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Actor-Critic Methods

‣ Methods that learn approximations to both policy and value functions are often 
called actor-critic methods, where actor is a reference to the learned policy and critic 
refers to the learned value function. 

‣We do not consider REINFORCE with baseline an actor-critic method, even if it 
learns both a policy and state-value functions. 

‣ The reason is that its state-value function is used only as a baseline and not as a 
critic and not for updating the value estimate for a state from the estimated values of 
subsequent states (i.e., bootstrapping). 

‣ This is an important distinction, since only through bootstrapping we introduce bias 
and an asymptotic dependence on the quality of the function approximation. 

‣ Recall that the bias introduced through bootstrapping is often beneficial since it 
reduces variance and accelerates learning.
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Actor-Critic Methods

‣ REINFORCE with baseline is unbiased and converges asymptotically to a 
local minimum, but as all the the other Monte Carlo methods tends to 
learn slowly (high variance in the estimates). 

‣We have seen that with temporal distance methods we can remove these 
problems. 

‣ For this reason, we use actor-critic methods with a bootstrapping critic, 
i.e., we update the value estimate for a state from the estimated values of 
subsequent state. 

‣We consider one-step actor-critic methods. 

‣ These are analogs to TD(0), Sarsa and Q-learning.
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Actor-Critic Methods
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One-step Actor-Critic Method

‣ The one-step actor-critic method replaces the full return of 
REINFORCE with the one-step return (and use a learned state-value 
function as baseline) as follows: 

θt+1 ← θt + α(Gt − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + α(Rt+1 + ̂v(St+1, w) − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)
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One-step Actor Methods

‣ The value of the state is usually estimated with another network for 
example with a semi-gradient TD(0) method (other methods are 
possible). 

‣ Please note that the weights  of this other network are learned at 
the same time, but independently. 

‣ The network that learns the policy (that with weights ) in our 
example is the actor network (i.e, it used to act). 

‣ The network that learns the values (that with weights ) is called critic 
network (i.e., it is used to “judge” the actions of the actor, which is 
implemented through the actor network).

w

θ

w
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Policy Network with One-step Actor Critic

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting 

an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

This is an actor 
network 

(the output is 
the policy)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The performance gradient 
 is used to update 

the weights  of the neural 
network together with the 

estimation of the value 
function  from 

another value (neural) 
network with weights  
that are updated at the 

same time

∇J(θ)
θ

̂v(s |w)

w

h(a |s, θ)

Neural network function of weights θ
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One-step Actor-Critic Method
Input: a differentiable policy parametrisation , a differentiable state-value function parametrisation  

Parameters: step sizes  and  

Initialise policy parameter  and state-value weights  

Loop forever (for each episode): 

    Initialise  (first state of episode) 

    Loop while  is not terminal 

       Select A using policy  

       Take action A, observe  

           (if  is terminal, then ) 

        

        

       

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ w ∈ ℝd

S

S

π

S′ , R

δ ← R + ̂v(S′ , w) − ̂v(S, w) S′ ̂v(S′ , w) ≐ 0

w ← w + αwδ ∇ ̂v(S, w)

θ ← θ + αθδ ∇lnπ(A |S, θ)

S ← S′ 
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A Recap

 

 

  

 

θt+1 = θt + α∇ ̂J(θt)

θt+1 = θtGt ∇lnπ(At |St, θt)

θt+1 = θt + α(Gt − b(St))∇lnπ(At |St, θt)

θt+1 = θt + α(Gt − ̂v(St, ŵ))∇lnπ(At |St, θt) REINFORCE with value 
function estimation

REINFORCE with 
baseline

Standard REINFORCE
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Advantage Function

 

 

 with  

We will use the so-called advantage function expressed as follows: 

 with  

 

θt+1 = θt + α(Gt − ̂v(St, w))∇lnπ(At |St, θt)

θt+1 = θt + α(Rt + ̂v(St+1, w) − ̂v(St, w))∇lnπ(At |St, θt)

θt+1 = θt + αδ∇lnπ(At |St, θt) δ = Rt+1 + ̂v(St+1, w) − ̂v(St, w)

θt+1 = θt + αδADV ∇lnπ(At |St, θt) δADV = Q̂(St, At, w) − ̂v(St, w)
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Advantage Actor Critic (A2C)

‣We can stabilise learning further by using the advantage function as 
critic instead of the action value function. 

‣ In practice instead of using 

  

we will use 

 

‣ The latter expression is usually called the advantage function.

δ = Rt+1 + ̂v(St+1, w) − ̂v(St, w)

δADV = Q̂(St, At, w) − ̂v(St, w)
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Advantage Actor Critic (A2C)

‣ Te idea is that the advantage function calculates how better the selection the 
specific action  at state  is compared to the average value of the state . In 
a sense, we are subtracting the mean value of the state from the value of the 
state-action pair.  

‣ In practice, we do not need to quantify how good an action is in absolute 
sense, but only how much it is better than others on average. 

‣ It is a relative advantage that we are interested in. 

‣ Different types of advantage functions and approximate advantage functions 
have been proposed and evaluated in the past years. 

‣ The only (important) condition is that they have to lead to the same expected 
value for the policy gradient, despite having different variances.

At St St
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Asynchronous Advantage Actor-Critic 
(A3C)

‣ Asynchronous variants have been proposed in order to stabilise the process. 

‣ It has been shown that that parallel actor-learners have a stabilising effect on 
training. 

‣ This has also benefit in terms of performance, since it allows parallel execution. 

‣ This method is usually called Asynchronous Advantage Actor-Critic. 

‣We are not going to discuss the details of this implementation. If you are 
interested please check the relevant paper. 

‣ High-scalable implementation of the A3C algorithm has been proposed such 
as the IMPALA architecture.
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Asynchronous Advantage Actor-Critic 
(A3C)

Published at ICML 2016
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IMPALA

Published at ICML 2018
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Soft-Actor Critic (SAC)

‣ Key (open) problems: 

‣ Very high sample complexity; 

‣ Brittleness of the convergence. 

‣ One solution is regularisation.  

‣ The Soft-Actor Critic algorithm has been introduced with this goal. 

‣ The key idea is to regularise the expression using an entropy term. 
The actor aims at maximising the expected reward while also 
maximising entropy (i.e., exploration).
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Soft-Actor Critic (SAC)

‣ SAC is based on  a revised objective function as follows: 

 

where  is the entropy of the policy over the distribution of the 
marginals of the trajectory distribution (induced by the policy ).  is 
called the temperature parameter. 

‣ The idea of using entropy for increasing exploration is used widely in 
reinforcement learning, and, in any situation in which the goal is 
learning by exploration.

J(π) =
T

∑
t=0

Eπ[Rt + αℋ(π)]

ℋ(π)
π α
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Soft-Actor Critic (SAC)

Published at ICML 2018
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Trust Region Policy Optimization (TRPO)

‣ TRPO updates policies by taking the largest possible step to improve 
performance while satisfying a special constrain on how close the 
new and the old policies are allowed to be. 

‣ The constraint is expressed in terms of KL divergence, a measure of 
“distance” between probability distributions. 

‣ The definition of the Kullback-Leibler divergence is the following: 

DKL(P | |Q) = ∑
x∈𝒳

P(x)log(
P(x)
Q(x)

)
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Trust Region Policy Optimization (TRPO)

‣ A simple interpretation of the KL divergence of  from  is the 
expected excess surprise from using  as a model instead of  
when the actual distribution is . 

‣ TRPO enforces policy updates to stay within a “true region” using KL-
divergence constraints.

P Q
Q P

P
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Trust Region Policy Optimization (TRPO)

‣ Let  denote a policy with parameters . The theoretical TRPO update is: 

    s.t.  

   where  is the surrogate advantage, a measure of how policy  
performs relative to the old policy  using data from the old policy: 

     

  and

πθ θ

θt+1 = argmax
θ

ℒ(θt, θ) DKL(θ | |θt) ≤ const

ℒ(θt, θ) πθ
πθt

ℒ(θt, θ) = E
s,a∼πθt

[
πθ(a |s)
πθt

(a |s)
δπθt

ADV(s, a)]
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Trust Region Policy Optimization (TRPO)

 is the average KL divergence between policies across 
visited by the old policy: 

 

The theoretical TRPO is solved using an approximate solution by means 
of a Taylor expansion.

DKL(θ | |θt)

DKL(θ | |θt) = E
s∼πθt

[DKL(πθ( ⋅ |s) | |πθt
( ⋅ | |s))]
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Trust Region Policy Optimization (TRPO)
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Proximal Policy Optimization

‣ PPO is motivated by the same question as TRPO: how can we have the 
biggest improvement step on a policy using the data that we currently 
have, without stepping too far so that we cause performance collapse? 

‣Where TRPO tries to solve the problem with a complex second-order 
method (essentially an optimisation constraint problem), PPO is a family 
of first-order methods that use a set of mechanisms to keep the new 
policies close to the old ones. 

‣ It is important to note that the PPO methods are significantly simpler to 
implement and, empirically, they perform as well as TRPO. 

‣ PPO is an on-policy algorithm.
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PPO Variants

‣ There are two PPO variants: 

‣ PPO-Penalty 

‣ PPO-CLIP
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PPO-Penalty

‣ PPO-Penalty: 

‣ It approximately solves a KL-constrained update like TRPO, but it 
penalises the KL-divergence instead of making it a constraint. 

‣ It automatically adjusts the penalty over the course of the training 
so that is scaled approximately. 

‣ Since PPO-Penalty is not widely used, we are not going to cover it 
in detail. Please refer to the paper for a full description of the 
approach. 
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PPO-CLIP

‣ PPO-CLIP: 

‣ It does not have a KL-divergence term in the objective. 

‣ Actually, it is not based on the resolution of a constraint problem at 
all. 

‣ It essentially relies on specialised clipping of the objective function 
to remove incentives for the new policy to get far from the old 
policy. 

‣ It is the version of PPO that is widely used and we will study it in 
detail.
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PPO-CLIP

‣ PPO  updates policies via the following update: 

, 

typically taking multiple steps of (usually mini batch) stochastic gradient 
descent to maximise the objective: 

 

in which  is a hyper-parameter, which quantifies how far the new policy is 
allowed to be “far” from the old one.

θt+1 = argmax
θ

E
s,a∼πθt

[L(s, a, θt, θ)]

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
δπθt

ADV, clip(
πθ(a |s)
πθt

(a |s)
,1 − ϵ,1 + ϵ)δπθt

ADV(s, a))

ϵ
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PPO-CLIP

‣ A simplified version of PPO-CLIP is the following: 

 

where 

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
δπθt

ADV(s, a), g(ϵ, δπθt
ADV(s, a)))

g(ϵ, δADV) = {(1 + ϵ)δADV when δADV ≥ 0
(1 − ϵ)δADV when δADV < 0
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PPO-CLIP

‣ Let’s consider the case in which : suppose the advantage for 
that state-action pair positive. In this case the contribution to the 
objective reduces to: 

 

‣ Because the advantage is positive, the objective will increase if the 
action become more likely, i.e., if  increases. But the min in this 
term puts a limit to how much the objective can increase. Once 

, then the min is considered and this terms 
hits a ceiling of .

δADV ≥ 0

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
(1 + ϵ))δπθt

ADV(s, a)

πθ(a |s)

πθ(a |s) > (1 + ϵ)πθk
(a |s)

(1 + ϵ)δπθt
ADV(s, a)
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PPO-CLIP

‣ Let’s consider now the case in which : in this case the 
contribution reduces to: 

‣   

‣ Because the advantage is negative, the objective will increase if the 
action becomes less likely, that is  decreases. But the max 
term is then considered and this puts a limit to how much the 
objective can increase. Once , this term 
hits a ceiling of .

δADV < 0

L(s, a, θt, θ) = max(
πθ(a |s)
πθt

(a |s)
(1 − ϵ))δπθt

ADV(s, a)

πθ(a, s)

πθ(a |s) < (1 − ϵ)πθk
(a |s)

(1 − ϵ)δπθt
ADV(s, a)
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Comparison between TRPO and PPO

‣ TRPO enforces policy updates to stay within a “trust region” using KL 
divergence constraints requiring second-order optimisation. 

‣ PPO achieves similar results with the simpler clipping mechanism, 
making it: 

‣ Computationally more efficient; 

‣ Easier to implement! 
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Proximal Policy Optimization (PPO)
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Approximating Advantage Functions

‣ Methods have been developed for approximating the advantage 
functions.  

‣ An important method is the Generalized Advantage Estimation (GAE), 
which is based on the idea of using an exponentially-weighted 
estimator of the advantage function. 

‣ The GAE method is at the basis of the practical implementation of 
both TRPO and PPO.
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Generalised Advantage Estimation (GAE) 

‣ In particular the GAE advantage  

where: 

‣  is the temporal difference (TD) error at 
time ; 

‣  is the discount factor; 

‣  is the GAE parameter.

̂δGAE
t =

T

∑
l=0

(γλ)lδt+l

δt = rt + γV(St+1) − V(St)
t

γ

λ
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Generalised Advantage Estimation (GAE)
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Continuous Action Space

‣ In this lecture, we have examined the case of discrete actions, but it is worth 
noting that the policy networks can be used to learn continuous actions (think 
about moving the wheel of a car). 

‣ In that case the output is not a discrete probability distribution  on the 
state space (i.e., at the end a set of discrete values), but a continuous one. 

‣ In that case we will not learn the discrete probability for each actions, but the 
parameters of a probability distribution. 

‣ For example, we can use a Gaussian distribution and learn the parameters 
 and . 

‣ Then, we will sample from that distribution for extracting the action to be taken.

π(a |s, θ)

mean(s) variance(s)
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Credit: WikiMedia 
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Policy Networks

Layer 1 Layer 2 Layer 3

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3


J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the 
outputs  is 
used to update 

π(a |s, θ)
J(θ)

The correction that is 
proportional to  
is used to update the 

weights of the network 
through the network 

optimizer 

∇J(θ)

Outputs

Parameter of the 

probability 
distribution  and μ σ

h(a |s, θ)
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