
Autonomous and Adaptive Systems

Introduction to Gym

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Introduction to Gym

‣ Gym is a tool for developing and comparing reinforcement learning
algorithms.

‣ It is compatible with different numerical computational frameworks,
such as TensorFlow, PyTorch or Theano.

‣ The gym library contains a collection of test problems (called
environments) that can be used for working on reinforcement learning
problems.

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Goal of Gym

‣ Gym provides benchmarks for comparing different algorithms and
helps in comparing algorithms that are proposed by different
researchers.

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Installation

‣ In order to install gym in the command line you need to use

>	pip	install	gym	

‣ If you want to install a particular collection of the environments you need to write

>	pip	install[name_of_the_environment_collection]	

such as

>	pip	install[atari]	

‣ To install all the environments you need to write:

>	pip	install[all]

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Environments

‣ You can use simply load an environment as follows:

>>	import	gym	

>>	env	=	gym.make(‘CartPole-v1’)

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Cart Pole Problem

‣ Classic problem in reinforcement learning.

‣ A pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track.

‣ The system is controlled by applying a force of +1 or -1 to the cart.

‣ The pendulum starts upright and the goal is to prevent it from falling over.

‣ A reward of +1 is provided for every timestep that the pole remains
upright.

‣ The episode ends when the pole is more than 15 degrees from vertical or
the cart moves more than 2.4 units from the centre.

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Environments

import	gym	

env	=	gym.make(“CartPole-v1”)	

env.reset()	

for	_	in	range(1000)	

			env.render()	

			env.step(env.action_space.sample())	#	random	action	

env.close()

Autonomous and Adaptive Systems 2019-2020 Mirco Musolesi

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Agent Environment

Action

State

Reward

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Agent Environment

Action

Observation

Reward

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

The step() Function

‣ The most important function in Gym is step().

‣ step() receives in input the action to be taken and return a quadruple
(observation, reward, done, info):

‣ observation is an object representing the representation of the
state of the environments. Examples are pixels from a camera, joint
angles and joint velocities of a robot, current state of a board of a
game, etc.

‣ reward (which is implemented using a float) is the amount of
reward achieved by the previous action. Remember that the goal of
reinforcement learning is to maximise the total reward, i.e., this value.

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

The step() Function

‣ done is a boolean that is used to understand when it’s time to
reset the environment. The majority of tasks are divided into
episodes. done	equals to True indicates that the episode has
terminated.

‣ info is a dictionary (dict) and contains diagnostic information.

‣ The process get started by calling reset().

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Typical Structure of a Gym program

import	gym	

env	=	gym.make(“CartPole-v1”)	

for	i_episode	in	range(20):	

			observation	=	env.reset()	

			for	t	in	range(100):	

						env.render()	

						print(observation)	

						action	=	env.action_space.sample()	

						observation,	reward,	done,	info	=	env.step(action)	

						if	(done):	

										print(“Episode	finished	after	{}	time	steps”.format(t+1))	

										break	

env.close()

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Spaces

‣ Every environment comes with an action_space and an
observation_space.

>>>	import	gym	

>>>	env	=	gym.make(“CartPole-v1”)	

>>>	print(env.action_space)	

Discrete(2)	

>>>	print(env.observation_space)	

Box(4,)

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Spaces

‣ The Discrete space allows a fixed range of non-negative numbers,
so in this case valid actions are either 0 or 1.

‣ The Box	space represents an n-dimensional box, so valid
observations will be an array of 4 numbers.

‣We can also check the value of the bounds using the techniques
described in the following slide.

‣ You can find more information about other action spaces in the
documentation.

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Spaces

>>>	print(env.observation_space.high)	

[4.8000002e+00	3.4028235e+38	4.1887903e-01	
3.4028235e+38]	

>>>	print(env.observation_space.low)		

[-4.8000002e+00	-3.4028235e+38	-4.1887903e-01	
-3.4028235e+38]	

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

Environments

‣ Open Gym provides a variety different algorithms

‣ Basic algorithms

‣ 2D environments (e.g., Lunar Lander).

‣ Atari games

‣ Control systems (also based on the Mujoco physics simulator)

‣ Text

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi

References

‣ OpenAI Gym website http://www.gym.openai.com

‣ Chapter 18 of Aurelien Geron. Hands-On Machine Learning with
Scikit-Learn, Keras & TensorFlow. Second Edition.2019. O’Reilly.

http://www.gym.openai.com

