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JAX

‣ JAX is a library that enables transformations of array manipulating 
programs with a NumPy-like array.


‣ JAX is developed by Google. Current version is 0.3.24.


‣ One way of seeing it is to consider it as a differentiable NumPy.


‣ The API itself is the same of NumPy.


‣ It is designed for being used with accelerators.
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JAX and XLA

‣ JAX uses XLA to compile and run NumPy code on accelerators, such 
as GPUs and TPUs.


‣ Compilation takes place under the hood by default.


‣ Libraries are just-in-time compiled and executed.


‣ JAX also lets to just-in-time compile user-defined functions into XLA-
optimised kernels using a predefined function.
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XLA 

‣ XLA (Accelerated Linear Algebra) is a domain-specific compiler with 
linear algebra that can accelerate models with potentially no source 
changes.


‣ The results are in memory and speed.


‣ Example: The results are improvements in speed and memory usage: 
e.g. in BERT MLPerf submission using 8 Volta V100 GPUs using XLA 
has achieved a ~7x performance improvement and ~5x batch size 
improvement.


‣ MLPerf is a standard benchmark for ML. 
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XLA

Source: TensorFlow XLA Tutorial (https://www.tensorflow.org/xla) 

https://www.tensorflow.org/xla
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Decorators

‣ A decorator is a Python design pattern that allows a user to add new 
functionality to an existing object without modifying its structure.


‣ Let us start from underlining the fact that Python allows a nested 
function to access the outer scope of an enclosing function.
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Decorators

‣ Let’s us consider the following definition of a function


def	A(a_text):


			def	B()


						print(a_text)


			B()			


‣We get the following behaviour:


>>>	A(“some	text”)


some	text
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Decorators

‣ Let us consider the creation of a simple decorator. 


‣We define a wrapper inside an enclosed function.


‣ Example:


def	uppercase_decorator(function):


			def	wrapper()


							func	=	function()


							make_uppercase	=	func.upper()


							return	make_uppercase


				return	wrapper
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Decorators

‣ The decorator function takes a function as an argument.


‣We will have to define a function and pass it to the decorator.


‣ Let’s us consider the following function as an example:


def	say_hello_world():


				return	‘hello	world!’


‣We then apply a decorator and we call the decorated function:


>>>decorate	=	uppercase_decorator(say_hello_world)


>>>decorate()


‘HELLO	WORLD!”
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Decorators

‣ Python provides an easier way to apply decorators, i.e., it is sufficient to use the 
symbol @	before the function we want to decorate. 


‣ For example we can apply the decorator as in the example before in this way:


@uppercase_decorator


def	say_hello_world:


			return	‘hello	world!’


‣ And then call the function:


>>>say_hello_world


‘HELLO	WORLD!’
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jax.jit

‣ jax.jit sets up a function for just-in-time compilation using XLA.


‣ JAX runs transparently on GPUs and TPUS.


‣ You can jit-compile a function by using


relu_jit	=	jit(relu)


‣ Or indeed we can use decorators!
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jax.jit

‣ Remember that by default, JAX executes operations sequentially.


‣ Using JIT compilation decorators, sequences of operations can be 
optimised (and run in parallel).


‣ Not all the JAX code can be JIT compiled, since it requires array 
shapes to be static and known at a compile time.
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jax.jit

‣ JIT works by tracing a function.


‣ JIT is based on tracer objects that are used to extract the sequence of 
operations that are specified by the function.


‣ Basic traces are sort of stand-ins that encode the shape and the type of the 
arrays, but they are agnostic to the values.


‣ The recorded sequence of computations are applied with XLA to new inputs 
with the same shape and type, without re-executing the Python code.


‣When we call the compiled function on matching inputs, no re-compilation is 
required.
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jax.grad()

‣ grad() provides the users with automatic differentiation: 


from	jax	import	grad


print('The	value	of	the	derivate	of	exp	for	1	is',	jnp.exp(1.0))


grad_exp	=	grad(jnp.exp)


print('The	value	of	the	derivate	of	exp	for	1	is’,grad_exp(1.0))


‣ The output is:


The	value	of	the	derivate	of	exp	for	1	is	2.7182817


The	value	of	the	derivate	of	exp	for	1	is	2.7182817
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jax.grad()

‣We can use the grad function with its argnums argument to differentiate a 
function with respect to positional arguments.


‣ For example:


w_grad	=	grad(loss,	argnums=0)(w,	b)


returns  the gradient with respect to w (note that argnums=0, so in theory in this 
case, specifying it in the function is actually redundant).


‣ And:


b_grad	=	grad(loss,	1)(w,	b)


returns the gradient with respect to b.



A Comparative Introduction to Deep Learning Frameworks: TensorFlow, PyTorch and JAX 2021-2022 Mirco Musolesi

jax.vmap

‣ vmap is a vectorising map. It creates a function which maps a 
function in input over the argument axes.


‣ Vectorising means that it allows to compute the output of a function 
in parallel over some axis of the input.


‣ It has two key arguments.	in_axes, which is a tuple that indicates 
which axes of the function’s arguments should be parallelised and 
out_axes, which specifies which axes of the function’s output we 
need to parallelise over.
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A Full MNIST Example

‣We are going to use one of the example that is provided by the JAX 
documentation and we will comment about the key parts.
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A Full Example using MNIST

import	jax.numpy	as	jnp

from	jax	import	grad,	jit,	vmap

from	jax	import	random
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Helper Functions

#	A	helper	function	to	randomly	initialize	weights	and	biases

#	for	a	dense	neural	network	layer

def	random_layer_params(m,	n,	key,	scale=1e-2):

		w_key,	b_key	=	random.split(key)

		return	scale	*	random.normal(w_key,	(n,	m)),	scale	*	random.normal(b_key,	
(n,))


#	Initialize	all	layers	for	a	fully-connected	neural	network	with	sizes	
"sizes"

def	init_network_params(sizes,	key):

		keys	=	random.split(key,	len(sizes))

		return	[random_layer_params(m,	n,	k)	for	m,	n,	k	in	zip(sizes[:-1],	
sizes[1:],	keys)]


layer_sizes	=	[784,	512,	512,	10]

step_size	=	0.01

num_epochs	=	10

batch_size	=	128

n_targets	=	10

params	=	init_network_params(layer_sizes,	random.PRNGKey(0))
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Predict Function

from	jax.scipy.special	import	logsumexp


def	relu(x):

		return	jnp.maximum(0,	x)


def	predict(params,	image):

		#	per-example	predictions

		activations	=	image

		for	w,	b	in	params[:-1]:

				outputs	=	jnp.dot(w,	activations)	+	b

				activations	=	relu(outputs)

		

		final_w,	final_b	=	params[-1]

		logits	=	jnp.dot(final_w,	activations)	+	final_b

		return	logits	-	logsumexp(logits)
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Log-probabilities and Cross-entropy Loss

‣ Let’s recall the definition of cross-entropy loss:





‣ Let’s now consider the logits (before the softmax). We indicate them with .


‣ The logits will go through a softmax function:





‣ Let’s know consider the log values of the probabilities: 





‣  is implemented in Python by scipy.special.logsumexp.
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Code

#	This	works	on	single	examples

random_flattened_image	=	random.normal(random.PRNGKey(1),	(28	*	28,))

preds	=	predict(params,	random_flattened_image)

print(preds.shape)


random_flattened_images	=	random.normal(random.PRNGKey(1),	(10,	28	*	28))

try:

		preds	=	predict(params,	random_flattened_images)

except	TypeError:

		print('Invalid	shapes!')


#	Let's	upgrade	it	to	handle	batches	using	`vmap`


#	Make	a	batched	version	of	the	`predict`	function

batched_predict	=	vmap(predict,	in_axes=(None,	0))


#	`batched_predict`	has	the	same	call	signature	as	`predict`

batched_preds	=	batched_predict(params,	random_flattened_images)

print(batched_preds.shape)
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Code

def	one_hot(x,	k,	dtype=jnp.float32):

		"""Create	a	one-hot	encoding	of	x	of	size	k."""

		return	jnp.array(x[:,	None]	==	jnp.arange(k),	dtype)

		

def	accuracy(params,	images,	targets):

		target_class	=	jnp.argmax(targets,	axis=1)

		predicted_class	=	jnp.argmax(batched_predict(params,	images),	axis=1)

		return	jnp.mean(predicted_class	==	target_class)


def	loss(params,	images,	targets):

		preds	=	batched_predict(params,	images)

		return	-jnp.mean(preds	*	targets)


@jit

def	update(params,	x,	y):

		grads	=	grad(loss)(params,	x,	y)

		return	[(w	-	step_size	*	dw,	b	-	step_size	*	db)

										for	(w,	b),	(dw,	db)	in	zip(params,	grads)]	
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Code

def	one_hot(x,	k,	dtype=jnp.float32):

		"""Create	a	one-hot	encoding	of	x	of	size	k."""

		return	jnp.array(x[:,	None]	==	jnp.arange(k),	dtype)

		

def	accuracy(params,	images,	targets):

		target_class	=	jnp.argmax(targets,	axis=1)

		predicted_class	=	jnp.argmax(batched_predict(params,	images),	axis=1)

		return	jnp.mean(predicted_class	==	target_class)


def	loss(params,	images,	targets):

		preds	=	batched_predict(params,	images)

		return	-jnp.mean(preds	*	targets)


@jit

def	update(params,	x,	y):

		grads	=	grad(loss)(params,	x,	y)

		return	[(w	-	step_size	*	dw,	b	-	step_size	*	db)

										for	(w,	b),	(dw,	db)	in	zip(params,	grads)]	
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Code

import	tensorflow	as	tf

#	Ensure	TF	does	not	see	GPU	and	grab	all	GPU	memory.

tf.config.set_visible_devices([],	device_type='GPU')


import	tensorflow_datasets	as	tfds


data_dir	=	'/tmp/tfds'


#	Fetch	full	datasets	for	evaluation

#	tfds.load	returns	tf.Tensors	(or	tf.data.Datasets	if	batch_size	!=	-1)

#	You	can	convert	them	to	NumPy	arrays	(or	iterables	of	NumPy	arrays)	with	tfds.dataset_as_numpy

mnist_data,	info	=	tfds.load(name="mnist",	batch_size=-1,	data_dir=data_dir,	with_info=True)

mnist_data	=	tfds.as_numpy(mnist_data)

train_data,	test_data	=	mnist_data['train'],	mnist_data['test']

num_labels	=	info.features['label'].num_classes

h,	w,	c	=	info.features['image'].shape

num_pixels	=	h	*	w	*	c


#	Full	train	set

train_images,	train_labels	=	train_data['image'],	train_data['label']

train_images	=	jnp.reshape(train_images,	(len(train_images),	num_pixels))

train_labels	=	one_hot(train_labels,	num_labels)


#	Full	test	set

test_images,	test_labels	=	test_data['image'],	test_data['label']

test_images	=	jnp.reshape(test_images,	(len(test_images),	num_pixels))

test_labels	=	one_hot(test_labels,	num_labels)
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Code

import	time


def	get_train_batches():

		#	as_supervised=True	gives	us	the	(image,	label)	as	a	tuple	instead	of	a	dict

		ds	=	tfds.load(name='mnist',	split='train',	as_supervised=True,	data_dir=data_dir)

		#	You	can	build	up	an	arbitrary	tf.data	input	pipeline

		ds	=	ds.batch(batch_size).prefetch(1)

		#	tfds.dataset_as_numpy	converts	the	tf.data.Dataset	into	an	iterable	of	NumPy	arrays

		return	tfds.as_numpy(ds)


for	epoch	in	range(num_epochs):

		start_time	=	time.time()

		for	x,	y	in	get_train_batches():

				x	=	jnp.reshape(x,	(len(x),	num_pixels))

				y	=	one_hot(y,	num_labels)

				params	=	update(params,	x,	y)

		epoch_time	=	time.time()	-	start_time


		train_acc	=	accuracy(params,	train_images,	train_labels)

		test_acc	=	accuracy(params,	test_images,	test_labels)

		print("Epoch	{}	in	{:0.2f}	sec".format(epoch,	epoch_time))

		print("Training	set	accuracy	{}".format(train_acc))

		print("Test	set	accuracy	{}".format(test_acc))
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Code

Epoch 0 in 10.44 sec

Training set accuracy 0.9252499938011169

Test set accuracy 0.9271000027656555

Epoch 1 in 5.16 sec

Training set accuracy 0.9428166747093201

Test set accuracy 0.9409999847412109

Epoch 2 in 4.65 sec

Training set accuracy 0.9532666802406311

Test set accuracy 0.9512999653816223

Epoch 3 in 4.57 sec

Training set accuracy 0.9598667025566101

Test set accuracy 0.9557999968528748

Epoch 4 in 4.52 sec

Training set accuracy 0.9650833606719971

Test set accuracy 0.960099995136261

Epoch 5 in 8.04 sec

Training set accuracy 0.9691833257675171

Test set accuracy 0.9629999995231628

Epoch 6 in 10.43 sec

Training set accuracy 0.9726333618164062

Test set accuracy 0.9651999473571777

Epoch 7 in 10.43 sec

Training set accuracy 0.9754000306129456

Test set accuracy 0.9666999578475952

Epoch 8 in 6.69 sec

Training set accuracy 0.9779166579246521

Test set accuracy 0.9679999947547913

Epoch 9 in 6.79 sec

Training set accuracy 0.9804666638374329

Test set accuracy 0.9691999554634094
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

#	This	works	on	single	examples

random_flattened_image	=	random.normal(random.PRNGKey(1),	(28	*	28,))

preds	=	predict(params,	random_flattened_image)

print(preds.shape)


random_flattened_images	=	random.normal(random.PRNGKey(1),	(10,	28	*	28))

try:

		preds	=	predict(params,	random_flattened_images)

except	TypeError:

		print('Invalid	shapes!')


#	Let's	upgrade	it	to	handle	batches	using	`vmap`


#	Make	a	batched	version	of	the	`predict`	function

batched_predict	=	vmap(predict,	in_axes=(None,	0))


#	`batched_predict`	has	the	same	call	signature	as	`predict`

batched_preds	=	batched_predict(params,	random_flattened_images)

print(batched_preds.shape)
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ There are potential problems related to the use of the standard Pseudo Random Number Generators (PRNGs) 
offered by NumPy (numpy.random).


‣ Example:


     import	numpy	as	np


					np.random.seed(0)


					random_numbers	=	np.random.uniform(size	=	2)


					print	random_numbers


‣ This returns:


[0.7135691,	0.5401991]


‣ If you re-run the program again (with the same seed), you get the same result.


‣ This is essential for reproducibility.
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ However, if you a program that is running on a parallel architecture, 
such as a GPU, this is not the case anymore.


‣ In fact, PRNGs in NumPy are based on a global state. It is not 
possible to guarantee the usual sequential equivalent guarantee 
(same numbers generated by the same seed)
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ Foe example, if we use JIT for parallelising the execution, the order for this is not guaranteed:


import	numpy	as	np


np.random.seed(0)


def	f1():	


			return	np.random.uniform()


def	f2()


			return	np.random.uniform()


def	f3():


			return	f1()+f2()
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ To avoid this issue, JAX does not use a global state.


‣ Instead, random functions “consume” the state, which is referred as a key:


from	jax	import	random


key	=	random.PRNGKey(42)


which returns:


[0,	42]


‣ Random keys in JAX corresponds essentially to random seeds. However, 
instead of setting once as in NumPy, any call of a random function in JAX 
requires a key to be specified.
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ In order to generate different and independent samples, we must “split” the key ourselves whenever we 
call a random function as follows:


new_key,	sub_key	=	random.split(key)


del	key


sample	=	random.uniform(sub_key)


del	sub_key


key	=	new_key


‣ split()	is a deterministic function that converts one key into several keys. We keep one of the 
outputs as the new_key.


‣We use a unique extra key (sub_key) as input once and then discard it.


‣ If we ant to get another sample from the normal distribution we will split key again, etc.
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JAX Ecosystem

‣ I presented JAX from a close-to-the-metal point of view.


‣ However, there are many libraries that are based on it and they 
simplify the development of complex deep learning architectures.


‣ Examples include Flax, Haiku, RLax (for Reinforcement Learning) and 
Jraph (for graph neural neural networks), etc.


‣ Huggingface also maintains a JAX library, which also provides support 
for transformers.
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References

‣ JAX Documentation.
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JAX documentation.


