
Autonomous and Adaptive Systems

Reinforcement Learning in TensorFlow
Advanced Topics

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Eager Execution in TensorFlow 2.0

‣ The execution in TensorFlow was based on definition of computational
graphs. In v2.0, eager execution is default. You can imagine eager
execution as the standard imperative style of execution of Python.

‣ Before, computational graphs had to be declared and this was rather
cumbersome. However, there are different ways for improving the
performance of TensorFlow or customising it. This is essential for example
when we want to define non-standard gradients.

‣We will see two types of customisation:

‣ the use of tf.GradientTape for customised gradients;

‣ the use of tf.function for defining TensorFlow graphs.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Computing (Customised) Gradients

‣ Until now, we have used the standard TensorFlow operations for
training a network.

‣ The optimization process has been based on the fit()	function.
fit()	takes care of the calculation of the gradient values and the
backpropagation. But what happens if we want to define
“customised” gradients?

‣ This is particularly important for example when we want to exploit
deep learning architectures for reinforcement learning.

‣ See for example calculation of the gradient in REINFORCE.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient Tapes

‣ TensorFlow provides the tf.GradientTape API for automatic
differentiation, i.e., computing the gradient of a computation with
respect to its input variables.

‣ TensorFlow records all operations executed inside the context of a
tf.GradientTape	onto a tape.

‣ TensorFlow then uses that tape and the gradients of the outputs with
respect to the intermediate values computed during a recorded
tf.GradientTape	context.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient Tapes

x	=	tf.ones((2,	2))	

with	tf.GradientTape()	as	t:	

			t.watch(x)	

			y	=	tf.reduce_sum(x)	

			z	=	tf.multiply(y,	y)	

#Derivative	of	z	with	respect	to	the	original	input	tensor	x	

dz_dx	=	t.gradient(z,	x)	

dz_dx_0_0	=	dz_dx[0][0].numpy()	#	2	(2*x_0_0	at	x_0_0	=	1)	

dz_dx_0_1	=	dz_dx[0][1].numpy()	#	2	(2*x_0_1	at	x_0_1	=	1)	

dz_dx_1_0	=	dz_dx[1][0].numpy()	#	2	(2*x_1_0	at	x_1_0	=	1)	

dz_dx_1_1	=	dz_dx[1][1].numpy()	#	2	(2*x_1_1	at	x_1_1	=	1)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient Tapes

‣ By default, the resources held by a GradientTape are released as
soon as the GradientTape.gradient() method is called.

‣ To compute multiple gradients over the same computation, it is
necessary to create a persistent gradient tape.

‣ This allows multiple calls to the gradient() method.

‣ Resources are released when the tape object is garbage collected.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Gradient Tapes

x	=	tf.constant(3.0)	

with	tf.GradientTape(persistent=True)	as	t:	

			t.watch(x)	

			y	=	x*x	

			z	=	y*y	

dz_dx	=	t.gradient(z,	x)	#108.0	(4*x^3	at	x	=	3)	

dy_dx	=	t.gradient(y,	x)	#	6	(2*x	at	x	=	3)	

del	t	#	remove	the	reference	to	the	tape	and	invoke	garbage	collection	

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

with…	as construct in Python

‣When the with statement is executed, Python evaluates the
expression, called the __enter__	method on the resulting value,
which is called a context guard and assign the object returned by
__enter__ to the variable given by as.

‣ Python will then execute the body of the code.

‣ In any case, also in case of an exception the __exit__ method of
the guard object.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

with…	as construct in Python

class	guarded_execution:	

				def	__enter__(self):	

								<initialisation>	

								return	p	

				def	__exit__(self,	type,	value,	traceback):	

								<free	resources	and	manage	exceptions>	

with	guarded_execution	as	p:	

				<some	instructions>

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

with…	as construct in Python

with	open(“textfile.txt”)	as	f	

		data	=	f.read()	

		<work	with	data>	

‣ See: https://effbot.org/zone/python-with-statement.htm

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

tf.function

‣ tf.function allows to transform a subset of Python syntax into
portable and high-performance TensorFlow graphs, which are the
component that are “under its hood”.

‣ It is possible to write “graph code” using natural Python syntax.

‣ This is topic is outside the scope of this module. You can find the
definition of the language and more details in the TensorFlow
documentation.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Custom Training Loops with Keras
Models

‣ The steps are as follows:

‣ Compute the gradients with tf.GradientTape;

‣ Process the gradients (if necessary);

‣ Apply the processed gradients with apply_gradients().

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Custom Training Loops with Keras
Models

#	Create	an	optimiser	

opt	=	tf.keras.optimizers.SGD(learning_rate	=	0.1)	

#	Compute	the	gradients	for	a	list	of	variables	

with	tf.GradientTape()	as	tape:	

			loss	=	<call_loss_function>	

vars	=	<list_of_variables>	

grads	=	tape.gradient(loss,	vars)	

#	Process	the	gradients	

processed_grads		=	[process_gradient(g)	for	g	in	grads]	

#	Ask	the	optimiser	to	apply	the	processed	gradients	

opt.apply_gradients(processed_grads)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Custom Training Loops with Keras
Models

‣ Some important additional notes:

‣ You do not call compile() when you do not use fit().

‣ Remember	compile() defines the loss function, the optimiser
and the metrics.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

TensorFlow tf.data API

‣ The tf.data API enables to build complex input pipelines.

‣ It is used for performance reasons.

‣ In the example, we will use the tf.data.Dataset abstraction that
represents a sequence of elements, in which element consists of one or
more components.

‣ Example: in a training dataset an element might be a single training
example, with a pair of tensor components representing the image and
its label.

‣ There is a variety of methods of constructing dataset (please refer to the
documentation).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Lambda Layers

‣ The Lambda layer so that arbitrary TensorFlow functions can be used when
constructing sequential models

‣ They are typically used for fast experimentation.

‣ They are defined as follows:

tf.keras.layers.Lambda(function,	output_shape=None,	mask=None,	
arguments=None,	**kwargs)	

‣ For example if I want to add a layer that takes the square of the input I will write:

model.add(Lambda(lambda	x:x	**2))	

‣ A possible use it for variable casting.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

TF-Agents Library

‣ The TF-Agents Library is a Reinforcement Reinforcement Library based on
TensorFlow.

‣ It provides a series of off-the-shelf environments including:

‣ a wrapper for OpenGym environments

‣ DM Control Library

‣ Unity’s ML-agents library

‣ It also provides support for a variety of ML algorithms, including
REINFORCE and a variety of components such as support for replay
buffers, etc.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Training Architecture

‣ A TF-Agent is composed of a several components implementing
functionalities we saw during the module.

‣ In the phase of training a driver explores the environment using a
collect policy to choose actions.

‣ It collects trajectories (experiences) and these are sent to an observer
that saves them in a replay buffer.

‣ An agent pulls batches of trajectories from the replay buffer and train
a neural network (or more than one depending on the algorithm) with
them.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Training Architecture

‣ This is an architecture designed for parallelism: a driver might explore
multiple environments in parallel.

‣Why do we need an observer? You might wonder why the driver is
not saving the trajectories directly. Indeed, this would be possible, but
this would also make the architecture less flexible.

‣ In fact an observer can be used for example to process the
trajectories in parallel. An observer is any function that takes in input a
trajectory as argument.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

OpenAI Gym Environment

‣ For example, the following is used to instantiate the Atari 2600
environment of OpenAI Gym:

from	tf_agents.environments	import	suite_gym	

env	=	suite_gym.load(“Breakout-v1”)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

OpenAI Gym Environment

‣ For example, the following is used to instantiate the Atari 2600
environment of OpenAI Gym:

from	tf_agents.environments	import	suite_gym	

env	=	suite_gym.load(“Breakout-v1”)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

OpenAI Gym Environment

‣ TF-Agents environments are very similar to OpenAI Gym
environments, but there are a few differences.

‣ The reset() method returns a TimeStep	object that wraps the
observation (plus some extra information).

‣ The step()	method returns a TimeStep	object as well.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

OpenAI Gym Environment

‣ The reward	and observation attributes are the same as in OpenAI
Gym, except for the fact that the reward is represented using a
NumPy array.

‣ The step_type attribute is equal to 0 for the first time in the episode,
1 for intermediate time steps and 2 for the final time step.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

OpenAI Gym Environment

‣ The observations are screenshots of the Atari screen represented as
NumPy array of shape [210, 160,3].

‣ To render an environment you can call:

env.render(mode=“human”)	

‣ If you want to get the image as a RGB array you have to call:

env.render(mode=“rgb_array”)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Replay Buffers

‣ The TF-Agents library provides various replay buffer implementations
in the tf_agents.replay_buffers package.

‣We will use the TFUniformReplayBuffer	class in the
tf_agents.replay_buffers.tf_uniform_replay_buffer
package.

‣ It provides a high performance implementation of a replay buffer with
uniform sampling.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Implementing Atari Games

‣We will implement Breakout in Atari as example. It is worth noting that
we will apply some pre-processing as follows:

‣ Grayscale and downsampling: observations are converted to grey-
scale and downsampled (by default to 84x84 pixels).

‣ Frame skipping: the agent only gets to see n frames of the game (by
default . Its actions are repeated for each frame. This is used to
speed up the training).

n = 4

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Implementing Atari Games

‣ Since the default Atari environment already applies random frame
skip, we use the raw, non-skipping variant of the games, for example
for Breakout is called BreakoutNoFrameskip-v4.

‣ A single frame is also not sufficient to know the direction and the
speed of the ball. It would be impossible to play the game with a
default feed forward network.

‣ As we said, the best way to handle this is to us an environment
wrapper that will output observations composed of multiple frames (a
stack). This is implemented by the FrameStack4	wrapper.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Collect Driver

‣ A driver is an object that explores an environment using a given policy,
collect experiences and broadcasts them to some observers.

‣ At each step, the following things happen:

‣ The driver passes the current time step to the collect policy, which
uses this time step to choose an action and returns an action step
containing te action.

‣ The driver then passes the action to the environment, which returns the
next step.

‣ Finally, the driver creates a trajectory object to represent this transition
and broadcasts it to all observers.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Collect Driver

‣ There are two main driver classes: DynamicStepDriver	and
DynamicEpisodeDriver.

‣ The first one collects experiences for a given number of steps, while
the second collects experiences for a given number of episodes.

‣ In our example, we will collect experiences for given number of
episodes.

‣We want to collect experiences for four steps for each iteration (as in
the original DeepMind’s DQN paper).

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Initialising the Replay Buffer

‣ It is usually a good idea to initially fill the replay buffer with
observation. In order to do some use a RandomTFPolicy class and
create a second driver that will run this policy for 20000 steps (which
is equivalent to 80000 simulator frames as in the 2015 paper).

‣ In the code we call it initial_collect_policy.

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Extensions

‣ Implementation with a Policy Networks (DQN) with Actor-Critic

‣ Use of Advantage Actor-Critic (A2C)

‣ Use of Asynchronous Advantage Actor-Critic (A3C)

‣ Use of Soft-Actor Critic

‣ Use of Trust-Region Optimization (available in TF-Agents)

‣ Use of Proximal Policy Optimization (available in TF-Agents)

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

References

‣ Chapter 18 of Aurelien-Geron Hands-On Machine Learning with
Scikit-Learn , Keras and Tensor Flow. Second Edition. O’Reilly.

‣ TensorFlow Documentation

