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Policy Gradient Methods

‣ In the previous lectures we discussed methods that were based on the 
calculation of action values. We refer to them as as action-value methods. 

‣We learned the values of the actions and then select actions based on the 
estimated action values. The learning can happen with the optimisation of 
the policy at the same time (e.g., control problem), but we need the values 
of the actions in the first place. 

‣ We now consider a different type of methods that learn instead a 
parametrised policy that can select actions without consulting a value 
function. 

‣ A value function can be used to learn the policy parameter, but it is not 
required for action selection.
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Policy Gradient Methods

‣We use the notation  for the policy’s parameter vector. 

‣We indicate the probability that action  is taken at time  given that 
the environment is in state  a time  with parameters  as follows: 

 

‣ If a method uses a learned value function as well, the value function’s 
weight vector is denoted with .

θ ∈ ℝd′ �

a t
s t θ

π(a |s, θ) = Pr{At = a |St = s, θt = θ}

w ∈ ℝd
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Policy Gradient Methods

‣We consider methods for learning the policy parameter based on the gradient 
of some scalar performance measure  with respect to the policy parameter. 

‣ The goal of these methods is to maximise performance, so their updates 
approximate gradient ascent in  as follows: 

 

where  is a stochastic estimate whose expectation approximates 
the gradient of the performance measure with respect to the argument . 

‣We refer to all the methods that follow this schema as policy gradient methods.

J(θ)

J

θt+1 = θt + α ̂∇J(θt)

̂∇J(θt) ∈ ℝd

θt
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Policy Approximation

‣ In policy gradient methods, the policy can be parameterised in several 
possible way. 

‣ The only constraint is that  is differentiable, i.e., as long as 
 with respect to  exists and it is finite for all ,

 with . 

‣We need to ensure exploration and, therefore, one goal is to make 
sure that the policy will never become deterministic, i.e. that 

 for all , , . 

π(a |s, θ)
∇π(a |s, θ) θ s ∈ 𝒮
a ∈ 𝒜(s) θ ∈ ℝd′ �

π(a |s, θ) = (0,1) s a θ
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Policy Parametrisation and Parametrised 
Action Preferences

‣ A standard way for parametrisation of policies is to derive first parametrised numerical 
preferences  for each state-action pair.  

‣ The actions with the highest preferences in each state are given the highest probabilities of being 
selected. 

‣ A typical mapping between the the preferences  is obtained through the use of an 
exponential softmax distribution: 

 

‣We call this type of policy parametrisation softmax in action preferences. 

‣ Note that we are not deriving the values functions and then apply a policy (let’s say -greedy). We 
are deriving directly the probability distributions of the actions given the states, i.e., the policy 
itself.

h(a |s, θ) ∈ ℝ

h(a |s, θ)

π(a |s, θ) ≐
eh(s|a,θ)

∑b eh(s|b,θ)

ϵ
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Policy Parametrisation and Parametrised 
Action Preferences

‣ The action preferences themselves  can be parametrised 
arbitrarily. 

‣ For example, they might be computed by a deep artificial neural 
network (ANN) where  is the vector of all the connection weights. 

‣ This is used for example in the AlphaGo system.

h(a |s, θ)

θ
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Advantages of Using Policy Approximation 
according to Softmax in Action Preferences
‣ One advantage of parameterising policies according to the softmax in action preferences is 

that the approximate policy can approach a deterministic policy. 

‣ In fact, with -greedy selection over action values, there is always a probability  of selecting a 
random action. 

‣ One possibility is to use softmax distribution on the action values, but this will not allow to 
reach a deterministic policy. 

‣ Action values will always differ and, therefore, there will be always a non-null probability of 
selecting a different action. 

‣ Action preferences are different since they do not approach specific values: instead they 
are driven to produce the optimal stochastic policy. 

‣ If the optimal policy is deterministic, the preferences of the optimal actions will be driven 
infinitely higher than all suboptimal actions (the output of the softmax will be then very close 
to 1, i.e., close to determinism).

ϵ ϵ
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Advantages of Using Policy Approximation 
according to Softmax in Action Preferences

‣ The second advantage of parameterising policies according to the 
softmax in action preferences is that it enables the selection of 
actions with arbitrary probabilities. 

‣ In some situations the best approximate policy might be stochastic, 
especially in games of imperfect information. 

‣ Action-value methods do not have a natural way of finding stochastic 
optimal policies; instead, policy approximation methods can. 

‣ It is also worth noting that in some cases, policy approximation might 
be easier than value approximation. 
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Advantages of Using Policy Approximation 
according to Softmax in Action Preferences

‣ Finally, there is an important “theoretical” advantage. With continuous 
policy parameterisation, the action probabilities change smoothly as a 
function of the learned parameter. 

‣ Indeed, in -greedy selection the action probabilities might change 
dramatically for a small change in the estimated action values, if that 
change results in a different action having the maximal value.

ϵ
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Policy Gradient Theorem

‣We consider episodic learning and we define the performance 
measure as the value at the start of the episode. 

‣We can simplify the notation by assuming that each episode starts in 
a non-random state . 

‣ Formally: 

 

where  is the true value function for , the policy determined by .

s0

J(θ) ≐ vπθ
(s0)

vπθ
πθ θ
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting 


an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ) ≐ vπθ
(s0)

Optimizer

h(a |s, θ)

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The performance 
gradient  is 
used to update the 

weights  of the neural 
network

∇J(θ)

θ
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

 should be 
engineered as a loss 

function to be 
minimised in order to 

use the “machinery" of 
neural networks like 
back-propagation

J(θ)

Outputs

Probabilities of selecting 


an action

π(a |s, θ)

h(a |s, θ)
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 = θt + α ̂∇J(θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

Actually for updating the 
weights, we don’t really 
need , but  

(or something 
proportional to it since 

we have the parameter  

J(θ) ∇J(θ)

α

Outputs

Probabilities of selecting 


an action

π(a |s, θ)

h(a |s, θ)
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Policy Gradient Theorem

‣ Key question: how can we estimate  the performance gradient with respect to the policy parameter 
when the gradient depends on the unknown effect of policy changes on the state distribution? 

‣ Fortunately, the policy gradient theorem provides an analytic expression for the gradient of 
performance with respect to the policy parameter that does not involve the derivative of the state 
distributions. 

‣ In particular, the policy gradient theorem says that: 

  

where the gradients are column vectors of partial derivatives with respect to the components of  
and  denotes the policy corresponding to parameter vector .  is the on-policy distribution 
under  (i.e., the fraction of time spent in each state normalised to sum to 1).  

‣ If you are interested, you can find the proof in Chapter 13 of Sutton and Barto’s book.

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

θ
π θ μ(s)

π
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REINFORCE

‣ REINFORCE is a Monte Carlo Policy Gradient control algorithm, i.e., the update leads to 
the optimal policy.  

‣ It is based on stochastic gradient ascent as discussed above. 

‣We need a way to obtain samples such that the expectation of the sample gradient is 
pro proportional to the actual gradient of the performance measure as a function of 
the parameter. 

‣ The sample gradients need only be proportional to the gradient because any constant 
of proportionality can be absorbed into the step size , which is otherwise arbitrary. 

‣ The policy gradient theorem gives an exact expression proportional to the gradient. 

‣We need to find a way of sampling whose expectation equals or approximates this 
expression.

α
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REINFORCE

‣ Notice that the right-hand side of the policy gradient theorem is a 
sum over states weighted by how often the states occur under the 
target policy . If  is followed, the states will be encountered in these 
proportions. 

‣ More formally: 

π π

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

= 𝔼π[∑
a

qπ(St, a)∇(a |St, θ)]
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REINFORCE

‣ In theory we can stop here and instantiate the stochastic gradient algorithm: 

  

as follows: 

 

where  is a learned approximation to . 

‣ In theory we could stop here. This is called an all-action methods because it involves the 
updates of all the actions. 

‣ However, we are interested in an algorithm whose update at time  involves only , the action 
taken at time . This is called REINFORCE algorithm proposed by Williams in 1992.

θt+1 = θt + α ̂∇J(θt)

θt+1 ≐ θt + α∑
a

̂q(St, a, w)∇π(a |St, θ)

̂q qπ

t At
t
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REINFORCE
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REINFORCE

‣We have the following derivation 

since  

where  is the return. 

‣ Note that the last equality is true because  and .

∇J(θ) ∝ 𝔼π[∑
a

qπ(St, a)∇(a |St, θ)]

= 𝔼π[∑
a

π(a |St, θ)qπ(St, a)
∇π(a |St, θ)
π(a |St, θ)

]

= 𝔼π[𝔼π[qπ(St, At)]
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[qπ(St, At)
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[Gt
∇π(At |St, θ)
π(At |St, θ)

]

= 𝔼π[Gtln∇π(At |St, θ)]

𝔼π[𝔼π[x]] = 𝔼π[x]

Gt

𝔼π[Gt |St, At] = qπ(St, At) ∇lnx =
∇x
x
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REINFORCE

‣ The final expression in brackets can be used for the update. It is a 
quantity that can be sampled at each step. 

‣ Think about it in a different way: you are moving around your 
objective and on average your correction will lead you close to your 
real objective (the maximum in this case). 

‣ Since you repeat stochastically this correction you end up with a 
correction that is close to the expectation of the gradient. For this 
reason we can use this sample to instantiate the generic stochastic 
gradient ascent.
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REINFORCE

‣ As in the stochastic gradient descent, in the stochastic gradient 
ascent, you repeat the “correction” many times in order to reach the 
maximum. 

 

‣ From the derivation above we have the following REINFORCE update: 

 

‣ Remember again that  is proportional to the update value, not 
equal, but we have the parameter  so it does not really matter.

θt+1 = θt + α ̂∇J(θt)

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

∇J(θ)
α
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + α∇J(θ)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

REINFORCE allows us 
to estimate the 

correction that is 
proportional to ∇J(θ)

Outputs

Probabilities of selecting 


an action

π(a |s, θ)

h(a |s, θ)
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The correction that is 
proportional to  
is used to update the 

weights of the network 
through the network 

optimizer 

∇J(θ)

Outputs

Probabilities of selecting 


an action

π(a |s, θ)

h(a |s, θ)
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REINFORCE

Input: a differentiable policy parametrisation  

Algorithm parameter: step size  

Initialise policy parameter  

Loop forever (for each episode): 

   Generate an episode  following  

   Loop for each step of the episode : 

       

       

π(a |s, θ)

α > 0

θ ∈ ℝd′�

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

Gt ←
T

∑
k=t+1

Rk

θ ← θ + αG∇lnπ(At |St, θ)
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Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function


True

Targets

Loss 

Score

Optimizer
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Gradient-based Optimisation

Credit: Sebastian Raschka

θ

θ
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Stochastic Gradient Descent

‣ Recall the stochastic gradient descent: 

‣ Draw a batch of training example  and corresponding targets 
. 

‣ Run the network on  (forward pass) to obtain predictions . 

‣ Computer the loss of the network on the batch, a measure of the 
mismatch between  and . 

‣ Compute the gradient of the loss with regard to the network’s 
parameters (backward pass).

x
ytarget

x ypred

ypred ytarget
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Stochastic Gradient Descent

‣ Move the parameters in the opposite direction from the gradient with:  

  

where  is the loss (cost) function. 

‣ If you  have a batch of samples of dimension : 

 

       for all the  samples of the batch.

θj ← θj + Δθj = θj − η
∂J
∂θj

J

k

θj ← θj + Δθj = θj − η average(
∂Jk

∂θj
)

k
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Stochastic Gradient Ascent

‣ Similarly in our case, we move the parameters in the same direction as the gradient 
with:  

  

where  is the loss (cost) function. 

‣ If you  have a batch of samples of dimension  you can think about moving towards 
your actual objective using this formula: 

 

       for all the  samples of the batch.

θj ← θj + Δθj = θj + η
∂J
∂θj

J

k

θj ← θj + Δθj = θj + η average(
∂Jk

∂θj
)

k
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Implementing REINFORCE with Artificial 
Neural Networks/Deep Learning

‣We said that an artificial neural network can be used to implement REINFORCE. 
But how can we do this in practice in a package like TensorFlow or Keras? 

‣ The key problem is to select a loss function that can be mapped to REINFORCE.  

‣We can talk about compatibility between Artificial Neural Networks and 
REINFORCE in a sense (see also theory in Williams 1992). 

‣ From a practical point of view, we want to find a way of exploiting back-
propagation for updating the weights using the “machinery” that is offered for 
example by the existing frameworks. 

‣We want to adapt a “machinery” that is built for stochastic gradient to a 
stochastic gradient ascent. As you can imagine the trick would be to do a 
correction in the opposite direction.
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Implementing REINFORCE with Artificial 
Neural Networks/Deep Learning

‣  Let us consider again our formula:  

‣ Our loss function is . Our goal is to correct each weight by 
  using the correction   for each weight.  

‣ The value can be considered against the value 0, i.e., the difference 
.  

‣ However, since this is stochastic gradient ascent we will take the 
opposite of this quantity. More formally: 

θt+1 = θt + α ̂∇J(θt)

J(θ)
∇J(θ) ∇J(θ)

Gtlnπ − 0

J(θ) = − (Gtlnπ − 0) = − Gtlnπ
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Implementing REINFORCE with Artificial 
Neural Networks/Deep Learning

‣ And of course the gradient of this quantity is 

 

‣ Essentially, for example in Keras (TensorFlow) it would be sufficient to 
set the loss function to a custom loss function equal to . 

‣ Then Keras will take care of the stochastic gradient ascent, i.e., 
optimisation problem.

∇J(θ) = − Gt ∇lnπ

−Gtlnπ
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Issues with REINFORCE

‣ As a stochastic gradient method, REINFORCE has good theoretical convergence 
properties. 

‣ By construction, the expected update over an episode in the same direction as 
the performance gradient. 

‣ This assures an improvement in expected performance for sufficient small  and 
convergence to a local optimum under standard stochastic approximation 
conditions for decreasing . 

‣ However, since it is a Monte Carlo method, REINFORCE suffers from high 
variance and this might lead to slow learning. 

‣ One way of dealing with this problem is to use baselines and actor-cross 
methods.

α

α
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REINFORCE with Baseline

‣ The policy gradient theorem can be generalised to include a comparison 
of the action value to an arbitrary baseline : 

 

‣ The baseline can be any function, even a random variable, as long as it 
does not vary with . 

‣ The equation remains valid because the subtracted quantity is zero: 

b(s)

∇J(θ) ∝ ∑
s

μ(s)∑
a

(qπ(s, a) − b(s))∇π(a |s, θ)

a

∑
a

b(s)∇π(a |s, θ) = b(s)∇∑
a

π(a |s, θ) = b(s)∇1 = 0
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REINFORCE with Baseline

‣ The policy gradient theorem with baseline can be used to derive an update rule using similar 
steps. 

‣ The update for REINFORCE with baseline is as follows: 

 

‣ The use of the baseline leaves the expected value unchanged, but it can have a large effect on 
its variance. 

‣ The value of  can be a random number but it is not ideal. 

‣ In some states all actions have high values and we need a high baseline to differentiate the 
higher valued actions from the less highly values ones. In other states all actions will have 
low values and a low baseline is appropriate.

θt+1 ≐ θt + α(Gt − b(St))
∇π(At |St, θt)
π(At |St, θt)

= θt + α(Gt − b(St))∇lnπ(At |St, θt)

b(s)
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REINFORCE with Baseline

‣ A natural choice is to learn at the same time the  state value  

 

where  is a weight vector learned using, for example, another 
deep neural network. 

‣ Because REINFORCE is a Monte Carlo method it makes to use a 
Monte Carlo method also for learning the state-value weights . 

‣ This method will be based on two step-size denoted  and .

b(St) = ̂v(St, w)

w ∈ ℝm

w

αθ αw



Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

Input: a differentiable policy parametrisation m a differentiable state-value function parametrisation . 

Algorithms parameters: steps size  and  

Initialise policy parameter  and state-value weights  

Loop forever (for each episode): 

   Generate an episode  following  

   Loop for each step of the episode : 

       

                                     

       

      

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

G ←
T

∑
k=t+1

Rk

δ ← G − ̂v(St, w)

w ← w + αwδ ∇ ̂v(St, w)

θ ← θ + αθ(G − ̂v(St, w))∇lnπ(At |St, θ)



Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

REINFORCE with Baseline

Input: a differentiable policy parametrisation m a differentiable state-value function parametrisation . 

Algorithms parameters: steps size  and  

Initialise policy parameter  and state-value weights  

Loop forever (for each episode): 

   Generate an episode  following  

   Loop for each step of the episode : 

       

                                    In the vanilla REINFORCE, i.e., REINFORCE without baseline, . 

       

      

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S0, A0, R1, . . . , ST−1, AT−1, RT π

t = 0,1,...,T − 1

G ←
T

∑
k=t+1

Rk

δ ← G − ̂v(St, w) δ = G

w ← w + αwδ ∇ ̂v(St, w)

θ ← θ + αθ(G − ̂v(St, w))∇lnπ(At |St, θ)
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Actor-Critic Methods

‣ Methods that learn approximations to both policy and value functions are often 
called actor-critic methods, where actor is a reference to the learned policy and critic 
refers to the learned value function. 

‣We do not consider REINFORCE with baseline an actor-critic method, even if it 
learns both a policy and state-value functions. 

‣ The reason is that its state-value function is used only as a baseline and not as a 
critic and not for updating the value estimate for a state from the estimated values of 
subsequent states (i.e., bootstrapping). 

‣ This is an important distinction, since only through bootstrapping we introduce bias 
and an asymptotic dependence on the quality of the function approximation. 

‣ Recall that the bias introduced through bootstrapping is often beneficial since it 
reduces variance and accelerates learning.
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Actor-Critic Methods

‣ REINFORCE with baseline is unbiased and converge asymptotically to a 
local minimum, but as all the the other Monte Carlo methods tends to 
learn slowly (high variance in the estimates). 

‣We have seen that with temporal distance methods we can remove these 
problems. 

‣ For this reason, we use actor-critic methods with a bootstrapping critic, 
i.e., we update the value estimate for a state from the estimated values of 
subsequent state. 

‣We consider one-step actor-critic methods. 

‣ These are analogs to TD(0), Sarsa and Q-learning.
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One-step Actor-Critic Method

‣ The one-step actor-critic method replaces the full return of 
REINFORCE with the one-step return (and use a learned state-value 
function as baseline) as follows: 

θt+1 ← θt + α(Gt − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + α(Rt+1 + ̂v(St+1, w) − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)
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One-step Actor Methods

‣ The value of the state is usually estimated with another network for 
example with a semi-gradient TD(0) method (other methods are 
possible). 

‣ Please note that the weights  of this other network are learned at 
the same time, but independently. 

‣ The network that learns the policy (that with weights ) in our 
example is the actor network (i.e, it used to act). 

‣ The network that learns the values (that with weights ) is called critic 
network (i.e., it is used to “judge” the actions of the actor, which is 
implemented through the actor network.

w

θ

w
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Policy Network with One-step Actor Critic

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting 

an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

This is an actor 
network 

(the output is 
the policy)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The performance gradient 
 is used to update 

the weights  of the neural 
network together with the 

estimation of the value 
function  from 

another value (neural) 
network with weights  
that are updated at the 

same time

∇J(θ)
θ

̂v(s |w)

w

h(a |s, θ)

Neural network function of weights θ
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One-step Actor-Critic Method

Input: a differentiable policy parametrisation , a differentiable state-value function parametrisation  

Parameters: step sizes  and  

Initialise policy parameter  and state-value weights  

Loop forever (for each episode): 

    Initialise  (first state of episode) 

    Loop while  is not terminal 

       Select A using policy  

       Take action A, observe  

           (if  is terminal, then ) 

        

        

       

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ � w ∈ ℝd

S

S

π

S′�, R

δ ← R + ̂v(S′�, w) − ̂v(S, w) S′� ̂v(S′�, w) ≐ 0

w ← w + αwδ ∇ ̂v(S, w)

θ ← θ + αθδ ∇lnπ(A |S, θ)

S ← S′�
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Continuous Action Space

‣ In this lecture, we have examined the case of discrete actions, but it is worth 
noting that the policy networks can be used to learn continuous actions (think 
about moving the wheel of a car). 

‣ In that case the output is not a discrete probability distribution  on 
the state space (i.e., at the end a set of discrete values), but a continuous one. 

‣ In that case we will not learn the discrete probability for each actions, but the 
parameters of a probability distribution. 

‣ For example, we can use a Gaussian distribution and learn the parameter 
 and . 

‣ Then, we will sample from that distribution for taking an action.

π(a |s, θ)

mean(s) variance(s)
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Credit: WikiMedia 
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Policy Networks

Layer 1 Layer 2 Layer 3 Softmax

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The correction that is 
proportional to  
is used to update the 

weights of the network 
through the network 

optimizer 

∇J(θ)

Outputs

Parameter of the 

probability 
distribution  and μ σ

h(a |s, θ)
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