
Autonomous and Adaptive Systems

Policy Gradient Methods

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Gradient Methods

‣ In the previous lectures we discussed methods that were based on the
calculation of action values. We refer to them as as action-value methods.

‣We learned the values of the actions and then select actions based on the
estimated action values. The learning can happen with the optimisation of
the policy at the same time (e.g., control problem), but we need the values
of the actions in the first place.

‣ We now consider a different type of methods that learn instead a
parametrised policy that can select actions without consulting a value
function.

‣ A value function can be used to learn the policy parameter, but it is not
required for action selection.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Gradient Methods

‣We use the notation for the policy’s parameter vector.

‣We indicate the probability that action is taken at time given that
the environment is in state a time with parameters as follows:

‣ If a method uses a learned value function as well, the value function’s
weight vector is denoted with .

θ ∈ ℝd′ �

a t
s t θ

π(a |s, θ) = Pr{At = a |St = s, θt = θ}

w ∈ ℝd

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Gradient Methods

‣We consider methods for learning the policy parameter based on the gradient
of some scalar performance measure with respect to the policy parameter.

‣ The goal of these methods is to maximise performance, so their updates
approximate gradient ascent in as follows:

where is a stochastic estimate whose expectation approximates
the gradient of the performance measure with respect to the argument .

‣We refer to all the methods that follow this schema as policy gradient methods.

J(θ)

J

θt+1 = θt + α ̂∇J(θt)

̂∇J(θt) ∈ ℝd

θt

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Approximation

‣ In policy gradient methods, the policy can be parameterised in several
possible way.

‣ The only constraint is that is differentiable, i.e., as long as
 with respect to exists and it is finite for all ,

 with .

‣We need to ensure exploration and, therefore, one goal is to make
sure that the policy will never become deterministic, i.e. that

 for all , , .

π(a |s, θ)
∇π(a |s, θ) θ s ∈ 𝒮
a ∈ 𝒜(s) θ ∈ ℝd′ �

π(a |s, θ) = (0,1) s a θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Parametrisation and Parametrised
Action Preferences

‣ A standard way for parametrisation of policies is to derive first parametrised numerical
preferences for each state-action pair.

‣ The actions with the highest preferences in each state are given the highest probabilities of being
selected.

‣ A typical mapping between the the preferences is obtained through the use of an
exponential softmax distribution:

‣We call this type of policy parametrisation softmax in action preferences.

‣ Note that we are not deriving the values functions and then apply a policy (let’s say -greedy). We
are deriving directly the probability distributions of the actions given the states, i.e., the policy
itself.

h(a |s, θ) ∈ ℝ

h(a |s, θ)

π(a |s, θ) ≐
eh(s|a,θ)

∑b eh(s|b,θ)

ϵ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Parametrisation and Parametrised
Action Preferences

‣ The action preferences themselves can be parametrised
arbitrarily.

‣ For example, they might be computed by a deep artificial neural
network (ANN) where is the vector of all the connection weights.

‣ This is used for example in the AlphaGo system.

h(a |s, θ)

θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Advantages of Using Policy Approximation
according to Softmax in Action Preferences
‣ One advantage of parameterising policies according to the softmax in action preferences is

that the approximate policy can approach a deterministic policy.

‣ In fact, with -greedy selection over action values, there is always a probability of selecting a
random action.

‣ One possibility is to use softmax distribution on the action values, but this will not allow to
reach a deterministic policy.

‣ Action values will always differ and, therefore, there will be always a non-null probability of
selecting a different action.

‣ Action preferences are different since they do not approach specific values: instead they
are driven to produce the optimal stochastic policy.

‣ If the optimal policy is deterministic, the preferences of the optimal actions will be driven
infinitely higher than all suboptimal actions (the output of the softmax will be then very close
to 1, i.e., close to determinism).

ϵ ϵ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Advantages of Using Policy Approximation
according to Softmax in Action Preferences

‣ The second advantage of parameterising policies according to the
softmax in action preferences is that it enables the selection of
actions with arbitrary probabilities.

‣ In some situations the best approximate policy might be stochastic,
especially in games of imperfect information.

‣ Action-value methods do not have a natural way of finding stochastic
optimal policies; instead, policy approximation methods can.

‣ It is also worth noting that in some cases, policy approximation might
be easier than value approximation.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Advantages of Using Policy Approximation
according to Softmax in Action Preferences

‣ Finally, there is an important “theoretical” advantage. With continuous
policy parameterisation, the action probabilities change smoothly as a
function of the learned parameter.

‣ Indeed, in -greedy selection the action probabilities might change
dramatically for a small change in the estimated action values, if that
change results in a different action having the maximal value.

ϵ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Gradient Theorem

‣We consider episodic learning and we define the performance
measure as the value at the start of the episode.

‣We can simplify the notation by assuming that each episode starts in
a non-random state .

‣ Formally:

where is the true value function for , the policy determined by .

s0

J(θ) ≐ vπθ
(s0)

vπθ
πθ θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting

an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ) ≐ vπθ
(s0)

Optimizer

h(a |s, θ)

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The performance
gradient is
used to update the

weights of the neural
network

∇J(θ)

θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

 should be
engineered as a loss

function to be
minimised in order to

use the “machinery" of
neural networks like
back-propagation

J(θ)

Outputs

Probabilities of selecting

an action

π(a |s, θ)

h(a |s, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

Actually for updating the
weights, we don’t really
need , but

(or something
proportional to it since

we have the parameter

J(θ) ∇J(θ)

α

Outputs

Probabilities of selecting

an action

π(a |s, θ)

h(a |s, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Gradient Theorem

‣ Key question: how can we estimate the performance gradient with respect to the policy parameter
when the gradient depends on the unknown effect of policy changes on the state distribution?

‣ Fortunately, the policy gradient theorem provides an analytic expression for the gradient of
performance with respect to the policy parameter that does not involve the derivative of the state
distributions.

‣ In particular, the policy gradient theorem says that:

where the gradients are column vectors of partial derivatives with respect to the components of
and denotes the policy corresponding to parameter vector . is the on-policy distribution
under (i.e., the fraction of time spent in each state normalised to sum to 1).

‣ If you are interested, you can find the proof in Chapter 13 of Sutton and Barto’s book.

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

θ
π θ μ(s)

π

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣ REINFORCE is a Monte Carlo Policy Gradient control algorithm, i.e., the update leads to
the optimal policy.

‣ It is based on stochastic gradient ascent as discussed above.

‣We need a way to obtain samples such that the expectation of the sample gradient is
pro proportional to the actual gradient of the performance measure as a function of
the parameter.

‣ The sample gradients need only be proportional to the gradient because any constant
of proportionality can be absorbed into the step size , which is otherwise arbitrary.

‣ The policy gradient theorem gives an exact expression proportional to the gradient.

‣We need to find a way of sampling whose expectation equals or approximates this
expression.

α

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣ Notice that the right-hand side of the policy gradient theorem is a
sum over states weighted by how often the states occur under the
target policy . If is followed, the states will be encountered in these
proportions.

‣ More formally:

π π

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

= 𝔼π[∑
a

qπ(St, a)∇(a |St, θ)]

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣ In theory we can stop here and instantiate the stochastic gradient algorithm:

as follows:

where is a learned approximation to .

‣ In theory we could stop here. This is called an all-action methods because it involves the
updates of all the actions.

‣ However, we are interested in an algorithm whose update at time involves only , the action
taken at time . This is called REINFORCE algorithm proposed by Williams in 1992.

θt+1 = θt + α ̂∇J(θt)

θt+1 ≐ θt + α∑
a

̂q(St, a, w)∇π(a |St, θ)

̂q qπ

t At
t

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣We have the following derivation

since

where is the return.

‣ Note that the last equality is true because and .

∇J(θ) ∝ 𝔼π[∑
a

qπ(St, a)∇(a |St, θ)]

= 𝔼π[∑
a

π(a |St, θ)qπ(St, a)
∇π(a |St, θ)
π(a |St, θ)

]

= 𝔼π[𝔼π[qπ(St, At)]
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[qπ(St, At)
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[Gt
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[Gtln∇π(At |St, θ)]

𝔼π[𝔼π[x]] = 𝔼π[x]

Gt

𝔼π[Gt |St, At] = qπ(St, At) ∇lnx =
∇x
x

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣ The final expression in brackets can be used for the update. It is a
quantity that can be sampled at each step.

‣ Think about it in a different way: you are moving around your
objective and on average your correction will lead you close to your
real objective (the maximum in this case).

‣ Since you repeat stochastically this correction you end up with a
correction that is close to the expectation of the gradient. For this
reason we can use this sample to instantiate the generic stochastic
gradient ascent.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

‣ As in the stochastic gradient descent, in the stochastic gradient
ascent, you repeat the “correction” many times in order to reach the
maximum.

‣ From the derivation above we have the following REINFORCE update:

‣ Remember again that is proportional to the update value, not
equal, but we have the parameter so it does not really matter.

θt+1 = θt + α ̂∇J(θt)

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

∇J(θ)
α

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + α∇J(θ)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

REINFORCE allows us
to estimate the

correction that is
proportional to ∇J(θ)

Outputs

Probabilities of selecting

an action

π(a |s, θ)

h(a |s, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The correction that is
proportional to
is used to update the

weights of the network
through the network

optimizer

∇J(θ)

Outputs

Probabilities of selecting

an action

π(a |s, θ)

h(a |s, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE

Input: a differentiable policy parametrisation

Algorithm parameter: step size

Initialise policy parameter

Loop forever (for each episode):

 Generate an episode following

 Loop for each step of the episode :

π(a |s, θ)

α > 0

θ ∈ ℝd′�

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

Gt ←
T

∑
k=t+1

Rk

θ ← θ + αG∇lnπ(At |St, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient-based Optimisation

Credit: Sebastian Raschka

θ

θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Descent

‣ Recall the stochastic gradient descent:

‣ Draw a batch of training example and corresponding targets
.

‣ Run the network on (forward pass) to obtain predictions .

‣ Computer the loss of the network on the batch, a measure of the
mismatch between and .

‣ Compute the gradient of the loss with regard to the network’s
parameters (backward pass).

x
ytarget

x ypred

ypred ytarget

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Descent

‣ Move the parameters in the opposite direction from the gradient with:

where is the loss (cost) function.

‣ If you have a batch of samples of dimension :

 for all the samples of the batch.

θj ← θj + Δθj = θj − η
∂J
∂θj

J

k

θj ← θj + Δθj = θj − η average(
∂Jk

∂θj
)

k

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Stochastic Gradient Ascent

‣ Similarly in our case, we move the parameters in the same direction as the gradient
with:

where is the loss (cost) function.

‣ If you have a batch of samples of dimension you can think about moving towards
your actual objective using this formula:

 for all the samples of the batch.

θj ← θj + Δθj = θj + η
∂J
∂θj

J

k

θj ← θj + Δθj = θj + η average(
∂Jk

∂θj
)

k

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

‣We said that an artificial neural network can be used to implement REINFORCE.
But how can we do this in practice in a package like TensorFlow or Keras?

‣ The key problem is to select a loss function that can be mapped to REINFORCE.

‣We can talk about compatibility between Artificial Neural Networks and
REINFORCE in a sense (see also theory in Williams 1992).

‣ From a practical point of view, we want to find a way of exploiting back-
propagation for updating the weights using the “machinery” that is offered for
example by the existing frameworks.

‣We want to adapt a “machinery” that is built for stochastic gradient to a
stochastic gradient ascent. As you can imagine the trick would be to do a
correction in the opposite direction.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

‣ Let us consider again our formula:

‣ Our loss function is . Our goal is to correct each weight by
 using the correction for each weight.

‣ The value can be considered against the value 0, i.e., the difference
.

‣ However, since this is stochastic gradient ascent we will take the
opposite of this quantity. More formally:

θt+1 = θt + α ̂∇J(θt)

J(θ)
∇J(θ) ∇J(θ)

Gtlnπ − 0

J(θ) = − (Gtlnπ − 0) = − Gtlnπ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

‣ And of course the gradient of this quantity is

‣ Essentially, for example in Keras (TensorFlow) it would be sufficient to
set the loss function to a custom loss function equal to .

‣ Then Keras will take care of the stochastic gradient ascent, i.e.,
optimisation problem.

∇J(θ) = − Gt ∇lnπ

−Gtlnπ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Issues with REINFORCE

‣ As a stochastic gradient method, REINFORCE has good theoretical convergence
properties.

‣ By construction, the expected update over an episode in the same direction as
the performance gradient.

‣ This assures an improvement in expected performance for sufficient small and
convergence to a local optimum under standard stochastic approximation
conditions for decreasing .

‣ However, since it is a Monte Carlo method, REINFORCE suffers from high
variance and this might lead to slow learning.

‣ One way of dealing with this problem is to use baselines and actor-cross
methods.

α

α

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

‣ The policy gradient theorem can be generalised to include a comparison
of the action value to an arbitrary baseline :

‣ The baseline can be any function, even a random variable, as long as it
does not vary with .

‣ The equation remains valid because the subtracted quantity is zero:

b(s)

∇J(θ) ∝ ∑
s

μ(s)∑
a

(qπ(s, a) − b(s))∇π(a |s, θ)

a

∑
a

b(s)∇π(a |s, θ) = b(s)∇∑
a

π(a |s, θ) = b(s)∇1 = 0

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

‣ The policy gradient theorem with baseline can be used to derive an update rule using similar
steps.

‣ The update for REINFORCE with baseline is as follows:

‣ The use of the baseline leaves the expected value unchanged, but it can have a large effect on
its variance.

‣ The value of can be a random number but it is not ideal.

‣ In some states all actions have high values and we need a high baseline to differentiate the
higher valued actions from the less highly values ones. In other states all actions will have
low values and a low baseline is appropriate.

θt+1 ≐ θt + α(Gt − b(St))
∇π(At |St, θt)
π(At |St, θt)

= θt + α(Gt − b(St))∇lnπ(At |St, θt)

b(s)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

‣ A natural choice is to learn at the same time the state value

where is a weight vector learned using, for example, another
deep neural network.

‣ Because REINFORCE is a Monte Carlo method it makes to use a
Monte Carlo method also for learning the state-value weights .

‣ This method will be based on two step-size denoted and .

b(St) = ̂v(St, w)

w ∈ ℝm

w

αθ αw

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

Input: a differentiable policy parametrisation m a differentiable state-value function parametrisation .

Algorithms parameters: steps size and

Initialise policy parameter and state-value weights

Loop forever (for each episode):

 Generate an episode following

 Loop for each step of the episode :

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

G ←
T

∑
k=t+1

Rk

δ ← G − ̂v(St, w)

w ← w + αwδ ∇ ̂v(St, w)

θ ← θ + αθ(G − ̂v(St, w))∇lnπ(At |St, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

Input: a differentiable policy parametrisation m a differentiable state-value function parametrisation .

Algorithms parameters: steps size and

Initialise policy parameter and state-value weights

Loop forever (for each episode):

 Generate an episode following

 Loop for each step of the episode :

 In the vanilla REINFORCE, i.e., REINFORCE without baseline, .

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

G ←
T

∑
k=t+1

Rk

δ ← G − ̂v(St, w) δ = G

w ← w + αwδ ∇ ̂v(St, w)

θ ← θ + αθ(G − ̂v(St, w))∇lnπ(At |St, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Actor-Critic Methods

‣ Methods that learn approximations to both policy and value functions are often
called actor-critic methods, where actor is a reference to the learned policy and critic
refers to the learned value function.

‣We do not consider REINFORCE with baseline an actor-critic method, even if it
learns both a policy and state-value functions.

‣ The reason is that its state-value function is used only as a baseline and not as a
critic and not for updating the value estimate for a state from the estimated values of
subsequent states (i.e., bootstrapping).

‣ This is an important distinction, since only through bootstrapping we introduce bias
and an asymptotic dependence on the quality of the function approximation.

‣ Recall that the bias introduced through bootstrapping is often beneficial since it
reduces variance and accelerates learning.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Actor-Critic Methods

‣ REINFORCE with baseline is unbiased and converge asymptotically to a
local minimum, but as all the the other Monte Carlo methods tends to
learn slowly (high variance in the estimates).

‣We have seen that with temporal distance methods we can remove these
problems.

‣ For this reason, we use actor-critic methods with a bootstrapping critic,
i.e., we update the value estimate for a state from the estimated values of
subsequent state.

‣We consider one-step actor-critic methods.

‣ These are analogs to TD(0), Sarsa and Q-learning.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

One-step Actor-Critic Method

‣ The one-step actor-critic method replaces the full return of
REINFORCE with the one-step return (and use a learned state-value
function as baseline) as follows:

θt+1 ← θt + α(Gt − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + α(Rt+1 + ̂v(St+1, w) − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

One-step Actor Methods

‣ The value of the state is usually estimated with another network for
example with a semi-gradient TD(0) method (other methods are
possible).

‣ Please note that the weights of this other network are learned at
the same time, but independently.

‣ The network that learns the policy (that with weights) in our
example is the actor network (i.e, it used to act).

‣ The network that learns the values (that with weights) is called critic
network (i.e., it is used to “judge” the actions of the actor, which is
implemented through the actor network.

w

θ

w

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Network with One-step Actor Critic

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting

an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

This is an actor
network

(the output is
the policy)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The performance gradient
 is used to update

the weights of the neural
network together with the

estimation of the value
function from

another value (neural)
network with weights
that are updated at the

same time

∇J(θ)
θ

̂v(s |w)

w

h(a |s, θ)

Neural network function of weights θ

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

One-step Actor-Critic Method

Input: a differentiable policy parametrisation , a differentiable state-value function parametrisation

Parameters: step sizes and

Initialise policy parameter and state-value weights

Loop forever (for each episode):

 Initialise (first state of episode)

 Loop while is not terminal

 Select A using policy

 Take action A, observe

 (if is terminal, then)

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S

S

π

S′�, R

δ ← R + ̂v(S′�, w) − ̂v(S, w) S′� ̂v(S′�, w) ≐ 0

w ← w + αwδ ∇ ̂v(S, w)

θ ← θ + αθδ ∇lnπ(A |S, θ)

S ← S′�

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Continuous Action Space

‣ In this lecture, we have examined the case of discrete actions, but it is worth
noting that the policy networks can be used to learn continuous actions (think
about moving the wheel of a car).

‣ In that case the output is not a discrete probability distribution on
the state space (i.e., at the end a set of discrete values), but a continuous one.

‣ In that case we will not learn the discrete probability for each actions, but the
parameters of a probability distribution.

‣ For example, we can use a Gaussian distribution and learn the parameter
 and .

‣ Then, we will sample from that distribution for taking an action.

π(a |s, θ)

mean(s) variance(s)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Credit: WikiMedia

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The correction that is
proportional to
is used to update the

weights of the network
through the network

optimizer

∇J(θ)

Outputs

Parameter of the

probability
distribution and μ σ

h(a |s, θ)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

References

‣ Chapter 13 of Barto and Sutton. Introduction to Reinforcement
Learning. Second Edition. MIT Press 2018.

