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Introduction to Reinforcement Learning

‣ Key idea: a natural way of thinking about learning is learning through 
interaction with the external world. 

‣ Learning from interaction is a foundational idea underlying nearly all 
theories of learning and intelligence.   

‣ Reinforcement learning is learning what to do - how to map situations 
to actions - so as to maximise a numerical reward. 

‣ Goal-directed learning from interaction. 

‣ The learner is not told which actions to take, but instead it must 
discover which actions yield the most reward by trying them.



Examples of Problems
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Examples of Problems



Finite Markov Decision Processes

‣ Markov Decision Processes (MDPs) are a mathematically idealised 
formulation of Reinforcement Learning for which precise theoretical 
statements can be made. 

‣ Tension between breadth of applicability and mathematical 
tractability. 

‣ MDPs provide a way for framing the problem of learning from 
experience, and, more specifically, from interacting with an 
environment.



Markov Decision Processes: Definitions

‣ Two entities:  

‣ Agent: learner and decision maker. 

‣ Environment: everything else outside the agent.  

‣ The agent interacts with the environment selecting actions. 

‣ The environment changes following actions of the agent.



Agent

Environment

Action At

St+1

Rt+1

State St Reward Rt



Markov Decision Processes: Definitions

‣ The agent and the environment interact at each of a sequence of 
discrete time steps  

‣ At each time step , the agent receives some representation of the 
environment state  where  is the set of the states. 

‣ On that basis, an agent selects an action  where  is 
the set of the actions that can be taken in state . 

‣ At time  as a consequence of its action the agent receives a 
reward , where  is the set of rewards (expressed as real 
numbers).

t = 0,1,2,3,...

t
St ∈ 𝒮 𝒮

At ∈ 𝒜(St) 𝒜(St)
St

t + 1
Rt+1 ∈ ℛ ℛ



Goals and Rewards

‣ The goal of the agent is formalised in terms of the reward it receives. 

‣ At each time step, the reward is a simple number . 

‣ Informally, the agent’s goal is to maximise the total amount it receives. 

‣ The agent should not maximise the immediate reward, but the 
cumulative reward.

Rt ∈ ℝ



The “Reward Hypothesis”

‣We can formalise the goal of an agent by stating the “reward 
hypothesis”: 

All of what we mean by goals and purposes can be well thought of as 
the maximisation of the expected value of the cumulative sum of a 
received scalar signal (reward).



Expected Returns

‣We will now try to conceptualise the idea of cumulative rewards 
more formally. 

‣ An agent receives a sequence of rewards  

‣ In order to define cumulative rewards, we introduce the concept of 
expected return , which is a function of the reward sequence.

Rt+1, Rt+2, Rt+3, . . .

Gt



Episodic Tasks and Continuing Tasks

‣ Typically, we identify two cases: episodic tasks and continuing tasks. 

‣ An episodic task is one in which we can identify a final step of the 
sequence of rewards , i.e., in which the interaction between the agent and 
the environment can be broken into sub-sequences that we call episodes 
(such a play of a game, repeated tasks, etc.). 

‣ Each episode ends in terminal state after  steps, followed by a reset to a 
standard starting state or to a sample of a distribution of starting states. 

‣ The next episode is completely independent from the previous one. 

‣ A continuing task is one in which it is not possible to identify a final state 
(e.g., on-going process control or robots with a long-lifespan).

T



Expected Return for Episodic Tasks and 
Continuing Tasks

‣ In the case of episodic tasks the expected return associated to the 
selection of an action  is the sum of rewards defined as follows: 

  

‣ In the case of continuing tasks the expected return associated to the 
selection of an action  is defined as follows: 

 

where  is the discount rate, with .

At

Gt ≐ Rt+1 + Rt+2 + Rt+3 + . . . + RT

At

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1

γ 0 ≤ γ ≤ 1



Why Discounting?

‣ The definition of expected return that we used for episodic tasks 
would be problematic for continuing tasks: the expected return of 
time of termination  would be equal to  in some cases, such as 
when the reward is equal to 1 at each time step. 

‣ The discount rate determines the present value of future rewards: a 
reward received  time steps in the future is worth  what it would 
be worth if it were received immediately.

T ∞

k γk−1



Relation between Returns at Successive 
Time Steps

‣ Returns at successive time steps are related to each others as 
follows: 

 

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )

= Rt+1 + γGt+1



Policies and Value Functions 

‣ Almost all reinforcement learning algorithms involve estimating value 
functions, i.e., functions of states (or of state-action pairs) that 
estimate how good it is for the agent to be in a given state (or how 
good it is to perform a given action in a given state). 

‣ A policy is used to to model how the behaviour of the agent based on 
the previous experience and the rewards (and consequently the 
expected returns) an agent received in the past.



Definition of Policy

‣ Formally, a policy is a mapping from states to probabilities of each 
possible action. 

‣ If the agent is following policy  at time , then  is the 
probability that  if .

π t π(a |s)
At = a St = s



Definition of State-Value Function

‣ The value function of a state  under a policy , denoted , is the 
expected return when starting in  and following  thereafter. 

‣ For MDPs, we can define the state-value function  for policy  formally as: 

  

for all  

where  denotes the expected value of a random variable given that the 
agent follows  and  is any time step. The value of the terminal state is 0. 

s π vπ(s)
s π

vπ π

vs ≐ Eπ[Gt |St = s] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

s ∈ 𝒮

Eπ[ . ]
π t



Definition of Action-Value Function

‣ Similarly, we define the action-value function, i.e., the value of taking 
action  in state  under a policy , denoted , as the 
expected return starting from , taking the action , and thereafter 
following policy : 

a s π qπ(s, a)
s a

π

qπ(s, a) ≐ Eπ[Gt |St = s, At = a] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]



Choosing the Rewards

‣When we model a real system as a Reinforcement Learning problem, 
the hardest problem is to select the right rewards. 

‣ Typically, we use negative values for actions that do not help us in 
reaching our goal and positive if they do (and sometimes we set the 
values to 0 if they do not help us in reaching the goal). 

‣ An alternative is to set the values of rewards to a negative number 
until we reach our goal (and we set the value to 0 when we reach our 
goal).



Choosing the Rewards

‣ It is very important to keep in mind that we should not “reward” the 
intermediate steps or the single actions. 

‣We are not “teaching” the agent how to execute an intermediate step, 
but how to reach the final goal. If we do so, the agent will learn how 
to reach the intermediate step, e.g., how to execute a sub-task. 

‣ The reward should tell the agent if the current step is a step forward 
towards the final goal or not.



Example of Rewards

Maze -> Rewards: -1 for no exit 0 for exit
Credit: Shutterstock



Examples of Rewards

Chess -> Rewards: 1 for victory, -1 for defeat



Choosing the Rewards

‣ Sometimes it’s not possible to know the reward until the end of an 
episode. The typical example is a board game (chess, go, etc.). 

‣ This is usually called credit assignment problem, i.e., the problem of 
assigning a reward to each step. 

‣ In that case the reward might be assigned at the end of a Montecarlo 
rollout for example (stochastic estimate of the reward). 

‣ For example if the game is successful we can use +1 as reward for all 
the steps that leads to the victory (or -1 otherwise).



Marvin Minsky. Steps Toward Artificial Intelligence. Proceedings of the IRE. 
Volume 49. Issue 1. January 1961.



Example of Rewards

‣ In Go or Chess, the reward will be 1 for winning or -1 losing for the 
terminal state (i.e., the state at time ), but we will know the result of 
the game only at the end. 

‣ Therefore, the reward can be assigned only at the end of an episode. 

‣ In Go or Chess, we can for example assign 1 or -1 to each step in 
case of victory or loss at the end of the episode after a Montecarlo 
playout/rollout.
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How to Estimate the State-Value (Action-
Value) Functions 

‣ If the behaviour of the MDP is known (i.e., the transitions probabilities 
between all the states are known), the state function or the action-
state function can be estimated by considering all the possible 
moves. 

‣ This is not possible when: 

‣ The transitions probabilities are not know. 

‣ The system is very complex (for example a board game has a very 
large number of potential game configurations). 



How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods 

‣ Alternatively, the state-value function  and the action-value function 
 can be estimated through experience. 

‣ One possibility is to keep average values of the actual returns that 
have followed a certain state (or a certain action) while following a 
policy . These values will converge to the actual state-value function 

 and the action-value function  asymptotically. 

‣ These methods based on averaging sample returns are referred to as 
Monte Carlo methods.

vπ
qπ

π
vπ qπ



How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods 

‣ Monte Carlo methods are not appropriate in case the number of 
states is very large. 

‣ In this case, it is not practical to keep separate averages for each 
state individually. 

‣ Instead,  and  are maintained as parametrised functions with the 
number of parameters << number of states. 

‣ Various function approximators of different complexity are possible. 

‣ Artificial neural networks are a possible option as function 
approximators -> Deep Reinforcement Learning

vπ qπ



Bellman Equation 

‣ For any policy  and any state , the following consistency condition holds 
between the value of  and the value of its possible successor states: 

 

with actions , the next states  and the rewards . 

‣ This equation is called the Bellman equation for . It expresses a relationship 
between the value of a state and the values of its successor states.

π s
s

vπ(s) ≐ Eπ[Gt |St = s]

= ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γEπ[Gt+1 |St+1 = s′ ]]

= ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvπ(s′ )]

a ∈ 𝒜(s) s′ ∈ 𝒮 r ∈ ℛ

vπ



Optimal Policies and Optimal Value 
Functions

‣ Solving a reinforcement learning is roughly equivalent to finding a policy 
that maximise the amount of reward over the long run. 

‣ In finite MDPs there is always at least one policy that is better or equal to 
all the other policies: this is called the optimal policy. 

‣ Although there may be more than one, we denote all the optimal policies 
with . They are characterised by the same value function  defined as 

 

for all .

π* v*

v*(s) ≐ max
π

vπ(s)

s ∈ 𝒮



Optimal Policies and Optimal Value 
Functions

‣ Optimal policies also shares the same optimal action-value function 
, which is defined as  

 

for all  and . 

‣We can write  in terms of  as follows: 

.

q*

q* ≐ max
π

qπ(s, a)

s ∈ 𝒮 a ∈ 𝒜(s)

q* v*

q*(s, a) = E[Rt+1 + γv*(St+1) |St = s, At = a]



Bellman Optimality Equation

‣We can re-write the Bellman equation under the optimal policy, which is called 
the Bellman optimality equation. 

‣ Intuitively, the Bellman optimality equation must equal the expected return for 
the best action from that state. 

‣ Once we have  (or ), the actions that select the highest value for  (or ) 
at each step (state) are the optimal actions. 

‣ Another way of saying that is that any policy that is greedy with respect to  
(or ) is an optimal policy. 

‣ This is very efficient: if we have  (or ) we just need to check the next step 
(local choice/short-term consequence) for taking into account long-term ones. 

v* q* v* q*

v*
q*

v* q*



Optimality and Approximation

‣ Explicitly solving the Bellman optimality equation is not possible in most 
practical cases. 

‣ You need to completely know the environment and you need to solve 
the equation for each state. 

‣ Also simple games like backgammon have very large number of states 
(backgammon has  states for example). 

‣ There is a problem of memory. Considering a tabular form, you need a 
row for each state! 

‣ In general, in MDPs we have incomplete knowledge of the environment.
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Difference between Reinforcement 
Learning and Supervised Learning

‣ Supervised learning is learning from a set of labeled examples. 

‣ In interactive problems, it is hard to obtain labels in the first place. 

‣ In “unknown” situations, agent have to learn from their experience. In 
these situations, reinforcement learning is most beneficial.



Difference between Reinforcement 
Learning and Unsupervised Learning

‣ Unsupervised learning is learning from datasets containing unlabelled 
data. 

‣ You might think that reinforcement learning is a type of unsupervised 
learning, because it does not rely on examples (labels) of correct 
behaviour and instead explores and learns it. However, in 
reinforcement learning the goal is to maximise a reward signal instead 
of trying to find a hidden structure. 

‣ For this reason, reinforcement learning is usually considered a third 
paradigm in addition to supervised and unsupervised learning.
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