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Policy Gradient Methods

» In the previous lectures we discussed methods that were based on the
calculation of action values. We refer to them as as action-value methods.

» We learned the values of the actions and then select actions based on the
estimated action values. The learning can happen with the optimisation of

the policy at the same time (e.g., control problem), but we need the values
of the actions In the first place.

» We now consider a different type of methods that learn instead a

parametrised policy that can select actions without consulting a value
function.

» A value function can be used to learn the policy parameter, but it is not
required for action selection.
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Policy Gradient Methods

» We use the notation 8 &€ R¥ for the policy’s parameter vector.

» We indicate the probability that action a is taken at time 7 given that
the environment is in state s a time ¢ with parameters @ as follows:

w(als,0)=Pr{A, =alS,=s,0,= 0}

» If a method uses a learned value function as well, the value function’s
weight vector is denoted with w € R?.
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Policy Gradient Methods

» We consider methods for learning the policy parameter based on the gradient
of some scalar performance measure J(€@) with respect to the policy parameter.

» The goal of these methods is to maximise performance, so their updates
approximate gradient ascent in J as follows:

0,.,=0+aVJe)

where Vf(@t) e R%is a stochastic estimate whose expectation approximates
the gradient of the performance measure with respect to the argument 0,.

» We refer to all the methods that follow this schema as policy gradient methods.
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Policy Approximation

» In policy gradient methods, the policy can be parameterised in several
possible way.

» The only constraint is that z(a | s, 0) is differentiable, i.e., as long as

Vz(a|s, 0) with respect to @ exists and it is finite for all s € &,
a e (s)with @ € R?.

» We need to ensure exploration and, therefore, one goal is to make
sure that the policy will never become deterministic, i.e. that

w(als,0) = (0,1)foralls, a, 6.
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Policy Parametrisation and Parametrised
Action Preferences

» A standard way for parametrisation of policies is to derive first parametrised numerical
preferences h(a | s, @) € R for each state-action pair.

» The actions with the highest preferences in each state are given the highest probabillities of being
selected.

» A typical mapping between the preferences h(a | s, @) and the probabilities zz(a | s, @) is obtained
through the use of an exponential softmax distribution:

eh(als,@)

h(b|s,0
zbe (bls,0)

w(als,0) =

» We call this type of policy parametrisation softmax in action preferences.

» Note that we are not deriving the value functions and then apply a policy (let’s say €-greedy). We
are deriving directly the probability distributions of the actions given the states, i.e., the policy
itself.
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Policy Parametrisation and Parametrised
Action Preferences

» The action preferences themselves h(a | s, @) can be parametrised
arbitrarily.

» For example, they might be computed by a deep artificial neural
network (ANN), where @ is the vector of all the connection weights.

» This is used for example in the AlphaGo system.
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ARTICLE

doi:10.1038/naturel6961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez!, Laurent Sifre', George van den Driessche’,

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel' & Demis Hassabis!

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8°% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

All games of perfect information have an optimal value function, v'(s),  policies’*~!* or value functions'® based on a linear combination of

which determines the outcome of the game, from every board position  input features.
- : B z
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Advantages of Using Policy Approximation
according to Softmax in Action Preferences

» One advantage of parameterising policies according to the softmax in action preferences is
that the approximate policy can approach a deterministic policy.

» In fact, with €-greedy selection over action values, there is always a probability € of selecting a
random action.

» One possibility is to use softmax distribution on the action values, but this will not allow to
reach a deterministic policy.

» Action values will always differ and, therefore, there will be always a non-null probability of
selecting a different action.

p Action preferences are different since they do not approach specific values: instead they
are driven to produce the optimal stochastic policy.

» If the optimal policy is deterministic, the preferences of the optimal actions will be driven
infinitely higher than all suboptimal actions (the output of the softmax will be then very close
to 1, i.e., close to determinism).
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Advantages of Using Policy Approximation
according to Softmax in Action Preferences

» The second advantage of parameterising policies according to the
softmax in action preferences is that it enables the selection of
actions with arbitrary probabillities.

» In some situations the best approximate policy might be stochastic,
especially in games of imperfect information.

» Action-value methods do not have a natural way of finding stochastic
optimal policies; instead, policy approximation methods can.

p It is also worth noting that in some cases, policy approximation might
be easier than value approximation.
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Advantages of Using Policy Approximation
according to Softmax in Action Preferences

» Finally, there is an important “theoretical” advantage. With continuous
policy parameterisation, the action probabilities change smoothly as a
function of the learned parameter.

» Indeed, in €-greedy selection the action probabilities might change
dramatically for a small change in the estimated action values, if that
change results in a different action having the maximal value.
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Policy Gradient Theorem

» We consider episodic learning and we define the performance
measure as the value at the start of the episode.

» We can simplify the notation by assuming that each episode starts in
a non-random state .

» Formally:
J(©) = v, (s)

where Vr, s the true value function for 7y, the policy determined by 0.
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Inputs
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Policy Networks

Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Outputs
Probabilities of selecting
an action

n(als,0)

, A function of the
outputs rt(als, 0) is
used to update J(0)

ha|$5:6) e J(O) = v, (50)

The performance
gradient VJ(0) is
used to update the

weights 0 of the neural
network

Optimizer

0,,,=06,+aVJ®)
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Inputs
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Policy Networks

Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Outputs
Probabilities of selecting
an action

n(als,0)

x5 A function of the
outputs rt(als, 0) is
used to update J(0)

h(als,0) J(0)

J(0) should be
engineered as a loss
function to be
minimised in order to
use the “machinery" of
neural networks like
back-propagation

Optimizer

0,.,=6+aVJo)
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Inputs
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Policy Networks

Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Outputs
Probabilities of selecting
an action

n(als,0)

x5 A function of the
outputs rt(als, 0) is
used to update J(0)

h(als,0) J(0)

Actually for updating the
weights, we don’t really

need J(0), but VJ(O) (or

something proportional to
it since we have the

parameter )

Optimizer

0,.,=6+aVJo)
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Policy Gradient Theorem

» Key question: how can we estimate the performance gradient with respect to the policy parameter
when the gradient depends on the unknown effect of policy changes on the state distribution?

» Fortunately, the policy gradient theorem provides an analytic expression for the gradient of

performance with respect to the policy parameter that does not involve the derivative of the state
distributions.

» In particular, the policy gradient theorem says that:

VI©O) < Y u(s) Y q,(s.a)Valals,0)

where the gradients are column vectors of partial derivatives with respect to the components of &

and 7 denotes the policy corresponding to parameter vector 6. u(s) is the on-policy distribution
under 7 (i.e., the fraction of time spent in each state normalised to sum to 1).

» If you are interested, you can find the proof in Chapter 13 of Sutton and Barto’s book.
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REINFORCE

» REINFORCE is a Monte Carlo Policy Gradient control algorithm, i.e., the update leads to
the optimal policy.

p It is based on stochastic gradient ascent as discussed above.

» We need a way to obtain samples such that the expectation of the sample gradient is
proportional to the actual gradient of the performance measure as a function of the
parameter.

» The sample gradients need only be proportional to the gradient because any constant
of proportionality can lbe absorbed into the step size a, which is otherwise arbitrary.

» The policy gradient theorem gives an exact expression proportional to the gradient.

» We need to find a way of sampling whose expectation equals or approximates this
expression.
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REINFORCE

» Notice that the right-hand side of the policy gradient theorem is a
sum over states weighted by how often the states occur under the

target policy x. If & is followed, the states will be encountered in these
proportions.

» More formally:

VIO) « ) u(s) Y qu(s.a) Valals,o)

=E,[ ) 45,0 V(al|S$,0)]
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REINFORCE

» In theory we can stop here and instantiate the stochastic gradient algorithm:
0., =0+aVJe)
as follows:

Opp1 = 0,+ @ Y 4(S.a,w)Vr(alS$,0)

where ¢ is a learned approximation to ¢
» This is called an all-action method because it involves the updates of all the actions.

» However, we are interested in an algorithm whose update at time 7 involves only A,, the
action taken at time 7. This is called REINFORCE algorithm proposed by Williams in 1992.
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Machine Learning, 8, 229-256 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning

RONALD J. WILLIAMS rjiw@corwin.ccs.northeastern.edu
College of Computer Science, 161 CN, Northeastern University, 360 Huntington Ave., Boston, MA 02115

Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist
networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight
adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement
tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing
gradient estimates or even storing information from which such estimates could be computed. Specific examples
of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while
others are novel but potentially interesting in their own right. Also given are results that show how such algorithms
can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional
issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well
as further considerations that might be used to help develop similar but potentially more powerful reinforcement
learning algorithms.
- ——
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REINFORCE

» We have the following derivation

VI©O) < EL ) q,(S.a)Vr(alS,0)]

Va(als,,0)
=E, ; r(alS,, 0)q,S,a) 7@l|S.0)
E(E [0S, A) Vr(A, S, 0)
mt = at A\ e 5 (A, ]S, 0) since [ E, [x]] = E_[x]
—E [g.(S.A) Vr(A S, 0)
e 7T(Az|St’9)

G YA AIS0)
§ t ﬂ(At | Sta 9)
= E[G,Vinr(A,|S, 0)]

where G; is the return.

Vx
y Note that the last equality is true because E,[G; | S,, A;] = q,(S,, A;) and Vinx = —
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REINFORCE

» The final expression in brackets can be used for the update. It is a
quantity that can be sampled at each step.

» Think about It in a different way: you are moving around your
objective and on average your correction will lead you close to your
real objective (the maximum in this case).

p Since you repeat stochastically this correction you end up with a
correction that is close to the expectation of the gradient. For this
reason we can use this sample to instantiate the generic stochastic
gradient ascent.
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REINFORCE

p As in the stochastic gradient descent, in the stochastic gradient
ascent, you repeat the “correction” many times in order to reach the
maximum.

0., =0+aVJ®,)
» From the derivation above we have the following REINFORCE update:

0,., = 0,+aG,Vinn(A,|S,0)

» Remember again that V J(0) is proportional to the update value, not
equal, but we have the parameter a so it does not really matter.
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Inputs
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Policy Networks

Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Outputs
Probabilities of selecting
an action

n(als,0)

x5 A function of the
outputs rt(als, 0) is
used to update J(0)

h(als,0) J(0)

REINFORCE allows us
to estimate the
correction that is

proportional to V J(0)

Optimizer

0., =6, +aVJO)
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Inputs
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Policy Networks

Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

h(als,0)

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Optimizer

Outputs
Probabilities of selecting
an action

n(als,0)

x5 A function of the
outputs rt(als, 0) is
used to update J(0)

J(0)

The correction that is

proportional to VJ(0)
is used to update the
weights of the network
through the network
optimizer

0,., = 0,+aG,Vinn(A,|S, 0,
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REINFORCE

Input: a differentiable policy parametrisation z(a | s, 6)
Algorithm parameter: step size a > 0

Initialise policy parameter 8 € R¥

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, - - - » S7_1, Ap_1, Ry following z

Loop for each step of the episode t = 0,1,...,7 — 1:

0 — 0+ aG,Vinn(A,|S, )
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Deep Neural Networks

Outputs True
“Predictions”  Targets

Inputs Layer1 Layer2 Layer3 Layer4

Loss
Score
Weights Weights Weights Weights I
Layfr 1 Layfr 2 Laxer 3 Layfr 4 Loss Function

Optimizer
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Gradient-based Optimisation

1(0) Initial

f Gradient
/]
J
1

;l’
/

/4

]

I Y .
LA Global cost minimum

k[/ Jmin(‘g)

Credit: Sebastian Raschka
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Stochastic Gradient Descent

» Recall the stochastic gradient descent:

» Draw a batch of training example X and corresponding targets

ytarget'
» Run the network on X (forward pass) to obtain predictions Y pred

» Computer the loss of the network on the batch, a measure of the
mismatch between y .., and Y, ¢

» Compute the gradient of the loss with regard to the network’s
parameters (backward pass).
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Stochastic Gradient Descent

» Move the parameters in the opposite direction from the gradient with:

oJ
Op = 0= A6 =0-n—
J

where J is the loss (cost) function.

» If you have a batch of samples of dimension k:

aJ,,
0 — 0 — A0 =0 —n average(—)

)

for all the kK samples of the batch.
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Stochastic Gradient Ascent

» Similarly in our case, we move the parameters in the same direction as the gradient
with:

oJ
Op = O+ A =0+ n—r

J

where J is the loss (cost) function.

» If you have a batch of samples of dimension k you can think about moving towards
your actual objective using this formula:

aJ,
0, < 0, + AD; = 0, + 1 average -

J
for all the k samples of the batch.
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Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

» We said that an artificial neural network can be used to implement REINFORCE.
But how can we do this in practice in a package like TensorFlow or Keras”?

» The key problem is to select a loss function that can be mapped to REINFORCE.

» We can talk about compatibility between Artificial Neural Networks and
REINFORCE in a sense (see also theory in Williams 1992).

» From a practical point of view, we want to find a way of exploiting back-
propagation for updating the weights using the “machinery” that is offered for
example by the existing frameworks.

» We want to adapt a “machinery” that is built for stochastic gradient descent to a
stochastic gradient ascent. As you can imagine the trick would be to do a
correction in the opposite direction.
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Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

» Let us consider again our formula: 6,,; = 0, + aVJA(Ht)

» Our loss function is J(@). Our goal is to correct each weight by VJ(8) using the
correction VJ(6) for each weight.

» The value can be considered against the value 0, i.e., the difference G Inzx — 0.

» However, since this is stochastic gradient ascent we will take the opposite of this
quantity. J'(@), the loss function we are going to use in Tensorflow, is the opposite

of J(0).
» More formally:

J(©) = — (Ginz — 0) = — Glnx
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Implementing REINFORCE with Artificial
Neural Networks/Deep Learning

» And of course the gradient of this quantity is
VJ'(6) = -G Vinn

» Essentially, for example in Keras (TensorFlow) it would be sufficient to
set the loss function to a custom loss function equal to —G,ln.

» Then Keras will take care of the stochastic gradient ascent, i.e.,
optimisation problem.
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Issues with REINFORCE

» As a stochastic gradient method, REINFORCE has good theoretical convergence
properties.

» By construction, the expected update over an episode in the same direction as
the performance gradient.

» This assures an improvement in expected performance for sufficient small @ and
convergence to a local optimum under standard stochastic approximation

conditions for decreasing a.

» However, since it is a Monte Carlo method, REINFORCE suffers from high
variance and this might lead to slow learning.

» One way of dealing with this problem is to use baselines and actor-critic
methods.
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REINFORCE with Baseline

» The policy gradient theorem can be generalised to include a comparison
of the action value to an arbitrary baseline b(s):

VI©O) & ) () ), (s, a) — b(s)) Vrlals, 6)

» The baseline can be any function, even a random variable, as long as it
does not vary with a.

» The equation remains valid because the subtracted quantity is zero:

Y b(s)Valals.0) =b(s)V Y nals.0) = b(s)V1 =0
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REINFORCE with Baseline

» The policy gradient theorem with baseline can be used to derive an update rule using similar
steps.

» The update for REINFORCE with baseline is as follows:

Vr(AlS,, 6,)
T (At | S, Ht)
=0, + (G, — b(S)) Vinn(A,| S, 6,)

0.1 =06+ a(G,—b(S))

» The use of the baseline leaves the expected value unchanged, but it can have a large effect on
its variance.

» The value of b(s) can be a random number but it is not ideal.

» In some states all actions have high values and we need a high baseline to differentiate the
higher valued actions from the less highly values ones. In other states all actions will have
low values and a low baseline is appropriate.
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REINFORCE with Baseline

» A natural choice is to learn the state value at the same time;
b(St) — ‘/}(Sp W)

where w € R™ is a weight vector learned using, for example, another
deep neural network.

» Because REINFORCE is a Monte Carlo method it makes to use a
Monte Carlo method also for learning the state-value weights w.

» This method will be based on two step-size denoted a? and aV.
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REINFORCE with Baseline

Input: a differentiable policy parametrisation z(a | s, @) and a differentiable state-value function parametrisation (s, w).
Algorithms parameters: steps size @’ > 0 and a% > 0

Initialise policy parameter 8 € R¥ and state-value weights w € R4

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, - - - » S7_1, Ap_1, Ry following &

Loop for each step of the episode t = 0,1,....7 — 1:

o0« G, —V(S,,w)
wW— W+ aVosVi(s, w)

0 — 0+ a’(G, —9(S,w)Vinn(A,|S,0)
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REINFORCE with Baseline

Input: a differentiable policy parametrisation z(a | s, @)m a differentiable state-value function parametrisation P(s, wW).
Algorithms parameters: steps size @’ > 0 and a% > 0

Initialise policy parameter 8 € R¥ and state-value weights w € R4

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, - - - » S7_1, Ap_1, Ry following &

Loop for each step of the episode t = 0,1,....7 — 1:

o0 — G, —V(S,,w) In the vanilla REINFORCE, i.e., REINFORCE without baseline, 6 = G.
wW— W+ aVosVi(s, w)

0 — 0+ a’(G, —9(S,w)Vinn(A,|S,0)
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Actor-Critic Methods

» Methods that learn approximations to both policy and value functions are often
called actor-critic methods, where actor is a reference to the learned policy and critic
refers to the learned value function.

» We do not consider REINFORCE with baseline an actor-critic method, even if it
learns both a policy and state-value functions.

» The reason is that its state-value function is used only as a baseline and not as a
critic and not for updating the value estimate for a state from the estimated values of
subsequent states (i.e., bootstrapping).

» This is an important distinction, since only through bootstrapping we introduce bias
and an asymptotic dependence on the quality of the function approximation.

» Recall that the bias introduced through bootstrapping is often beneficial since it
reduces variance and accelerates learning.
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Actor-Critic Methods

» REINFORCE with baseline is unbiased and converges asymptotically to a
ocal minimum, but as all the the other Monte Carlo methods tends to
earn slowly (high variance in the estimates).

» We have seen that with temporal distance methods we can remove these
problems.

» For this reason, we use actor-critic methods with a bootstrapping critic,
l.e., we update the value estimate for a state from the estimated values of
subsequent state.

» \We consider one-step actor-critic methods.

» These are analogs to TD(0), Sarsa and Q-learning.
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Actor-Critic Methods

\\
= Policy
AN

Actor

“ / D
Critic error

!

state p—# Value — action

Function
)

'/ |

reward

{ Environment j«
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Autonomous an

One-step Actor-Critic Method

» The one-step actor-critic method replaces the full return of
REINFORCE with the one-step return (and use a learned state-value
function as baseline) as follows:

Vr(AlS, 0)

0., < 0+alG,—vS,w
i+ < O oG = VS, W) (A,|S,, 0)

V(A S, 0)
ﬂ(At | Sta 0)

0,1 < 0 +aR_ | +V(S,, W) —V(S,wW))

V(A S, 0)
0.1 < 0,+ as,
ﬂ(At | Sl‘a 9)
0.1 < 0,+ad,Vinn(A,|S, 0)
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One-step Actor Methods

» The value of the state Is usually estimated with another network for
example with a semi-gradient TD(0) method (other methods are
possible).

» Please note that the weights w of this other network are learned at
the same time, but independently.

» The network that learns the policy (that with weights ) in our
example is the actor network (i.e, it used to act).

» The network that learns the values (that with weights w) is called critic
network (i.e., it is used to “judge” the actions of the actor, which is
implemented through the actor network).

Autonomous and Adaptive Systems 2022-2023 Mirco Musolesi



Policy Network with One-step Actor Critic

Inputs
S

This is an actor
network
(the output is
the policy)
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Neural network function of weights &
Layer 1 Layer 2 Layer 3 Softmax

h(als,0)

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Optimizer

Outputs
Probabilities of selecting
an action

n(als,0)

N A function of the
outputs rt(als, 0) is
used to update J(0)

— J(O)

The performance gradient
V J(0) is used to update

the weights 6 of the neural

network together with the
estimation of the value

function V(s | w) from
another value (neural)

network with weights w
that are updated at the
same time

0., < 0,+ as,Vinn(A,|S, 0)
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One-step Actor-Critic Method

Input: a differentiable policy parametrisation z(a | s, @), a differentiable state-value function parametrisation P(s, w)
Parameters: step sizes @’ > 0 and @" > 0

Initialise policy parameter 6 € R? and state-value weights w € R4

Loop forever (for each episode):
Initialise S (first state of episode)
Loop while S is not terminal
Select A using policy
Take action A, observe S’, R
0 R+V(S,w)—v(S,w) (if S"is terminal, then V(S’, w) = 0)
w w4+ avoVi(S,w)

0 —0+a’Vinn(A|S,0)

S«
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Advantage Actor Critic (A2C)

» We can stabilise learning further by using the advantage function as
critic instead of the action value function.

» In practice instead of using

O0=R,_ + V(S 1, W) —V(S, W)

we will use

5= 0(S,A,w) — (S, w)

» The latter expression is usually called the advantage function.
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Advantage Actor Critic (A2C)

» Te idea is that the advantage function calculates how better the selection the

specific action A, at state S, is compared to the average value of the state S,. In

a sense, we are subtracting the mean value of the state from the value of the
state-action pair.

» In practice, we do not need to quantify how good an action is in absolute
sense, but only how much it is better than others on average.

p It is a relative advantage that we are interested in.

» Different types of advantage functions and approximate advantage functions
have been proposed and evaluated in the past years.

» The only (important) condition is that they have to lead to the same expected
value for the policy gradient, despite having different variances.
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Asynchronous Advantage Actor-Ciritic
(A3C)

» Asynchronous variants have been proposed in order to stabilise the process.

» It has been shown that that parallel actor-learners have a stabilising effect on
training.

» This has also benefit in terms of performance, since it allows parallel execution.
» This method is usually called Asynchronous Advantage Actor-Ciritic.

» We are not going to discuss the details of this implementation. If you are
Interested please check the relevant paper.

» High-scalable implementation of the A3C algorithm has been proposed such
as the IMPALA architecture.
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Asynchronous Advantage Actor-Ciritic

(A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih!

Adria Puigdoménech Badia'
Mehdi Mirza'?

Alex Graves'

Tim Harley'

Timothy P. Lillicrap’

David Silver!

Koray Kavukcuoglu !

1 Google DeepMind

VMNIH@GOOGLE.COM

ADRIAP @GOOGLE.COM
MIRZAMOM @IRO.UMONTREAL.CA
GRAVESA @GOOGLE.COM
THARLEY @ GOOGLE.COM
COUNTZERO @ GOOGLE.COM
DAVIDSILVER @ GOOGLE.COM
KORAYK @GOOGLE.COM

2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

Abstract

We propose a conceptually simple and
lightweight framework for deep reinforce-
ment learning that uses asynchronous gradient
descent for optimization of deep neural network
controllers. We present asynchronous variants of
four standard reinforcement learning algorithms
and show that parallel actor-learners have a

line RL updates are strongly correlated. By storing the
agent’s data in an experience replay memory, the data can
be batched (Riedmiller, 2005; Schulman et al., 2015a) or
randomly sampled (Mnih et al., 2013; 2015; Van Hasselt
et al., 2015) from different time-steps. Aggregating over
memory in this way reduces non-stationarity and decorre-
lates updates, but at the same time limits the methods to
off-policy reinforcement learning algorithms.
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IMPALA

IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures

Lasse Espeholt *! Hubert Soyer !

Remi Munos *

Karen Simonyan! Volodymyr Mnih! Tom Ward '

Yotam Doron' Vlad Firoiu! Tim Harley'! Iain Dunning' Shane Legg' Koray Kavukcuoglu'

Abstract

In this work we aim to solve a large collection of
tasks using a single reinforcement learning agent
with a single set of parameters. A key challenge
is to handle the increased amount of data and ex-
tended training time. We have developed a new
distributed agent IMPALA (Importance Weighted
Actor-Learner Architecture) that not only uses
resources more efficiently in single-machine train-
ing but also scales to thousands of machines with-
out sacrificing data efficiency or resource utilisa-
tion. We achieve stable learning at high through-
put by combining decoupled acting and learning

Autonomous and Adaptive Systems 2022-2023

separately. We are interested in developing new methods
capable of mastering a diverse set of tasks simultaneously as
well as environments suitable for evaluating such methods.

One of the main challenges in training a single agent on
many tasks at once is scalability. Since the current state-of-
the-art methods like A3C (Mnih et al., 2016) or UNREAL
(Jaderberg et al., 2017b) can require as much as a billion
frames and multiple days to master a single domain, training
them on tens of domains at once is too slow to be practical.

We propose the Importance Weighted Actor-Learner
Architecture (IMPALA) shown in Figure 1. IMPALA is
capable of scaling to thousands of machines without sacri-
ficing training stabilitv or data efficiencv. Unlike the nonular

Published at ICML 2018
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Approximating Advantage Functions

» Methods have been developed for approximating the advantage
functions.

» An important method is the Generalized Advantage Estimation (GAE),
which is based on the idea of using an exponentially-weighted
estimator of the advantage function.

» The GAE method is at the basis of two practical algorithms for policy
approximation:

» Trust Region Policy Optimization (TRPO)
» Proximal Policy Optimization (PPO)
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Generalised Advantage Estimation (GAE)

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING
GENERALIZED ADVANTAGE ESTIMATION

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science

University of California, Berkeley

{joschu, pcmoritz, levine, jordan, pabbeel}@Reecs.berkeley.edu

ABSTRACT

Policy gradient methods are an appealing approach in reinforcement learning be-
cause they directly optimize the cumulative reward and can straightforwardly be
used with nonlinear function approximators such as neural networks. The two
main challenges are the large number of samples typically required, and the diffi-
culty of obtaining stable and steady improvement despite the nonstationarity of the
incoming data. We address the first challenge by using value functions to substan-
tially reduce the variance of policy gradient estimates at the cost of some bias, with
an exponentially-weighted estimator of the advantage function that is analogous
to TD(A\). We address the second challenge by using trust region optimization
nrocedure for both the nolicv and the value function. which are renresented bv
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Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization

John Schulman
Sergey Levine
Philipp Moritz
Michael Jordan
Pieter Abbeel

JOSCHU @EECS.BERKELEY.EDU
SLEVINE@EECS.BERKELEY.EDU
PCMORITZ@EECS.BERKELEY.EDU
JORDAN @ CS.BERKELEY.EDU
PABBEEL @ CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural pohcy gradient methods and 1 is effec-

_____ e /LS Sl = Umme e = =105 e e mUS 28 e oo =1

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al., 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
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Proximal Policy Optimization (PPO)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl

{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.
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Soft-Actor Ciritic (SAC)

» Key (open) problems:
» Very high sample complexity;
p Brittleness of the convergence.
» One solution is reqularisation.
» The Soft-Actor Critic algorithm has been introduced with this goal.

» The key idea is to regularise the expression using an entropy term. The actor aims at maximising the expected
reward while also maximising entropy (i.e., exploration).

» We will consider a revised objective function as follows:

T
J(m) = ) E[R,+ a%(m)]
=0

where # () is the entropy of the policy over the distribution of the marginals of the trajectory distribution (induced by
the policy n). a is called the temperature parameter.
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Soft-Actor Ciritic (SAC)

Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor

Tuomas Haarnoja'! Aurick Zhou !

Abstract

Model-free deep reinforcement learning (RL) al-
gorithms have been demonstrated on a range of
challenging decision making and control tasks.
However, these methods typically suffer from two
major challenges: very high sample complexity
and brittle convergence properties, which necessi-
tate meticulous hyperparameter tuning. Both of
these challenges severely limit the applicability
of such methods to complex, real-world domains.
In this paper, we propose soft actor-critic, an off-
policv actor-critic deep RL algorithm based on the

Pieter Abbeel ! Sergey Levine !

of these methods in real-world domains has been hampered
by two major challenges. First, model-free deep RL meth-
ods are notoriously expensive in terms of their sample com-
plexity. Even relatively simple tasks can require millions of
steps of data collection, and complex behaviors with high-
dimensional observations might need substantially more.
Second, these methods are often brittle with respect to their
hyperparameters: learning rates, exploration constants, and
other settings must be set carefully for different problem
settings to achieve good results. Both of these challenges
severely limit the applicability of model-free deep RL to
real-world tasks.
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Continuous Action Space

» In this lecture, we have examined the case of discrete actions, but it is worth
noting that the policy networks can be used to learn continuous actions (think
about moving the wheel of a car).

» In that case the output is not a discrete probability distriobution zz(a | s, @) on the
state space (i.e., at the end a set of discrete values), but a continuous one.

» In that case we will not learn the discrete probability for each actions, but the
parameters of a probability distribution.

» For example, we can use a Gaussian distribution and learn the parameters
mean(s) and variance(s).

» Then, we will sample from that distribution for extracting the action to be taken.
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Inputs
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Policy Networks

Neural network function of weights &

Layer 1 Layer2 Layer3

h(als,0)

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Optimizer

Outputs
Parameter of the
probability

distribution i and o

x5 A function of the
outputs rt(als, 0) is
used to update J(0)

J(0)

The correction that is

proportional to VJ(0)
is used to update the
weights of the network
through the network
optimizer

0,., = 0,+aG,Vinn(A,|S, 0,
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