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Actor-Critic Methods

» Methods that learn approximations to both policy and value functions are often
called actor-critic methods, where actor is a reference to the learned policy and critic
refers to the learned value function.

» We do not consider REINFORCE with baseline an actor-critic method, even if it
learns both a policy and state-value functions.

» The reason is that its state-value function is used only as a baseline and not as a
critic and not for updating the value estimate for a state from the estimated values of
subsequent states (i.e., bootstrapping).

» This is an important distinction, since only through bootstrapping we introduce bias
and an asymptotic dependence on the quality of the function approximation.

» Recall that the bias introduced through bootstrapping is often beneficial since it
reduces variance and accelerates learning.
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Actor-Critic Methods

» REINFORCE with baseline is unbiased and converges asymptotically to a
ocal minimum, but as all the the other Monte Carlo methods tends to
earn slowly (high variance in the estimates).

» We have seen that with temporal distance methods we can remove these
problems.

» For this reason, we use actor-critic methods with a bootstrapping critic,
l.e., we update the value estimate for a state from the estimated values of
subsequent state.

» \We consider one-step actor-critic methods.

» These are analogs to TD(0), Sarsa and Q-learning.
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Actor-Critic Methods
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One-step Actor-Critic Method

» The one-step actor-critic method replaces the full return of
REINFORCE with the one-step return (and use a learned state-value
function as baseline) as follows:
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One-step Actor Methods

» The value of the state Is usually estimated with another network for
example with a semi-gradient TD(0) method (other methods are
possible).

» Please note that the weights w of this other network are learned at
the same time, but independently.

» The network that learns the policy (that with weights ) in our
example is the actor network (i.e, it used to act).

» The network that learns the values (that with weights w) is called critic
network (i.e., it is used to “judge” the actions of the actor, which is
implemented through the actor network).
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Policy Network with One-step Actor Critic
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V J(0) is used to update

the weights 6 of the neural

network together with the
estimation of the value

function V(s | w) from
another value (neural)

network with weights w
that are updated at the
same time

0., < 0,+ as,Vinn(A,|S, 0)

Mirco Musolesi




One-step Actor-Critic Method

Input: a differentiable policy parametrisation z(a | s, @), a differentiable state-value function parametrisation P(s, w)
Parameters: step sizes @’ > 0 and @" > 0

Initialise policy parameter 6 € R? and state-value weights w € R4

Loop forever (for each episode):
Initialise S (first state of episode)
Loop while S is not terminal
Select A using policy
Take action A, observe S’, R
0 R+V(S,w)—v(S,w) (if S"is terminal, then V(S’, w) = 0)
w w4+ avoVi(S,w)

0 —0+a’Vinn(A|S,0)

S«
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A Recap

0,1 =0+ aVJ(Qt)
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Standard REINFORCE

REINFORCE with
baseline

REINFORCE with value
function estimation



Advantage Function

0,1 =0+ a(G,—V(S,w))Vinn(A,|S, 0,)

0,1 =0+ aR,+ (S, ,W)—V(S,, W) Vinz(A,|S,, 6,

0,1 =0+adVinn(A,|S,0)withd =R, | + V(S 1, W) — V(S,, W)
We will use the so-called advantage function expressed as follows:

0,1 =0, + ad,p, VinmA,|S, 6,) with 8,y = O(S, A, W) — H(S,, W)
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Advantage Actor Critic (A2C)

» We can stabilise learning further by using the advantage function as
critic instead of the action value function.

» In practice instead of using

O0=R,_ + V(S 1, W) —V(S, W)

we will use

Supy = O(S, A, W) — (S, W)

» The latter expression is usually called the advantage function.
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Advantage Actor Critic (A2C)

» Te idea is that the advantage function calculates how better the selection the

specific action A, at state S, is compared to the average value of the state S,. In

a sense, we are subtracting the mean value of the state from the value of the
state-action pair.

» In practice, we do not need to quantify how good an action is in absolute
sense, but only how much it is better than others on average.

p It is a relative advantage that we are interested in.

» Different types of advantage functions and approximate advantage functions
have been proposed and evaluated in the past years.

» The only (important) condition is that they have to lead to the same expected
value for the policy gradient, despite having different variances.
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Asynchronous Advantage Actor-Ciritic
(A3C)

» Asynchronous variants have been proposed in order to stabilise the process.

» It has been shown that that parallel actor-learners have a stabilising effect on
training.

» This has also benefit in terms of performance, since it allows parallel execution.
» This method is usually called Asynchronous Advantage Actor-Ciritic.

» We are not going to discuss the details of this implementation. If you are
Interested please check the relevant paper.

» High-scalable implementation of the A3C algorithm has been proposed such
as the IMPALA architecture.
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Asynchronous Advantage Actor-Ciritic

(A3C)

Asynchronous Methods for Deep Reinforcement Learning
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Abstract

We propose a conceptually simple and
lightweight framework for deep reinforce-
ment learning that uses asynchronous gradient
descent for optimization of deep neural network
controllers. We present asynchronous variants of
four standard reinforcement learning algorithms
and show that parallel actor-learners have a

line RL updates are strongly correlated. By storing the
agent’s data in an experience replay memory, the data can
be batched (Riedmiller, 2005; Schulman et al., 2015a) or
randomly sampled (Mnih et al., 2013; 2015; Van Hasselt
et al., 2015) from different time-steps. Aggregating over
memory in this way reduces non-stationarity and decorre-
lates updates, but at the same time limits the methods to
off-policy reinforcement learning algorithms.
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IMPALA

IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures
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Abstract

In this work we aim to solve a large collection of
tasks using a single reinforcement learning agent
with a single set of parameters. A key challenge
is to handle the increased amount of data and ex-
tended training time. We have developed a new
distributed agent IMPALA (Importance Weighted
Actor-Learner Architecture) that not only uses
resources more efficiently in single-machine train-
ing but also scales to thousands of machines with-
out sacrificing data efficiency or resource utilisa-
tion. We achieve stable learning at high through-
put by combining decoupled acting and learning

Autonomous and Adaptive Systems 2024-2025

separately. We are interested in developing new methods
capable of mastering a diverse set of tasks simultaneously as
well as environments suitable for evaluating such methods.

One of the main challenges in training a single agent on
many tasks at once is scalability. Since the current state-of-
the-art methods like A3C (Mnih et al., 2016) or UNREAL
(Jaderberg et al., 2017b) can require as much as a billion
frames and multiple days to master a single domain, training
them on tens of domains at once is too slow to be practical.

We propose the Importance Weighted Actor-Learner
Architecture (IMPALA) shown in Figure 1. IMPALA is
capable of scaling to thousands of machines without sacri-
ficing training stabilitv or data efficiencv. Unlike the nonular

Published at ICML 2018
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Soft-Actor Ciritic (SAC)

» Key (open) problems:
» Very high sample complexity;
p Brittleness of the convergence.
» One solution is regularisation.
» The Soft-Actor Critic algorithm has been introduced with this goal.

» The key idea Is to regularise the expression using an entropy term.
The actor aims at maximising the expected reward while also
maximising entropy (i.e., exploration).
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Soft-Actor Ciritic (SAC)

» SAC is based on a revised objective function as follows:

T
J(7) = ) E[R,+ ad(m)]
=0

where #Z () is the entropy of the policy over the distribution of the

marginals of the trajectory distribution (induced by the policy 7). a is
called the temperature parameter.

» The idea of using entropy for increasing exploration is used widely in
reinforcement learning, and, in any situation in which the goal is
learning by exploration.
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Soft-Actor Ciritic (SAC)

Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor

Tuomas Haarnoja'! Aurick Zhou !

Abstract

Model-free deep reinforcement learning (RL) al-
gorithms have been demonstrated on a range of
challenging decision making and control tasks.
However, these methods typically suffer from two
major challenges: very high sample complexity
and brittle convergence properties, which necessi-
tate meticulous hyperparameter tuning. Both of
these challenges severely limit the applicability
of such methods to complex, real-world domains.
In this paper, we propose soft actor-critic, an off-
policv actor-critic deep RL algorithm based on the

Pieter Abbeel ! Sergey Levine !

of these methods in real-world domains has been hampered
by two major challenges. First, model-free deep RL meth-
ods are notoriously expensive in terms of their sample com-
plexity. Even relatively simple tasks can require millions of
steps of data collection, and complex behaviors with high-
dimensional observations might need substantially more.
Second, these methods are often brittle with respect to their
hyperparameters: learning rates, exploration constants, and
other settings must be set carefully for different problem
settings to achieve good results. Both of these challenges
severely limit the applicability of model-free deep RL to
real-world tasks.
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Trust Region Policy Optimization (TRPO)

» TRPO updates policies by taking the largest possible step to improve

performance while satisfying a special constrain on how close the
new and the old policies are allowed to be.

» The constraint is expressed in terms of KL divergence, a measure of
“distance” between probability distributions.

» The definition of the Kullback-Leibler divergence is the following:

P
Dy (P|1Q) = ) P(x)log( i

)
= Q(x)
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Trust Region Policy Optimization (TRPO)

» A simple interpretation of the KL divergence of P from Q is the
expected excess surprise from using Q as a model instead of P
when the actual distribution is P.

» TRPO enforces policy updates to stay within a “true region” using KL-
divergence constraints.
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Trust Region Policy Optimization (TRPO)

» Let m,y denote a policy with parameters 6. The theoretical TRPO update is:

0,1 = argmaxZ£(0,0)s.t. Dg;(0]]6,) < const
0

where £(0,, 0) is the surrogate advantage, a measure of how policy 7,
performs relative to the old policy Ty, using data from the old policy:

L) s (s, ]

Z0,0)= E |

S, A~ Ty, 72'@ (Cl

and
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Trust Region Policy Optimization (TRPO)

Dy (01186, is the average KL divergence between policies across
visited by the old policy:

DKL(Q‘ |6’;) = E [Dgg(my - | 5) | ‘ﬂet( - | ]5))]

SN]Z@;

The theoretical TRPO is solved using an approximate solution by means
of a Taylor expansion.
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Trust Region Policy Optimization (TRPO)

Trust Region Policy Optimization
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Abstract

We describe an iterative procedure for optimizing
policies, with guaranteed monotonic improve-
ment. By making several approximations to the
theoretically-justified procedure, we develop a
practical algorithm, called Trust Region Policy
Optimization (TRPO). This algorithm is similar
to natural pohcy gradient methods and 1 is effec-

_____ e /LS Sl = Umme e = =105 e e mUS 28 e oo =1

Tetris is a classic benchmark problem for approximate dy-
namic programming (ADP) methods, stochastic optimiza-
tion methods are difficult to beat on this task (Gabillon
et al., 2013). For continuous control problems, methods
like CMA have been successful at learning control poli-
cies for challenging tasks like locomotion when provided
with hand-engineered policy classes with low-dimensional
parameterizations (Wampler & Popovi¢, 2009). The in-
ability of ADP and gradient-based methods to consistently
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Proximal Policy Optimization

» PPO is motivated by the same question as TRPO: how can we have the
biggest improvement step on a policy using the data that we currently
have, without stepping too far so that we cause performance collapse?

» Where TRPO tries to solve the problem with a complex second-order
method (essentially an optimisation constraint problem), PPO is a family
of first-order methods that use a set of mechanisms to keep the new
policies close to the old ones.

» It is important to note that the PPO methods are significantly simpler to
implement and, empirically, they perform as well as TRPO.

» PPO is an on-policy algorithm.
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PPO Variants

» There are two PPO variants:
» PPO-Penalty

» PPO-CLIP
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PPO-Penalty

» PPO-Penalty:

» It approximately solves a KL-constrained update like TRPO, but it
penalises the KL-divergence instead of making it a constraint.

» It automatically adjusts the penalty over the course of the training
so that is scaled approximately.

» Since PPO-Penalty is not widely used, we are not going to cover it
INn detall. Please refer to the paper for a full description of the
approach.
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PPO-CLIP

» PPO-CLIP:
» It does not have a KL-divergence term in the objective.

» Actually, it is not based on the resolution of a constraint problem at
all.

p It essentially relies on specialised clipping of the objective function
to remove incentives for the new policy to get far from the old

policy.

» It is the version of PPO that is widely used and we will study it in
detall.
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PPO-CLIP

» PPO updates policies via the following update:

0., =argmax E [L(s,a,0,0)],

8 A) aNﬂ'@t

typically taking multiple steps of (usually mini batch) stochastic gradient
descent to maximise the objective:

L(s. .0, 0) = min("2S) st o FEAV) s (s a)
,a, 0, 7(a )ADV’ P 7.(als) ’ ADV

4 4

In which € is a hyper-parameter, which quantifies how far the new policy is
allowed to be “far” from the old one.
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PPO-CLIP

» A simplified version of PPO-CLIP is the following:

mals) 57

57 (s, @), 8(e,81% (5,)))

L(s,a, 0, 0) = min(

my(als)

5

where

(1 +€)ospy wWhenospy =0
(1 =€)ospy whend,py <0

g(€,04py) = {
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PPO-CLIP

p Let’s consider the case in which 04y = 0: suppose the advantage for

that state-action pair positive. In this case the contribution to the
objective reduces to:

(al]s) n
(1 +€)5,5,(s,a)
5)

. Ty
L(s,a,0,0) = min(
Ty (Cl

!

ADV

» Because the advantage is positive, the objective will increase if the
action become more likely, i.e., if my(a | s) increases. But the min in this
term puts a limit to how much the objective can increase. Once
mo(als) > (1 + €)1y (a |$), then the min is considered and this terms

. o Ty,
hits a ceiling of (1 6)5ADV(S, a).

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi



PPO-CLIP

» Let’s consider now the case in which 04 < 0: in this case the
contribution reduces to:

L(s, a,0,0) = max(ZC ) (1 Z ™ (s, a)
y L(5,a,0,0) = max @l €))0, (s, a

5

» Because the advantage is negative, the objective will increase if the

action becomes less likely, that is my(a, s) decreases. But the max
term is then considered and this puts a limit to how much the

objective can increase. Once my(a|s) < (1 — €)1y (a | ), this term

. o Ty,
hits a ceiling of (1 — 6)5ADV(S, a).
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Comparison between TRPO and PPO

» TRPO enforces policy updates to stay within a “trust region” using KL
divergence constraints requiring second-order optimisation.

» PPO achieves similar results with the simpler clipping mechanism,
making it:

» Computationally more efficient;

» Easier to implement!
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Proximal Policy Optimization (PPO)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl

{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.
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Approximating Advantage Functions

» Methods have been developed for approximating the advantage
functions.

» An important method is the Generalized Advantage Estimation (GAE),
which is based on the idea of using an exponentially-weighted
estimator of the advantage function.

» The GAE method is at the basis of the practical implementation of
both TRPO and PPO.
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Generalised Advantage Estimation (GAE)

T
} In particular the GAE advantage StGAE = Z (y/l)lét +
1=0

where:

» O, =r,+yV(S,, ) — V(S,) is the temporal difference (TD) error at
time 7;

» ¥ is the discount factor;

» A is the GAE parameter.
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Generalised Advantage Estimation (GAE)

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING
GENERALIZED ADVANTAGE ESTIMATION

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science

University of California, Berkeley

{joschu, pcmoritz, levine, jordan, pabbeel}@Reecs.berkeley.edu

ABSTRACT

Policy gradient methods are an appealing approach in reinforcement learning be-
cause they directly optimize the cumulative reward and can straightforwardly be
used with nonlinear function approximators such as neural networks. The two
main challenges are the large number of samples typically required, and the diffi-
culty of obtaining stable and steady improvement despite the nonstationarity of the
incoming data. We address the first challenge by using value functions to substan-
tially reduce the variance of policy gradient estimates at the cost of some bias, with
an exponentially-weighted estimator of the advantage function that is analogous
to TD(A\). We address the second challenge by using trust region optimization
nrocedure for both the nolicv and the value function. which are renresented bv
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Continuous Action Space

» In this lecture, we have examined the case of discrete actions, but it is worth
noting that the policy networks can be used to learn continuous actions (think
about moving the wheel of a car).

» In that case the output is not a discrete probability distriobution zz(a | s, @) on the
state space (i.e., at the end a set of discrete values), but a continuous one.

» In that case we will not learn the discrete probability for each actions, but the
parameters of a probability distribution.

» For example, we can use a Gaussian distribution and learn the parameters
mean(s) and variance(s).

» Then, we will sample from that distribution for extracting the action to be taken.
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Inputs
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Policy Networks

Neural network function of weights &

Layer 1 Layer2 Layer3

h(als,0)

Weights Weights Weights
Layer 1 Layer 2 Layer 3

?

?

?

Optimizer

Outputs
Parameter of the
probability

distribution i and o

x5 A function of the
outputs rt(al s, 0) is
used to update J(0)

J(0)

The correction that is

proportional to VJ(0)
is used to update the
weights of the network
through the network
optimizer

0,., = 0,+aG,Vinn(A,|S, 0,
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