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JAX

‣ JAX is a library that enables transformations of array manipulating 
programs with a NumPy-like array. 

‣ JAX is developed by Google. Current version is 0.3.24. 

‣ One way of seeing it is to consider it as a differentiable NumPy. 

‣ The API itself is the same of NumPy. 

‣ It is designed for being used with accelerators.
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JAX and XLA

‣ JAX uses XLA to compile and run NumPy code on accelerators, such 
as GPUs and TPUs. 

‣ Compilation takes place under the hood by default. 

‣ Libraries are just-in-time compiled and executed. 

‣ JAX also lets to just-in-time compile user-defined functions into XLA-
optimised kernels using a predefined function.
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XLA 

‣ XLA (Accelerated Linear Algebra) is a domain-specific compiler with 
linear algebra that can accelerate models with potentially no source 
changes. 

‣ The results are in memory and speed. 

‣ Example: The results are improvements in speed and memory usage: 
e.g. in BERT MLPerf submission using 8 Volta V100 GPUs using XLA 
has achieved a ~7x performance improvement and ~5x batch size 
improvement. 

‣ MLPerf is a standard benchmark for ML. 
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XLA

Source: TensorFlow XLA Tutorial (https://www.tensorflow.org/xla) 

https://www.tensorflow.org/xla
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Decorators

‣ A decorator is a Python design pattern that allows a user to add new 
functionality to an existing object without modifying its structure. 

‣ Let us start from underlining the fact that Python allows a nested 
function to access the outer scope of an enclosing function. 
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Decorators

‣ Let’s us consider the following definition of a function 

def	A(a_text):	

			def	B()	

						print(a_text)	

			B()				

‣We get the following behaviour: 

>>>	A(“some	text”)	

some	text
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Decorators

‣ Let us consider the creation of a simple decorator.  

‣We define a wrapper inside an enclosed function. 

‣ Example: 

def	uppercase_decorator(function):	

			def	wrapper()	

							func	=	function()	

							make_uppercase	=	func.upper()	

							return	make_uppercase	

				return	wrapper
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Decorators

‣ The decorator function takes a function as an argument. 

‣We will have to define a function and pass it to the decorator. 

‣ Let’s us consider the following function as an example: 

def	say_hello_world():	

				return	‘hello	world!’	

‣We then apply a decorator and we call the decorated function: 

>>>decorate	=	uppercase_decorator(say_hello_world)	

>>>decorate()	

‘HELLO	WORLD!”
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Decorators

‣ Python provides an easier way to apply decorators, i.e., it is sufficient to use the 
symbol @	before the function we want to decorate.  

‣ For example we can apply the decorator as in the example before in this way: 

@uppercase_decorator	

def	say_hello_world:	

			return	‘hello	world!’	

‣ And then call the function: 

>>>say_hello_world	

‘HELLO	WORLD!’
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jax.jit

‣ jax.jit sets up a function for just-in-time compilation using XLA. 

‣ JAX runs transparently on GPUs and TPUS. 

‣ You can jit-compile a function by using 

relu_jit	=	jit(relu)	

‣ Or indeed we can use decorators!
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jax.jit

‣ Remember that by default, JAX executes operations sequentially. 

‣ Using JIT compilation decorators, sequences of operations can be 
optimised (and run in parallel). 

‣ Not all the JAX code can be JIT compiled, since it requires array 
shapes to be static and known at a compile time.
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jax.jit

‣ JIT works by tracing a function. 

‣ JIT is based on tracer objects that are used to extract the sequence of 
operations that are specified by the function. 

‣ Basic traces are sort of stand-ins that encode the shape and the type of the 
arrays, but they are agnostic to the values. 

‣ The recorded sequence of computations are applied with XLA to new inputs 
with the same shape and type, without re-executing the Python code. 

‣When we call the compiled function on matching inputs, no re-compilation is 
required. 



A Comparative Introduction to Deep Learning Frameworks: TensorFlow, PyTorch and JAX 2021-2022 Mirco Musolesi

jax.grad()

‣ grad() provides the users with automatic differentiation:  

from	jax	import	grad	

print('The	value	of	the	derivate	of	exp	for	1	is',	jnp.exp(1.0))	

grad_exp	=	grad(jnp.exp)	

print('The	value	of	the	derivate	of	exp	for	1	is’,grad_exp(1.0))	

‣ The output is: 

The	value	of	the	derivate	of	exp	for	1	is	2.7182817	

The	value	of	the	derivate	of	exp	for	1	is	2.7182817	
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jax.grad()

‣We can use the grad function with its argnums argument to differentiate a 
function with respect to positional arguments. 

‣ For example: 

w_grad	=	grad(loss,	argnums=0)(w,	b)	

returns  the gradient with respect to w (note that argnums=0, so in theory in this 
case, specifying it in the function is actually redundant). 

‣ And: 

b_grad	=	grad(loss,	1)(w,	b)	

returns the gradient with respect to b.
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jax.vmap

‣ vmap is a vectorising map. It creates a function which maps a 
function in input over the argument axes. 

‣ Vectorising means that it allows to compute the output of a function 
in parallel over some axis of the input. 

‣ It has two key arguments.	in_axes, which is a tuple that indicates 
which axes of the function’s arguments should be parallelised and 
out_axes, which specifies which axes of the function’s output we 
need to parallelise over.
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A Full MNIST Example

‣We are going to use one of the example that is provided by the JAX 
documentation and we will comment about the key parts.
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A Full Example using MNIST

import	jax.numpy	as	jnp	
from	jax	import	grad,	jit,	vmap	
from	jax	import	random
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Helper Functions

#	A	helper	function	to	randomly	initialize	weights	and	biases	
#	for	a	dense	neural	network	layer	
def	random_layer_params(m,	n,	key,	scale=1e-2):	
		w_key,	b_key	=	random.split(key)	
		return	scale	*	random.normal(w_key,	(n,	m)),	scale	*	random.normal(b_key,	
(n,))	

#	Initialize	all	layers	for	a	fully-connected	neural	network	with	sizes	
"sizes"	
def	init_network_params(sizes,	key):	
		keys	=	random.split(key,	len(sizes))	
		return	[random_layer_params(m,	n,	k)	for	m,	n,	k	in	zip(sizes[:-1],	
sizes[1:],	keys)]	

layer_sizes	=	[784,	512,	512,	10]	
step_size	=	0.01	
num_epochs	=	10	
batch_size	=	128	
n_targets	=	10	
params	=	init_network_params(layer_sizes,	random.PRNGKey(0))
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Predict Function

from	jax.scipy.special	import	logsumexp	

def	relu(x):	
		return	jnp.maximum(0,	x)	

def	predict(params,	image):	
		#	per-example	predictions	
		activations	=	image	
		for	w,	b	in	params[:-1]:	
				outputs	=	jnp.dot(w,	activations)	+	b	
				activations	=	relu(outputs)	
			
		final_w,	final_b	=	params[-1]	
		logits	=	jnp.dot(final_w,	activations)	+	final_b	
		return	logits	-	logsumexp(logits)
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Log-probabilities and Cross-entropy Loss

‣ Let’s recall the definition of cross-entropy loss: 

 

‣ Let’s now consider the logits (before the softmax). We indicate them with . 

‣ The logits will go through a softmax function: 

 

‣ Let’s know consider the log values of the probabilities:  

 

‣  is implemented in Python by scipy.special.logsumexp.
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Code

#	This	works	on	single	examples	
random_flattened_image	=	random.normal(random.PRNGKey(1),	(28	*	28,))	
preds	=	predict(params,	random_flattened_image)	
print(preds.shape)	

random_flattened_images	=	random.normal(random.PRNGKey(1),	(10,	28	*	28))	
try:	
		preds	=	predict(params,	random_flattened_images)	
except	TypeError:	
		print('Invalid	shapes!')	

#	Let's	upgrade	it	to	handle	batches	using	`vmap`	

#	Make	a	batched	version	of	the	`predict`	function	
batched_predict	=	vmap(predict,	in_axes=(None,	0))	

#	`batched_predict`	has	the	same	call	signature	as	`predict`	
batched_preds	=	batched_predict(params,	random_flattened_images)	
print(batched_preds.shape)
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Code

def	one_hot(x,	k,	dtype=jnp.float32):	
		"""Create	a	one-hot	encoding	of	x	of	size	k."""	
		return	jnp.array(x[:,	None]	==	jnp.arange(k),	dtype)	
			
def	accuracy(params,	images,	targets):	
		target_class	=	jnp.argmax(targets,	axis=1)	
		predicted_class	=	jnp.argmax(batched_predict(params,	images),	axis=1)	
		return	jnp.mean(predicted_class	==	target_class)	

def	loss(params,	images,	targets):	
		preds	=	batched_predict(params,	images)	
		return	-jnp.mean(preds	*	targets)	

@jit	
def	update(params,	x,	y):	
		grads	=	grad(loss)(params,	x,	y)	
		return	[(w	-	step_size	*	dw,	b	-	step_size	*	db)	
										for	(w,	b),	(dw,	db)	in	zip(params,	grads)]	



A Comparative Introduction to Deep Learning Frameworks: TensorFlow, PyTorch and JAX 2021-2022 Mirco Musolesi

Code

def	one_hot(x,	k,	dtype=jnp.float32):	
		"""Create	a	one-hot	encoding	of	x	of	size	k."""	
		return	jnp.array(x[:,	None]	==	jnp.arange(k),	dtype)	
			
def	accuracy(params,	images,	targets):	
		target_class	=	jnp.argmax(targets,	axis=1)	
		predicted_class	=	jnp.argmax(batched_predict(params,	images),	axis=1)	
		return	jnp.mean(predicted_class	==	target_class)	

def	loss(params,	images,	targets):	
		preds	=	batched_predict(params,	images)	
		return	-jnp.mean(preds	*	targets)	

@jit	
def	update(params,	x,	y):	
		grads	=	grad(loss)(params,	x,	y)	
		return	[(w	-	step_size	*	dw,	b	-	step_size	*	db)	
										for	(w,	b),	(dw,	db)	in	zip(params,	grads)]	
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Code

import	tensorflow	as	tf	
#	Ensure	TF	does	not	see	GPU	and	grab	all	GPU	memory.	
tf.config.set_visible_devices([],	device_type='GPU')	

import	tensorflow_datasets	as	tfds	

data_dir	=	'/tmp/tfds'	

#	Fetch	full	datasets	for	evaluation	
#	tfds.load	returns	tf.Tensors	(or	tf.data.Datasets	if	batch_size	!=	-1)	
#	You	can	convert	them	to	NumPy	arrays	(or	iterables	of	NumPy	arrays)	with	tfds.dataset_as_numpy	
mnist_data,	info	=	tfds.load(name="mnist",	batch_size=-1,	data_dir=data_dir,	with_info=True)	
mnist_data	=	tfds.as_numpy(mnist_data)	
train_data,	test_data	=	mnist_data['train'],	mnist_data['test']	
num_labels	=	info.features['label'].num_classes	
h,	w,	c	=	info.features['image'].shape	
num_pixels	=	h	*	w	*	c	

#	Full	train	set	
train_images,	train_labels	=	train_data['image'],	train_data['label']	
train_images	=	jnp.reshape(train_images,	(len(train_images),	num_pixels))	
train_labels	=	one_hot(train_labels,	num_labels)	

#	Full	test	set	
test_images,	test_labels	=	test_data['image'],	test_data['label']	
test_images	=	jnp.reshape(test_images,	(len(test_images),	num_pixels))	
test_labels	=	one_hot(test_labels,	num_labels)
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Code

import	time	

def	get_train_batches():	
		#	as_supervised=True	gives	us	the	(image,	label)	as	a	tuple	instead	of	a	dict	
		ds	=	tfds.load(name='mnist',	split='train',	as_supervised=True,	data_dir=data_dir)	
		#	You	can	build	up	an	arbitrary	tf.data	input	pipeline	
		ds	=	ds.batch(batch_size).prefetch(1)	
		#	tfds.dataset_as_numpy	converts	the	tf.data.Dataset	into	an	iterable	of	NumPy	arrays	
		return	tfds.as_numpy(ds)	

for	epoch	in	range(num_epochs):	
		start_time	=	time.time()	
		for	x,	y	in	get_train_batches():	
				x	=	jnp.reshape(x,	(len(x),	num_pixels))	
				y	=	one_hot(y,	num_labels)	
				params	=	update(params,	x,	y)	
		epoch_time	=	time.time()	-	start_time	

		train_acc	=	accuracy(params,	train_images,	train_labels)	
		test_acc	=	accuracy(params,	test_images,	test_labels)	
		print("Epoch	{}	in	{:0.2f}	sec".format(epoch,	epoch_time))	
		print("Training	set	accuracy	{}".format(train_acc))	
		print("Test	set	accuracy	{}".format(test_acc))
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Code

Epoch 0 in 10.44 sec 
Training set accuracy 0.9252499938011169 
Test set accuracy 0.9271000027656555 
Epoch 1 in 5.16 sec 
Training set accuracy 0.9428166747093201 
Test set accuracy 0.9409999847412109 
Epoch 2 in 4.65 sec 
Training set accuracy 0.9532666802406311 
Test set accuracy 0.9512999653816223 
Epoch 3 in 4.57 sec 
Training set accuracy 0.9598667025566101 
Test set accuracy 0.9557999968528748 
Epoch 4 in 4.52 sec 
Training set accuracy 0.9650833606719971 
Test set accuracy 0.960099995136261 
Epoch 5 in 8.04 sec 
Training set accuracy 0.9691833257675171 
Test set accuracy 0.9629999995231628 
Epoch 6 in 10.43 sec 
Training set accuracy 0.9726333618164062 
Test set accuracy 0.9651999473571777 
Epoch 7 in 10.43 sec 
Training set accuracy 0.9754000306129456 
Test set accuracy 0.9666999578475952 
Epoch 8 in 6.69 sec 
Training set accuracy 0.9779166579246521 
Test set accuracy 0.9679999947547913 
Epoch 9 in 6.79 sec 
Training set accuracy 0.9804666638374329 
Test set accuracy 0.9691999554634094
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

#	This	works	on	single	examples	
random_flattened_image	=	random.normal(random.PRNGKey(1),	(28	*	28,))	
preds	=	predict(params,	random_flattened_image)	
print(preds.shape)	

random_flattened_images	=	random.normal(random.PRNGKey(1),	(10,	28	*	28))	
try:	
		preds	=	predict(params,	random_flattened_images)	
except	TypeError:	
		print('Invalid	shapes!')	

#	Let's	upgrade	it	to	handle	batches	using	`vmap`	

#	Make	a	batched	version	of	the	`predict`	function	
batched_predict	=	vmap(predict,	in_axes=(None,	0))	

#	`batched_predict`	has	the	same	call	signature	as	`predict`	
batched_preds	=	batched_predict(params,	random_flattened_images)	
print(batched_preds.shape)
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ There are potential problems related to the use of the standard Pseudo Random Number Generators (PRNGs) 
offered by NumPy (numpy.random). 

‣ Example: 

     import	numpy	as	np	

					np.random.seed(0)	

					random_numbers	=	np.random.uniform(size	=	2)	

					print	random_numbers	

‣ This returns: 

[0.7135691,	0.5401991]	

‣ If you re-run the program again (with the same seed), you get the same result. 

‣ This is essential for reproducibility.
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ However, if you a program that is running on a parallel architecture, 
such as a GPU, this is not the case anymore. 

‣ In fact, PRNGs in NumPy are based on a global state. It is not 
possible to guarantee the usual sequential equivalent guarantee 
(same numbers generated by the same seed)
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ Foe example, if we use JIT for parallelising the execution, the order for this is not guaranteed: 

import	numpy	as	np	

np.random.seed(0)	

def	f1():		

			return	np.random.uniform()	

def	f2()	

			return	np.random.uniform()	

def	f3():	

			return	f1()+f2()
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ To avoid this issue, JAX does not use a global state. 

‣ Instead, random functions “consume” the state, which is referred as a key: 

from	jax	import	random	

key	=	random.PRNGKey(42)	

which returns: 

[0,	42]	

‣ Random keys in JAX corresponds essentially to random seeds. However, 
instead of setting once as in NumPy, any call of a random function in JAX 
requires a key to be specified.
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A Note on Pseudo Random Number 
Generators (PRNGs) in JAX 

‣ In order to generate different and independent samples, we must “split” the key ourselves whenever we 
call a random function as follows: 

new_key,	sub_key	=	random.split(key)	

del	key	

sample	=	random.uniform(sub_key)	

del	sub_key	

key	=	new_key	

‣ split()	is a deterministic function that converts one key into several keys. We keep one of the 
outputs as the new_key. 

‣We use a unique extra key (sub_key) as input once and then discard it. 

‣ If we ant to get another sample from the normal distribution we will split key again, etc.
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JAX Ecosystem

‣ I presented JAX from a close-to-the-metal point of view. 

‣ However, there are many libraries that are based on it and they 
simplify the development of complex deep learning architectures. 

‣ Examples include Flax, Haiku, RLax (for Reinforcement Learning) and 
Jraph (for graph neural neural networks), etc. 

‣ Huggingface also maintains a JAX library, which also provides support 
for transformers.
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References

‣ JAX Documentation. 
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