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Eager Execution in TensorFlow 2.0

‣ The execution in TensorFlow was based on definition of computational 
graphs. In v2.0, eager execution is default. You can imagine eager 
execution as the standard imperative style of execution of Python. 

‣ Before, computational graphs had to be declared and this was rather 
cumbersome. However, there are different ways for improving the 
performance of TensorFlow or customising it. This is essential for example 
when we want to define non-standard gradients. 

‣We will see two types of customisation: 

‣ the use of tf.GradientTape for customised gradients; 

‣ the use of tf.function for defining TensorFlow graphs. 
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Computing (Customised) Gradients

‣ Until now, we have used the standard TensorFlow operations for 
training a network. 

‣ The optimization process has been based on the fit()	function. 
fit()	takes care of the calculation of the gradient values and the 
backpropagation. But what happens if we want to define 
“customised” gradients? 

‣ This is particularly important for example when we want to exploit 
deep learning architectures for reinforcement learning. 

‣ See for example calculation of the gradient in REINFORCE. 
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Gradient Tapes

‣ TensorFlow provides the tf.GradientTape API for automatic 
differentiation, i.e., computing the gradient of a computation with 
respect to its input variables. 

‣ TensorFlow records all operations executed inside the context of a 
tf.GradientTape	onto a tape. 

‣ TensorFlow then uses that tape and the gradients of the outputs with 
respect to the intermediate values computed during a recorded 
tf.GradientTape	context.
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Gradient Tapes

x	=	tf.ones((2,	2))	

with	tf.GradientTape()	as	t:	

			t.watch(x)	

			y	=	tf.reduce_sum(x)	

			z	=	tf.multiply(y,	y)	

#Derivative	of	z	with	respect	to	the	original	input	tensor	x	

dz_dx	=	t.gradient(z,	x)	

dz_dx_0_0	=	dz_dx[0][0].numpy()	#	2	(2*x_0_0	at	x_0_0	=	1)	

dz_dx_0_1	=	dz_dx[0][1].numpy()	#	2	(2*x_0_1	at	x_0_1	=	1)	

dz_dx_1_0	=	dz_dx[1][0].numpy()	#	2	(2*x_1_0	at	x_1_0	=	1)	

dz_dx_1_1	=	dz_dx[1][1].numpy()	#	2	(2*x_1_1	at	x_1_1	=	1)
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Gradient Tapes

‣ By default, the resources held by a GradientTape are released as 
soon as the GradientTape.gradient() method is called.  

‣ To compute multiple gradients over the same computation, it is 
necessary to create a persistent gradient tape. 

‣ This allows multiple calls to the gradient() method. 

‣ Resources are released when the tape object is garbage collected. 
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Gradient Tapes

x	=	tf.constant(3.0)	

with	tf.GradientTape(persistent=True)	as	t:	

			t.watch(x)	

			y	=	x*x	

			z	=	y*y	

dz_dx	=	t.gradient(z,	x)	#108.0	(4*x^3	at	x	=	3)	

dy_dx	=	t.gradient(y,	x)	#	6	(2*x	at	x	=	3)	

del	t	#	remove	the	reference	to	the	tape	and	invoke	garbage	collection	
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with…	as construct in Python

‣When the with statement is executed, Python evaluates the 
expression, called the __enter__	method on the resulting value, 
which is called a context guard and assign the object returned by 
__enter__ to the variable given by as. 

‣ Python will then execute the body of the code. 

‣ In any case, also in case of an exception the __exit__ method of 
the guard object.
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with…	as construct in Python

class	guarded_execution:	

				def	__enter__(self):	

								<initialisation>	

								return	p	

				def	__exit__(self,	type,	value,	traceback):	

								<free	resources	and	manage	exceptions>	

with	guarded_execution	as	p:	

				<some	instructions>
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with…	as construct in Python

with	open(“textfile.txt”)	as	f	

		data	=	f.read()	

		<work	with	data>	

‣ See: https://effbot.org/zone/python-with-statement.htm
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tf.function

‣ tf.function allows to transform a subset of Python syntax into 
portable and high-performance TensorFlow graphs, which are the 
component that are “under its hood”. 

‣ It is possible to write “graph code” using natural Python syntax.  

‣ This is topic is outside the scope of this module. You can find the 
definition of the language and more details in the TensorFlow 
documentation.
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Custom Training Loops with Keras 
Models

‣ The steps are as follows: 

‣ Compute the gradients with tf.GradientTape; 

‣ Process the gradients (if necessary); 

‣ Apply the processed gradients with apply_gradients().
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Custom Training Loops with Keras 
Models

#	Create	an	optimiser	

opt	=	tf.keras.optimizers.SGD(learning_rate	=	0.1)	

#	Compute	the	gradients	for	a	list	of	variables	

with	tf.GradientTape()	as	tape:	

			loss	=	<call_loss_function>	

vars	=	<list_of_variables>	

grads	=	tape.gradient(loss,	vars)	

#	Process	the	gradients	

processed_grads		=	[process_gradient(g)	for	g	in	grads]	

#	Ask	the	optimiser	to	apply	the	processed	gradients	

opt.apply_gradients(processed_grads)



Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Custom Training Loops with Keras 
Models

‣ Some important additional notes: 

‣ You do not call compile() when you do not use fit(). 

‣ Remember	compile() defines the loss function, the optimiser 
and the metrics.
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TensorFlow tf.data API

‣ The tf.data API enables to build complex input pipelines. 

‣ It is used for performance reasons. 

‣ In the example, we will use the tf.data.Dataset abstraction that 
represents a sequence of elements, in which element consists of one or 
more components. 

‣ Example: in a training dataset an element might be a single training 
example, with a pair of tensor components representing the image and 
its label. 

‣ There is a variety of methods of constructing dataset (please refer to the 
documentation).
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Lambda Layers

‣ The Lambda layer so that arbitrary TensorFlow functions can be used when 
constructing sequential models 

‣ They are typically used for fast experimentation. 

‣ They are defined as follows: 

tf.keras.layers.Lambda(	function,	output_shape=None,	mask=None,	
arguments=None,	**kwargs)	

‣ For example if I want to add a layer that takes the square of the input I will write: 

model.add(Lambda(lambda	x:x	**2))	

‣ A possible use it for variable casting.
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TF-Agents Library

‣ The TF-Agents Library is a Reinforcement Reinforcement Library based on 
TensorFlow. 

‣ It provides a series of off-the-shelf environments including: 

‣ a wrapper for OpenGym environments 

‣ DM Control Library 

‣ Unity’s ML-agents library 

‣ It also provides support for a variety of ML algorithms, including 
REINFORCE and a variety of components such as support for replay 
buffers, etc.
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Training Architecture

‣ A TF-Agent is composed of a several components implementing 
functionalities we saw during the module. 

‣ In the phase of training a driver explores the environment using a 
collect policy to choose actions.  

‣ It collects trajectories (experiences) and these are sent to an observer 
that saves them in a replay buffer. 

‣ An agent pulls batches of trajectories from the replay buffer and train 
a neural network (or more than one depending on the algorithm) with 
them.
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Training Architecture

‣ This is an architecture designed for parallelism: a driver might explore 
multiple environments in parallel. 

‣Why do we need an observer? You might wonder why the driver is 
not saving the trajectories directly. Indeed, this would be possible, but 
this would also make the architecture less flexible.  

‣ In fact an observer can be used for example to process the 
trajectories in parallel. An observer is any function that takes in input a 
trajectory as argument.
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OpenAI Gym Environment

‣ For example, the following is used to instantiate the Atari 2600 
environment of OpenAI Gym: 

from	tf_agents.environments	import	suite_gym	

env	=	suite_gym.load(“Breakout-v1”)
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OpenAI Gym Environment

‣ For example, the following is used to instantiate the Atari 2600 
environment of OpenAI Gym: 

from	tf_agents.environments	import	suite_gym	

env	=	suite_gym.load(“Breakout-v1”)
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OpenAI Gym Environment

‣ TF-Agents environments are very similar to OpenAI Gym 
environments, but there are a few differences.  

‣ The reset() method returns a TimeStep	object that wraps the 
observation (plus some extra information). 

‣ The step()	method returns a TimeStep	object as well.
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OpenAI Gym Environment

‣ The reward	and observation attributes are the same as in OpenAI 
Gym, except for the fact that the reward is represented using a 
NumPy array. 

‣ The step_type attribute is equal to 0 for the first time in the episode, 
1 for intermediate time steps and 2 for the final time step.
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OpenAI Gym Environment

‣ The observations are screenshots of the Atari screen represented as 
NumPy array of shape [210, 160,3]. 

‣ To render an environment you can call:  

env.render(mode=“human”)	

‣ If you want to get the image as a RGB array you have to call: 

env.render(mode=“rgb_array”)
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Replay Buffers

‣ The TF-Agents library provides various replay buffer implementations 
in the tf_agents.replay_buffers package.  

‣We will use the TFUniformReplayBuffer	class in the 
tf_agents.replay_buffers.tf_uniform_replay_buffer 
package. 

‣ It provides a high performance implementation of a replay buffer with 
uniform sampling.
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Implementing Atari Games

‣We will implement Breakout in Atari as example. It is worth noting that 
we will apply some pre-processing as follows: 

‣ Grayscale and downsampling: observations are converted to grey-
scale and downsampled (by default to 84x84 pixels). 

‣ Frame skipping: the agent only gets to see n frames of the game (by 
default . Its actions are repeated for each frame. This is used to 
speed up the training).

n = 4
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Implementing Atari Games

‣ Since the default Atari environment already applies random frame 
skip, we use the raw, non-skipping variant of the games, for example 
for Breakout is called BreakoutNoFrameskip-v4.  

‣ A single frame is also not sufficient to know the direction and the 
speed of the ball. It would be impossible to play the game with a 
default feed forward network. 

‣ As we said, the best way to handle this is to us an environment 
wrapper that will output observations composed of multiple frames (a 
stack). This is implemented by the FrameStack4	wrapper.
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Collect Driver

‣ A driver is an object that explores an environment using a given policy, 
collect experiences and broadcasts them to some observers. 

‣ At each step, the following things happen: 

‣ The driver passes the current time step to the collect policy, which 
uses this time step to choose an action and returns an action step 
containing te action. 

‣ The driver then passes the action to the environment, which returns the 
next step. 

‣ Finally, the driver creates a trajectory object to represent this transition 
and broadcasts it to all observers.
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Collect Driver

‣ There are two main driver classes: DynamicStepDriver	and 
DynamicEpisodeDriver. 

‣ The first one collects experiences for a given number of steps, while 
the second collects experiences for a given number of episodes. 

‣ In our example, we will collect experiences for given number of 
episodes. 

‣We want to collect experiences for four steps for each iteration (as in 
the original DeepMind’s DQN paper).
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Initialising the Replay Buffer

‣ It is usually a good idea to initially fill the replay buffer with 
observation. In order to do some use a RandomTFPolicy class and 
create a second driver that will run this policy for 20000 steps (which 
is equivalent to 80000 simulator frames as in the 2015 paper). 

‣ In the code we call it initial_collect_policy.
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Extensions

‣ Implementation with a Policy Networks (DQN) with Actor-Critic 

‣ Use of Advantage Actor-Critic (A2C) 

‣ Use of Asynchronous Advantage Actor-Critic (A3C) 

‣ Use of Soft-Actor Critic 

‣ Use of Trust-Region Optimization (available in TF-Agents) 

‣ Use of Proximal Policy Optimization (available in TF-Agents)
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