
Autonomous and Adaptive Systems

Introduction to Deep Learning II

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Neurocognitron and Convolutional Neural
Networks

‣ Neuroscience can be an inspiration for the design of novel
architectures and solutions.

‣ The basic idea of having multiple computational units that become
intelligent via their interactions with each others is inspired by the
brain.

‣ The neurocognitron introduced by Fukushima can be considered as a
basis for the modern convolutional networks architectures.

‣ The neurocognitron was the basis of the modern convolutional
network architectures (see Yann LeCun et al.’s LeNet architecture).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Connectionism

‣ The second wave of neural network research was in 1980s and started in the
cognitive science. It was called connectionism or parallel distributed processing.

‣ This followed the first winter (mid 70s-1980).

‣ The focus was on devising models of cognition combining symbolic reasoning and
artificial neural network models.

‣Many ideas are inspired by Hebb’s models.

‣ The idea of distributed representation, i.e., using the raw data without devising
features or pre-categorisation of the inputs was introduced by this research
movement.

‣ The other key contribution of connectionism was the development of the back-
propagation algorithm for training neural networks, which is central in deep learning.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Second AI Winter and Current AI Summer

‣ The second wave of neural networks lasted until mid 1990s.

‣ Loss of interest and lot of disappointment due to unrealistic goals
led to a new “winter”.

‣ During the second winter, a lot of work continued especially in
Canada (and NYU).

‣ The summer returned in 2006 when Geoffrey Hinton showed that a
particular neural network called a deep belief network could be very
efficiently trained (the strategy is called greedy layer-wise pre-training).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Learning Applications

‣ The number of application of deep learning is increasing everyday:

‣ Image and video processing and vision;

‣ Machine translation;

‣ Speech generation;

‣ Applications to many scientific fields (astronomy, biology, etc.).

‣ See for example the problem of protein folding.

‣ One of the biggest achievement is the extension of the domain of reinforcement learning.

‣We refer to the convergence of deep learning and reinforcement learning as deep
reinforcement learning.

‣ Applications of deep reinforcement learning include games, robotics, etc.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Neuroscience and Deep Learning: Some
Caveats

‣ Neuroscience can be an inspiration, but we should remember that we are trying
to “engineer” a system.

‣ Actual neurons are not based on the simple functions that we use in our systems.

‣ At the moment, more complex functions haven’t led to improve performance
yet.

‣ Neuroscience has inspired the design of several neural architectures, but our
knowledge is limited in terms of how the brain actually learn.

‣ For this reason, neuroscience is of limited help for improving the design of the
learning algorithms themselves.

‣ Deep learning is not an attempt to simulate the brain!

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Learning and Computational
Neuroscience

‣ At the same time, it is worth noting that there is an entire field of
neuroscience devoted to understanding the brain using mathematical
and computational models. The area is called computational
neuroscience.

‣ AI and neuroscience are strictly linked and indeed understanding
brain biology will lead to improvement in the design of AI systems.

‣ This is currently an area of intense research.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

0
1
2
3
4
5
6
7
8
9

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

0 0
1 0.05
2 0.1
3 0.05
4 0.1
5 0.5
6 0.05
7 0.05
8 0
9 0

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs

Q(s, a)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4

The goal is to find
the right values for

these weights.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Nodes/Units/Neurons

f(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

 is called the activation function, is usually called the biasf b

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Activations Functions

‣ They are generally used to add non-linearity.

‣ Examples:

‣ Rectified Linear Unit: it returns the max between 0 and the
value in input. In other words, given the value in input it
returns .

‣ Logistic sigmoid: given the value in input , it returns

.

‣ Arctan: given the value in input , it returns .

z
max(0,z)

z
1

1 + ez

z tan−1(z)
Credit: Wikimedia

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Nodes/Units/Neurons

relu(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

Note that here the function in input of relu is 1-dimensional.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Softmax Function

‣ Another function that we will use is softmax.

‣ But please note that softmax is not like the activation functions that we discussed
before. The activations functions that we discussed before take in input real
numbers and returns a real number.

‣ A softmax function receives in in inputs a vector of real numbers of dimension
and returns a vector of real numbers of dimension .

‣ Softmax: given a vector of real numbers in input of dimension , it normalises it
into a probability distribution consisting of probabilities proportional to the
exponentials of each element of the vector . More formally,

 for .

n
n

z n
n

zi z

softmax(z)i =
ezi

∑n
j=1 ezj

i = 1,..n

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient-based Optimization

‣We will now discuss a high-level description of the learning process of the
network, usually called gradient-based optimization.

‣ Each neural layer transforms his input layer as follows:

‣ And in the case of a relu function, we will have

‣ Note that this is a simplified notation for one layer, it should be for layer
.

output = f(w1x1 + . . . + wnxn + b)

output = relu(w1x1 + . . . + wnxn + b)

w1,i
i

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient-based Optimisation

‣ The learning is based on the gradual adjustment of the weight based on a
feedback signal, i.e., the loss described above.

‣ The training is based on the following training loop:

‣ Draw a batch of training examples and corresponding targets ..

‣ Run the network on (forward pass) to obtain predictions .

‣ Compute the loss of the network on the batch, a measure of the mismatch
between and ..

‣ Update all weights of the networks in a way that reduces the loss of this
batch.

x ytarget

x ypred

ypred ytarget

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Descent

‣ Given a differentiable function, it’s theoretically possible to find its
minimum analytically.

‣ However, the function is intractable for real networks. The only way is
to try to approximate the weights using the procedure describe
above.

‣ More precisely since it’s a differentiable function we can use the
gradient, which provide an efficient way to perform the correction
mention before.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient-based Optimisation

Credit: Sebastian Raschka

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Descent

‣ More formally:

‣ Draw a batch of training example and corresponding targets .

‣ Run the network on (forward pass) to obtain predictions .

‣ Computer the loss of the network on the batch, a measure of the mismatch between and .

‣ Compute the gradient of the loss with regard to the network’s parameters (backward pass).

‣ Move the parameters in the opposite direction from the gradient with:

where is the loss (cost) function.

‣ If you have a batch of samples of dimension :

 for all the samples of the batch.

x ytarget

x ypred

ypred ytarget

wj ← wj + Δwj = wj − η
∂J
∂wj

J

k

wj ← wj + Δwj = wj − η average(
∂Jk

∂wj
) k

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Descent

‣ This is called the mini-batch stochastic gradient descent (mini-batch SGD).

‣ The loss function is a function of , which is a function of the weights.

‣ Essentially you calculate the value , which is a function of the weights of the network.

‣ Therefore, by definition, the derivative of the loss function that you are going to apply will
be a function of the weights.

‣ The term stochastic refers to the fact that each batch of data is drawn randomly.

‣ The algorithm describe above was based on a simplified model with a single function in a
sense.

‣ You can think about a network composed of three layers, e.g., three tensor operations on the
network itself.

J f(x)

f(x)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

https://www.cs.umd.edu/~tomg/projects/landscapes/

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Backpropagation Algorithm

‣ Suppose that you have three tensor operations/layers with weights ,
 and respectively for the first, second, third layer. You will have the

following functon:

with the rightmost function/layer and so on. In other words, the input layer is
connected to , which is connected to , which is connect to , which returns
the final result.

‣ A network is a sort of chain of layers. You can derive the value of the “correction”
by applying the chain rule of the derivatives backwards.

‣ Remember the chain rule .

f, g, h W1

W2 W3

ypred = f(W1, W2, W3) = f(W1, g(W2, h(W3)))

f()
h() g() f()

f(g(x)) = f′�(g(x))g′�(x)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Backpropagation Algorithm

‣ The update of the weights starts from the right-most layer back to the left-most layer.
For this reason, this is called backpropagation algorithm.

‣ More specifically, backpropagation starts with the calculation of the gradient of final loss
value and works backwards from the right-most layers to the left-most layers, applying
the chain rule to compute the contribution that each weight had in the loss value.

‣ Nowadays, we do not calculate the partial derivates manually, but we use framework
like TensorFlow that supports symbolic differentiation for the calculation of the gradient.

‣ TensorFlow supports the automatic updates of the weights described above.

‣ More theoretical details can be found in:

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

References

‣ Chapter 1 of Ian Goodfellow, Yoshua Bengio and Aaron Courville.
Deep Learning. MIT Press. 2016.

‣ Chapter 2 of Francois Chollet. Deep Learning with Python. Manning
2018.

