summer returned in 2006 when Geoffrey Hinton showed that a 
particular neural network called a deep belief network could be very 
efficiently trained (the strategy is called greedy layer-wise pre-training).
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Deep Learning Applications

‣ The number of application of deep learning is increasing everyday: 

‣ Image and video processing and vision; 

‣ Machine translation; 

‣ Speech generation; 

‣ Applications to many scientific fields (astronomy, biology, etc.). 

‣ See for example the problem of protein folding. 

‣ One of the biggest achievement is the extension of the domain of reinforcement learning. 

‣We refer to the convergence of deep learning and reinforcement learning as deep 
reinforcement learning. 

‣ Applications of deep reinforcement learning include games, robotics, etc.
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Neuroscience and Deep Learning: Some 
Caveats

‣ Neuroscience can be an inspiration, but we should remember that we are trying 
to “engineer” a system. 

‣ Actual neurons are not based on the simple functions that we use in our systems. 

‣ At the moment, more complex functions haven’t led to improve performance 
yet. 

‣ Neuroscience has inspired the design of several neural architectures, but our 
knowledge is limited in terms of how the brain actually learn. 

‣ For this reason, neuroscience is of limited help for improving the design of the 
learning algorithms themselves. 

‣ Deep learning is not an attempt to simulate the brain!
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Deep Learning and Computational 
Neuroscience

‣ At the same time, it is worth noting that there is an entire field of 
neuroscience devoted to understanding the brain using mathematical 
and computational models. The area is called computational 
neuroscience. 

‣ AI and neuroscience are strictly linked and indeed understanding 
brain biology will lead to improvement in the design of AI systems. 

‣ This is currently an area of intense research.
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Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs
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Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

0 
1 
2 
3 
4 
5 
6 
7 
8 
9



Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs
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Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs

Q(s, a)
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Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs
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Deep Neural Networks
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Deep Neural Networks



Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Nodes/Units/Neurons

f(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

 is called the activation function,  is usually called the biasf b
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Activations Functions

‣ They are generally used to add non-linearity. 

‣ Examples: 

‣ Rectified Linear Unit: it returns the max between 0 and the 
value in input. In other words, given the value  in input it 
returns .  

‣ Logistic sigmoid: given the value in input , it returns 

. 

‣ Arctan: given the value in input , it returns .

z
max(0,z)

z
1

1 + ez

z tan−1(z)
Credit: Wikimedia
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Nodes/Units/Neurons

relu(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

Note that here the function in input of relu is 1-dimensional.
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Softmax Function

‣ Another function that we will use is softmax.  

‣ But please note that softmax is not like the activation functions that we discussed 
before. The activations functions that we discussed before take in input real 
numbers and returns a real number. 

‣ A softmax function receives in in inputs a vector of real numbers of dimension  
and returns a vector of real numbers of dimension . 

‣ Softmax: given a vector of real numbers in input  of dimension , it normalises it 
into a probability distribution consisting of  probabilities proportional to the 
exponentials of each element  of the vector . More formally, 

 for .

n
n

z n
n

zi z

softmax(z)i =
ezi

∑n
j=1 ezj

i = 1,..n
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Gradient-based Optimization

‣We will now discuss a high-level description of the learning process of the 
network, usually called gradient-based optimization. 

‣ Each neural layer transforms his input layer as follows: 

 

‣ And in the case of a relu function, we will have 

 

‣ Note that this is a simplified notation for one layer, it should be  for layer 
.

output = f(w1x1 + . . . + wnxn + b)

output = relu(w1x1 + . . . + wnxn + b)

w1,i
i
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Gradient-based Optimisation

‣ The learning is based on the gradual adjustment of the weight based on a 
feedback signal, i.e., the loss described above. 

‣ The training is based on the following training loop: 

‣ Draw a batch of training examples  and corresponding targets .. 

‣ Run the network on  (forward pass) to obtain predictions . 

‣ Compute the loss of the network on the batch, a measure of the mismatch 
between  and .. 

‣ Update all weights of the networks in a way that reduces the loss of this 
batch.

x ytarget

x ypred

ypred ytarget
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Stochastic Gradient Descent

‣ Given a differentiable function, it’s theoretically possible to find its 
minimum analytically. 

‣ However, the function is intractable for real networks. The only way is 
to try to approximate the weights using the procedure describe 
above. 

‣ More precisely since it’s a differentiable function we can use the 
gradient, which provide an efficient way to perform the correction 
mention before.
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Gradient-based Optimisation

Credit: Sebastian Raschka
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Stochastic Gradient Descent

‣ More formally: 

‣ Draw a batch of training example  and corresponding targets . 

‣ Run the network on  (forward pass) to obtain predictions . 

‣ Computer the loss of the network on the batch, a measure of the mismatch between  and . 

‣ Compute the gradient of the loss with regard to the network’s parameters (backward pass). 

‣ Move the parameters in the opposite direction from the gradient with:  

where  is the loss (cost) function. 

‣ If you  have a batch of samples of dimension : 

 for all the  samples of the batch.

x ytarget

x ypred

ypred ytarget

wj ← wj + Δwj = wj − η
∂J
∂wj

J

k

wj ← wj + Δwj = wj − η average(
∂Jk

∂wj
) k
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Stochastic Gradient Descent

‣ This is called the mini-batch stochastic gradient descent (mini-batch SGD).  

‣ The loss function  is a function of , which is a function of the weights. 

‣ Essentially you calculate the value , which is a function of the weights of the network.  

‣ Therefore, by definition, the derivative of the loss function that you are going to apply will 
be a function of the weights. 

‣ The term stochastic refers to the fact that each batch of data is drawn randomly. 

‣ The algorithm describe above was based on a simplified model with a single function in a 
sense.  

‣ You can think about a network composed of three layers, e.g., three tensor operations on the 
network itself.

J f(x)

f(x)
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https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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https://www.cs.umd.edu/~tomg/projects/landscapes/ 
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Backpropagation Algorithm

‣ Suppose that you have three tensor operations/layers  with weights , 
 and  respectively for the first, second, third layer. You will have the 

following functon: 

 

with  the rightmost function/layer and so on. In other words, the input layer is 
connected to , which is connected to , which is connect to , which returns 
the final result. 

‣ A network is a sort of chain of layers. You can derive the value of the “correction” 
by applying the chain rule of the derivatives backwards. 

‣ Remember the chain rule .

f, g, h W1

W2 W3

ypred = f(W1, W2, W3) = f(W1, g(W2, h(W3)))

f()
h() g() f()

f(g(x)) = f′�(g(x))g′�(x)
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Backpropagation Algorithm

‣ The update of the weights starts from the right-most layer back to the left-most layer. 
For this reason, this is called backpropagation algorithm. 

‣ More specifically, backpropagation starts with the calculation of the gradient of final loss 
value and works backwards from the right-most layers to the left-most layers, applying 
the chain rule to compute the contribution that each weight had in the loss value. 

‣ Nowadays, we do not calculate the partial derivates manually, but we use framework 
like TensorFlow that supports symbolic differentiation for the calculation of the gradient. 

‣ TensorFlow supports the automatic updates of the weights described above. 

‣ More theoretical details can be found in: 

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.
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