
Autonomous and Adaptive Systems

Policy Gradient Methods
Second Part

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Actor-Critic Methods

‣ Methods that learn approximations to both policy and value functions are often
called actor-critic methods, where actor is a reference to the learned policy and critic
refers to the learned value function.

‣We do not consider REINFORCE with baseline an actor-critic method, even if it
learns both a policy and state-value functions.

‣ The reason is that its state-value function is used only as a baseline and not as a
critic and not for updating the value estimate for a state from the estimated values of
subsequent states (i.e., bootstrapping).

‣ This is an important distinction, since only through bootstrapping we introduce bias
and an asymptotic dependence on the quality of the function approximation.

‣ Recall that the bias introduced through bootstrapping is often beneficial since it
reduces variance and accelerates learning.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Actor-Critic Methods

‣ REINFORCE with baseline is unbiased and converges asymptotically to a
local minimum, but as all the the other Monte Carlo methods tends to
learn slowly (high variance in the estimates).

‣We have seen that with temporal distance methods we can remove these
problems.

‣ For this reason, we use actor-critic methods with a bootstrapping critic,
i.e., we update the value estimate for a state from the estimated values of
subsequent state.

‣We consider one-step actor-critic methods.

‣ These are analogs to TD(0), Sarsa and Q-learning.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Actor-Critic Methods

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

One-step Actor-Critic Method

‣ The one-step actor-critic method replaces the full return of
REINFORCE with the one-step return (and use a learned state-value
function as baseline) as follows:

θt+1 ← θt + α(Gt − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + α(Rt+1 + ̂v(St+1, w) − ̂v(St, w))
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt
∇π(At |St, θ)
π(At |St, θ)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

One-step Actor Methods

‣ The value of the state is usually estimated with another network for
example with a semi-gradient TD(0) method (other methods are
possible).

‣ Please note that the weights of this other network are learned at
the same time, but independently.

‣ The network that learns the policy (that with weights) in our
example is the actor network (i.e, it used to act).

‣ The network that learns the values (that with weights) is called critic
network (i.e., it is used to “judge” the actions of the actor, which is
implemented through the actor network).

w

θ

w

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Policy Network with One-step Actor Critic

Layer 1 Layer 2 Layer 3 Softmax

Outputs

Probabilities of selecting

an action

π(a |s, θ)

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

This is an actor
network

(the output is
the policy)

θt+1 ← θt + αδt ∇lnπ(At |St, θ)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The performance gradient
 is used to update

the weights of the neural
network together with the

estimation of the value
function from

another value (neural)
network with weights
that are updated at the

same time

∇J(θ)
θ

̂v(s |w)

w

h(a |s, θ)

Neural network function of weights θ

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

One-step Actor-Critic Method
Input: a differentiable policy parametrisation , a differentiable state-value function parametrisation

Parameters: step sizes and

Initialise policy parameter and state-value weights

Loop forever (for each episode):

 Initialise (first state of episode)

 Loop while is not terminal

 Select A using policy

 Take action A, observe

 (if is terminal, then)

π(a |s, θ) ̂v(s, w)

αθ > 0 αw > 0

θ ∈ ℝd′ w ∈ ℝd

S

S

π

S′ , R

δ ← R + ̂v(S′ , w) − ̂v(S, w) S′ ̂v(S′ , w) ≐ 0

w ← w + αwδ ∇ ̂v(S, w)

θ ← θ + αθδ ∇lnπ(A |S, θ)

S ← S′

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

A Recap

θt+1 = θt + α∇ ̂J(θt)

θt+1 = θtGt ∇lnπ(At |St, θt)

θt+1 = θt + α(Gt − b(St))∇lnπ(At |St, θt)

θt+1 = θt + α(Gt − ̂v(St, ŵ))∇lnπ(At |St, θt) REINFORCE with value
function estimation

REINFORCE with
baseline

Standard REINFORCE

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Advantage Function

 with

We will use the so-called advantage function expressed as follows:

 with

θt+1 = θt + α(Gt − ̂v(St, w))∇lnπ(At |St, θt)

θt+1 = θt + α(Rt + ̂v(St+1, w) − ̂v(St, w))∇lnπ(At |St, θt)

θt+1 = θt + αδ∇lnπ(At |St, θt) δ = Rt+1 + ̂v(St+1, w) − ̂v(St, w)

θt+1 = θt + αδADV ∇lnπ(At |St, θt) δADV = Q̂(St, At, w) − ̂v(St, w)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Advantage Actor Critic (A2C)

‣We can stabilise learning further by using the advantage function as
critic instead of the action value function.

‣ In practice instead of using

we will use

‣ The latter expression is usually called the advantage function.

δ = Rt+1 + ̂v(St+1, w) − ̂v(St, w)

δADV = Q̂(St, At, w) − ̂v(St, w)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Advantage Actor Critic (A2C)

‣ Te idea is that the advantage function calculates how better the selection the
specific action at state is compared to the average value of the state . In
a sense, we are subtracting the mean value of the state from the value of the
state-action pair.

‣ In practice, we do not need to quantify how good an action is in absolute
sense, but only how much it is better than others on average.

‣ It is a relative advantage that we are interested in.

‣ Different types of advantage functions and approximate advantage functions
have been proposed and evaluated in the past years.

‣ The only (important) condition is that they have to lead to the same expected
value for the policy gradient, despite having different variances.

At St St

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Asynchronous Advantage Actor-Critic
(A3C)

‣ Asynchronous variants have been proposed in order to stabilise the process.

‣ It has been shown that that parallel actor-learners have a stabilising effect on
training.

‣ This has also benefit in terms of performance, since it allows parallel execution.

‣ This method is usually called Asynchronous Advantage Actor-Critic.

‣We are not going to discuss the details of this implementation. If you are
interested please check the relevant paper.

‣ High-scalable implementation of the A3C algorithm has been proposed such
as the IMPALA architecture.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Asynchronous Advantage Actor-Critic
(A3C)

Published at ICML 2016

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

IMPALA

Published at ICML 2018

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Soft-Actor Critic (SAC)

‣ Key (open) problems:

‣ Very high sample complexity;

‣ Brittleness of the convergence.

‣ One solution is regularisation.

‣ The Soft-Actor Critic algorithm has been introduced with this goal.

‣ The key idea is to regularise the expression using an entropy term.
The actor aims at maximising the expected reward while also
maximising entropy (i.e., exploration).

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Soft-Actor Critic (SAC)

‣ SAC is based on a revised objective function as follows:

where is the entropy of the policy over the distribution of the
marginals of the trajectory distribution (induced by the policy). is
called the temperature parameter.

‣ The idea of using entropy for increasing exploration is used widely in
reinforcement learning, and, in any situation in which the goal is
learning by exploration.

J(π) =
T

∑
t=0

Eπ[Rt + αℋ(π)]

ℋ(π)
π α

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Soft-Actor Critic (SAC)

Published at ICML 2018

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Trust Region Policy Optimization (TRPO)

‣ TRPO updates policies by taking the largest possible step to improve
performance while satisfying a special constrain on how close the
new and the old policies are allowed to be.

‣ The constraint is expressed in terms of KL divergence, a measure of
“distance” between probability distributions.

‣ The definition of the Kullback-Leibler divergence is the following:

DKL(P | |Q) = ∑
x∈𝒳

P(x)log(
P(x)
Q(x)

)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Trust Region Policy Optimization (TRPO)

‣ A simple interpretation of the KL divergence of from is the
expected excess surprise from using as a model instead of
when the actual distribution is .

‣ TRPO enforces policy updates to stay within a “true region” using KL-
divergence constraints.

P Q
Q P

P

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Trust Region Policy Optimization (TRPO)

‣ Let denote a policy with parameters . The theoretical TRPO update is:

 s.t.

 where is the surrogate advantage, a measure of how policy
performs relative to the old policy using data from the old policy:

 and

πθ θ

θt+1 = argmax
θ

ℒ(θt, θ) DKL(θ | |θt) ≤ const

ℒ(θt, θ) πθ
πθt

ℒ(θt, θ) = E
s,a∼πθt

[
πθ(a |s)
πθt

(a |s)
δπθt

ADV(s, a)]

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Trust Region Policy Optimization (TRPO)

 is the average KL divergence between policies across
visited by the old policy:

The theoretical TRPO is solved using an approximate solution by means
of a Taylor expansion.

DKL(θ | |θt)

DKL(θ | |θt) = E
s∼πθt

[DKL(πθ(⋅ |s) | |πθt
(⋅ | |s))]

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Trust Region Policy Optimization (TRPO)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Proximal Policy Optimization

‣ PPO is motivated by the same question as TRPO: how can we have the
biggest improvement step on a policy using the data that we currently
have, without stepping too far so that we cause performance collapse?

‣Where TRPO tries to solve the problem with a complex second-order
method (essentially an optimisation constraint problem), PPO is a family
of first-order methods that use a set of mechanisms to keep the new
policies close to the old ones.

‣ It is important to note that the PPO methods are significantly simpler to
implement and, empirically, they perform as well as TRPO.

‣ PPO is an on-policy algorithm.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO Variants

‣ There are two PPO variants:

‣ PPO-Penalty

‣ PPO-CLIP

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-Penalty

‣ PPO-Penalty:

‣ It approximately solves a KL-constrained update like TRPO, but it
penalises the KL-divergence instead of making it a constraint.

‣ It automatically adjusts the penalty over the course of the training
so that is scaled approximately.

‣ Since PPO-Penalty is not widely used, we are not going to cover it
in detail. Please refer to the paper for a full description of the
approach.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-CLIP

‣ PPO-CLIP:

‣ It does not have a KL-divergence term in the objective.

‣ Actually, it is not based on the resolution of a constraint problem at
all.

‣ It essentially relies on specialised clipping of the objective function
to remove incentives for the new policy to get far from the old
policy.

‣ It is the version of PPO that is widely used and we will study it in
detail.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-CLIP

‣ PPO updates policies via the following update:

,

typically taking multiple steps of (usually mini batch) stochastic gradient
descent to maximise the objective:

in which is a hyper-parameter, which quantifies how far the new policy is
allowed to be “far” from the old one.

θt+1 = argmax
θ

E
s,a∼πθt

[L(s, a, θt, θ)]

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
δπθt

ADV, clip(
πθ(a |s)
πθt

(a |s)
,1 − ϵ,1 + ϵ)δπθt

ADV(s, a))

ϵ

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-CLIP

‣ A simplified version of PPO-CLIP is the following:

where

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
δπθt

ADV(s, a), g(ϵ, δπθt
ADV(s, a)))

g(ϵ, δADV) = {(1 + ϵ)δADV when δADV ≥ 0
(1 − ϵ)δADV when δADV < 0

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-CLIP

‣ Let’s consider the case in which : suppose the advantage for
that state-action pair positive. In this case the contribution to the
objective reduces to:

‣ Because the advantage is positive, the objective will increase if the
action become more likely, i.e., if increases. But the min in this
term puts a limit to how much the objective can increase. Once

, then the min is considered and this terms
hits a ceiling of .

δADV ≥ 0

L(s, a, θt, θ) = min(
πθ(a |s)
πθt

(a |s)
(1 + ϵ))δπθt

ADV(s, a)

πθ(a |s)

πθ(a |s) > (1 + ϵ)πθk
(a |s)

(1 + ϵ)δπθt
ADV(s, a)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

PPO-CLIP

‣ Let’s consider now the case in which : in this case the
contribution reduces to:

‣

‣ Because the advantage is negative, the objective will increase if the
action becomes less likely, that is decreases. But the max
term is then considered and this puts a limit to how much the
objective can increase. Once , this term
hits a ceiling of .

δADV < 0

L(s, a, θt, θ) = max(
πθ(a |s)
πθt

(a |s)
(1 − ϵ))δπθt

ADV(s, a)

πθ(a, s)

πθ(a |s) < (1 − ϵ)πθk
(a |s)

(1 − ϵ)δπθt
ADV(s, a)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Comparison between TRPO and PPO

‣ TRPO enforces policy updates to stay within a “trust region” using KL
divergence constraints requiring second-order optimisation.

‣ PPO achieves similar results with the simpler clipping mechanism,
making it:

‣ Computationally more efficient;

‣ Easier to implement!

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Proximal Policy Optimization (PPO)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Approximating Advantage Functions

‣ Methods have been developed for approximating the advantage
functions.

‣ An important method is the Generalized Advantage Estimation (GAE),
which is based on the idea of using an exponentially-weighted
estimator of the advantage function.

‣ The GAE method is at the basis of the practical implementation of
both TRPO and PPO.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Generalised Advantage Estimation (GAE)

‣ In particular the GAE advantage

where:

‣ is the temporal difference (TD) error at
time ;

‣ is the discount factor;

‣ is the GAE parameter.

̂δGAE
t =

T

∑
l=0

(γλ)lδt+l

δt = rt + γV(St+1) − V(St)
t

γ

λ

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Generalised Advantage Estimation (GAE)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Continuous Action Space

‣ In this lecture, we have examined the case of discrete actions, but it is worth
noting that the policy networks can be used to learn continuous actions (think
about moving the wheel of a car).

‣ In that case the output is not a discrete probability distribution on the
state space (i.e., at the end a set of discrete values), but a continuous one.

‣ In that case we will not learn the discrete probability for each actions, but the
parameters of a probability distribution.

‣ For example, we can use a Gaussian distribution and learn the parameters
 and .

‣ Then, we will sample from that distribution for extracting the action to be taken.

π(a |s, θ)

mean(s) variance(s)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Credit: WikiMedia

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Policy Networks

Layer 1 Layer 2 Layer 3

Inputs

s

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

J(θ)

Optimizer

Neural network function of weights θ

θt+1 ≐ θt + αGt ∇lnπ(At |St, θt)

A function of the
outputs is
used to update

π(a |s, θ)
J(θ)

The correction that is
proportional to
is used to update the

weights of the network
through the network

optimizer

∇J(θ)

Outputs

Parameter of the

probability
distribution and μ σ

h(a |s, θ)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

References

‣ Chapter 13 of Barto and Sutton. Introduction to Reinforcement
Learning. Second Edition. MIT Press 2018.

‣ For A2C, SAC, TRPO and PPO, please refer to the original papers.

‣ For TRPO and PPO, please also refer to the material on Open AI
Spinning up RL (the material about TRPO and PPO is partially
adapted from it).

