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PyTorch

‣ PyTorch is a deep learning framework based on the Torch library. 

‣ Torch is a machine learning library, which uses the scripting 
language Lua (on the LuaJIT - Lua Just In Time runtime for the Lua 
language). Lua itself is implemented in C. 

‣ Current stable release is 1.13.0. 

‣ Originally developed by Meta AI, now part of the Linux Foundation.
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Deep Neural Networks
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PyTorch Tensors

‣ Data structures are key aspects of deep learning frameworks. 

‣ Python arrays are inefficient. 

‣ Vanilla Python arrays are stored in non-continuous memory. 

‣We use instead specialised data structures, i.e., PyTorch tensors. 

‣ As NumPy arrays, they are based on contiguous memory cells.



A Comparative Introduction to Deep Learning Frameworks: TensorFlow, PyTorch and JAX 2021-2022 Mirco Musolesi

PyTorch Tensors

‣ Example (a vector of ones): 

>>>	import	torch	

>>>	a	=	torch.ones	(3)	

>>>	a	

tensor([1.,	1.,	1.])	

>>>	a[1]	

tensor(1.)	

>>>	float(a[1])	

1.0
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PyTorch Tensors

‣We can modify the values of the elements of a Tensor as follows 
(given the example in the previous slide): 

>>>	a[2]	=	2.0	

>>>	a	

tensor([1.,	1.,	2.])
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Initialisation of Tensors 

‣ More in general, you can initialise the tensors in different ways. 

‣ One way is directly from data: 

>>>	data	=	[[10,15],[23,	42]]	

>>>	x_data	=	torch.tensor(data)	

>>>	x_data	

tensor([[10,	15],	

								[23,	42]])	
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Initialisation of Tensors

‣ Another way is to create them from NumPy arrays: 

>>> np_array = np.array(data) 

>>> x_np = torch.from_numpy(np_array) 

>>> x_np 

tensor([[10, 15], 

        [23, 42]]) 

‣ You can also initialise them from existing tensors as well (see documentation). 
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Initialisation of Tensors

‣ Or you can initialise them with ones (torch.ones()) or zeros (torch.zeros()) or 
random values ((torch.rand()). 

‣ For example: 

>>>	import	torch	

>>>	shape	=	(2,	3,	)	

>>>	random_tensor	=	torch.rand(shape)	

>>>	random_tensor	

tensor([[0.0685,	0.3877,	0.0179],	

								[0.1773,	0.6916,	0.4333]])
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Tensor Size and Shape

‣ The shape of a tensor is given by torch.tensor.size(dim	=	None).  

‣ This method returns the size of the tensor itself. 

‣ If the dimension dim is not specified, the returned value is an object of class torch.size, 
which is a subclass of standard Python tuple. 

‣ Example: 

>>>	t.size()	

torch.Size([4,	5,	10])	

>>>	t.size(dim=1)	

5	
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Dataloaders

‣ Pytorch provides two primitives: 

‣torch.utils.data.DataLoader	

‣torch.utils.data.Dataset	

‣ These primitives allow to use pre-loaded datasets as well as user-defined data. 

‣ Dataset stores samples and the corresponding labels. 

‣ DataLoader is a wrapper of an iterable around Dataset. 

‣ PyTorch provides a number of pre-loaded datasets that subclass 
torch.utils.data.Dataset and implements functions that are specific to that 
dataset.
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Dataset Loading

import	torch	
from	torch.utils.data	import	Dataset	
from	torchvision	import	datasets	
from	torchvision.transforms	import	ToTensor	
import	matplotlib.pyplot	as	plt	

training_data	=	datasets.MNIST(	
				root="data",	
				train=True,	
				download=True,	
				transform=ToTensor()	
)	

test_data	=	datasets.MNIST(	
				root="data",	
				train=False,	
				download=True,	
				transform=ToTensor()	
)
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Dataset Loading

from	torch.utils.data	import	DataLoader	

train_dataloader	=	DataLoader(training_data,	batch_size=64,	
shuffle=True)	
test_dataloader	=	DataLoader(test_data,	batch_size=64,	
shuffle=True)	

#	Display	image	and	label.	
train_features,	train_labels	=	next(iter(train_dataloader))	
print(f"Feature	batch	shape:	{train_features.size()}")	
print(f"Labels	batch	shape:	{train_labels.size()}")	
img	=	train_features[0].squeeze()	
label	=	train_labels[0]	
plt.imshow(img,	cmap="gray")	
plt.show()	
print(f"Label:	{label}")
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Dataset Loading

‣ This would be the output of the previous slide: 

Feature batch shape: torch.Size([64, 1, 28, 28]) 

Labels batch shape: torch.Size([64]) 
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The MNIST Dataset in PyTorch 

‣We consider the MNIST Dataset with the following parameters: 

‣ root	is the path where the train/test data is stored. 

‣ train	specifies if it is a training or a test dataset. 

‣ download=True	downloads the data if it is not available at root. 

‣ transform and target_transform specify the feature and the 
label transformations, which we might want to apply to the data.
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Dataset Loading

import	torch	
from	torchvision	import	datasets	
from	torchvision.transforms	import	ToTensor,	Lambda	

ds	=	datasets.MNIST(	
				root="data",	
				train=True,	
				download=True,	
				transform=ToTensor(),	
				target_transform=Lambda(lambda	y:	torch.zeros(10,	
dtype=torch.float).scatter_(0,	torch.tensor(y),	
value=1))	
)
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DataLoaders and Batches

‣ Dataset retrieves the features of the dataset and the labels one sample at a time. 

‣ Instead, we are typically interested in passing mini batches, and possibly reshuffle the data at 
every epoch to reduce overfitting. 

‣ DataLoader is an iterable that abstracts this complexity. 

‣ It also hides the complexity related to the use of multiprocessing. 

‣ Example: 

from	torch.utils.data	import	DataLoader	

train_dataloader	=	DataLoader(training_data,	batch_size=64,	shuffle=True)	
test_dataloader	=	DataLoader(test_data,	batch_size=64,	shuffle=True)	
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Definition of the Neural Network

‣ In PyTorch, a neural network is defined by subclassing nn.Module. 

‣ There are two fundamental methods that we need to overwrite: 

‣ __init__(): it is used to initialise the neural network. 

‣ forward(): it is used to implement the “forward pass” of the 
network.
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Creating the Neural Network

‣ The torch.nn namespace provides all the building blocks for 
building the network. 

‣ Every module in PyTorch subclasses the class nn.Module. 

‣ A neural network is a module itself that consists of other modules (our 
layers).



A Comparative Introduction to Deep Learning Frameworks: TensorFlow, PyTorch and JAX 2021-2022 Mirco Musolesi

PyTorch Devices

‣We want to train the model on a GPU if available. 

‣ By default, the tensors are generated and managed on the CPU. The 
model itself is initialised on the CPU. It is necessary to explicitly set 
the device to GPU. 

‣ It is possible to check if a device is present, for example we can 
check if CUDA support is available through: 

torch.cuda.is_available()	
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Devices

import	os	
import	torch	
from	torch	import	nn	
from	torch.utils.data	import	DataLoader	
from	torchvision	import	datasets,	transforms	

device	=	"cuda"	if	torch.cuda.is_available()	else	"cpu"	
print(f"Using	{device}	device”)	

‣ The output on a device without a GPU will be: 

Using	cpu	device	
I
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Definition of the Neural Network

class	NeuralNetwork(nn.Module):	
				def	__init__(self):	
								super(NeuralNetwork,	self).__init__()	
								self.flatten	=	nn.Flatten()	
								self.linear_relu_stack	=	nn.Sequential(	
												nn.Linear(28*28,	512),	
												nn.ReLU(),	
												nn.Linear(512,	512),	
												nn.ReLU(),	
												nn.Linear(512,	10),	
								)	

				def	forward(self,	x):	
								x	=	self.flatten(x)	
								logits	=	self.linear_relu_stack(x)	
								return	logits		
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Definition of the Neural Network

model	=	NeuralNetwork().to(device)	
print(model)	

‣ The output will be: 

NeuralNetwork(	
		(flatten):	Flatten(start_dim=1,	end_dim=-1)	
		(linear_relu_stack):	Sequential(	
				(0):	Linear(in_features=784,	out_features=512,	bias=True)	
				(1):	ReLU()	
				(2):	Linear(in_features=512,	out_features=512,	bias=True)	
				(3):	ReLU()	
				(4):	Linear(in_features=512,	out_features=10,	bias=True)	
		)	
)
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PyTorch Layers

‣ Let us consider the different modules/layers in detail: 

‣ nn.Sequential is an ordered container of modules. The data is passed through 
the modules in the same order as they are defined. 

‣ nn.flatten converts each 2D image (28x28 pixels) into an array of 784 pixels. 

‣ nn.linear	applies a linear transformation on the input using the stored weights 
and biases, literally . 

‣ nn.relu	is a non-linear activation (it introduces the non-linearity necessary for 
guaranteeing universal approximation). Please note the separation of the linear 
and non linear component “per layer”. Also compare with the TensorFlow typical 
design pattern.

yi = ∑
j

(wj,i + bi)
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Nodes/Units/Neurons

f(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

 is called the activation function,  is usually called the biasf b
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Activations Functions

‣ They are generally used to add non-linearity. 

‣ Examples: 

‣ Rectified Linear Unit: it returns the max between 0 and the 
value in input. In other words, given the value  in input it 
returns .  

‣ Logistic sigmoid: given the value in input , it returns 

. 

‣ Arctan: given the value in input , it returns .

z
max(0,z)

z
1

1 + ez

z tan−1(z)
Credit: Wikimedia
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Nodes/Units/Neurons

relu(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

Note that here the function in input of relu is 1-dimensional.
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Softmax Layer

‣ The output of the last linear layer of the neural network returns logits. 

‣ The logits are passed to a nn.Softmax module. 

‣ Logits are raw values in the [-infinity, +infinity] interval. 

‣ The lights are scaled to values in the [0,1] representing the model’s 
predicted probabilities (calibration might be necessary).
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Softmax Layer

‣ Please note that softmax is not like the activation functions that we 
discussed before. The activations functions that we discussed before 
take in input real numbers and returns a real number. 

‣ A softmax function receives in input a vector of real numbers of 
dimension  and returns a vector of real numbers of dimension . 

‣ Given a vector of real numbers in input  of dimension , a softmax 
function normalises it into a probability distribution consisting of  
probabilities proportional to the exponentials of each element  of the 

vector . More formally,  for .

n n

z n
n

zi

z softmax(z)i =
ezi

∑n
j=1 ezj

i = 1,..n
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Using the Model

‣ In order to use the model, we pass the input data. 

‣ This executes the model’s forward(). 

‣ model.forward()	does not have to be call directly. 

‣ In our case, the model returns a 2-dimensional tensor with dim=0 
corresponding to each output of 10 raw predicted values for each 
class and dim=1 corresponds to the individual values of each output. 

‣We obtain the prediction probabilities by passing it through an 
instance of the nn.Softmax	module.
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Model Parameters

‣ As we saw, layers are usually parametrised, i.e., they have weights 
and biases that are optimised during training. 

‣ It is possible to access the models using parameters() and 
named_parameters().
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Model Parameters

print(f"Model	structure:	{model}\n\n")	

for	name,	param	in	model.named_parameters():	
				print(f"Layer:	{name}	|	Size:	{param.size()}	|	
Values	:	{param[:2]}	\n")
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Model Parameters

‣ The output will be: 
(flatten): Flatten(start_dim=1, end_dim=-1) 
  (linear_relu_stack): Sequential( 
    (0): Linear(in_features=784, out_features=512, bias=True) 
    (1): ReLU() 
    (2): Linear(in_features=512, out_features=512, bias=True) 
    (3): ReLU() 
    (4): Linear(in_features=512, out_features=10, bias=True) 
  ) 
) 

Layer: linear_relu_stack.0.weight | Size: torch.Size([512, 784]) | Values : tensor([[-0.0326,  0.0231, -0.0234,  ..., -0.0043, 
-0.0072,  0.0234], 
        [-0.0068,  0.0255,  0.0012,  ..., -0.0176,  0.0071,  0.0073]], 
       grad_fn=<SliceBackward0>)  

Layer: linear_relu_stack.0.bias | Size: torch.Size([512]) | Values : tensor([0.0126, 0.0055], grad_fn=<SliceBackward0>)  

Layer: linear_relu_stack.2.weight | Size: torch.Size([512, 512]) | Values : tensor([[ 4.2491e-02, -2.7992e-02, 
-3.4629e-02,  ...,  2.7492e-02, 
          4.2681e-02,  2.0021e-03], 
        [-3.5574e-03, -4.6985e-05, -3.4182e-02,  ..., -3.8956e-02, 
          3.4745e-02, -1.6162e-03]], grad_fn=<SliceBackward0>)  

Layer: linear_relu_stack.2.bias | Size: torch.Size([512]) | Values : tensor([0.0132, 0.0310], grad_fn=<SliceBackward0>)  

Layer: linear_relu_stack.4.weight | Size: torch.Size([10, 512]) | Values : tensor([[ 0.0180, -0.0450, -0.0341,  ...,  0.0254,  
0.0009,  0.1083], 
        [-0.0237,  0.0091,  0.0851,  ...,  0.0052,  0.1011, -0.0933]], 
       grad_fn=<SliceBackward0>)  

Layer: linear_relu_stack.4.bias | Size: torch.Size([10]) | Values : tensor([-0.1172,  0.1277], grad_fn=<SliceBackward0>) 
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Using the Model

X	=	torch.rand(1,	28,	28,	device=device)	
logits	=	model(X)	
pred_probab	=	nn.Softmax(dim=1)(logits)	
y_pred	=	pred_probab.argmax(1)	
print(f"Predicted	class:	{y_pred}”)	

‣ The output will be: 

Predicted	class:	tensor([1])
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Parameters and Optimisers

learning_rate	=	1e-3	
batch_size	=	64	
epochs	=	5	

#	Initialize	the	loss	function	
loss_fn	=	nn.CrossEntropyLoss()	

optimizer	=	torch.optim.SGD(model.parameters(),	
lr=learning_rate)
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Training and Validation/Test Loop

‣ Once the hyper parameter are set, we can train and optimise with an 
optimisation loop. 

‣ Each iteration of the optimisation loop is called an epoch. 

‣We have two parts: 

‣ The train loop, which iterates over the training dataset and 
converge to optimal parameter. 

‣ The validation/test loop, which iterates over the test dataset to 
check if the the model performance is improving.
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Training and Validation/Test Loop

‣ Inside the training loop, optimisation happens in three steps: 

‣ The call of optimizer.zero_grad(), which is used to reset the 
gradients of model parameters.Gradients by default add up. We 
must explicitly zero them at each iteration. 

‣ The call of loss.backward(), which back-propagates the 
prediction loss. PyTorch deposits the gradient loss with respect to 
each parameter. This call is explicit! 

‣ The call of optimizer.step(), which adjusts the parameters by 
the gradients collected in the backward pass above. 
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Train Loop

def	train_loop(dataloader,	model,	loss_fn,	optimizer):	
				size	=	len(dataloader.dataset)	
				for	batch,	(X,	y)	in	enumerate(dataloader):	
								#	Compute	prediction	and	loss	
								pred	=	model(X)	
								loss	=	loss_fn(pred,	y)	

								#	Backpropagation	
								optimizer.zero_grad()	
								loss.backward()	
								optimizer.step()	

								if	batch	%	100	==	0:	
												loss,	current	=	loss.item(),	batch	*	len(X)	
												print(f"loss:	{loss:>7f}		[{current:>5d}/
{size:>5d}]")
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Test Loop

def	test_loop(dataloader,	model,	loss_fn):	
				size	=	len(dataloader.dataset)	
				num_batches	=	len(dataloader)	
				test_loss,	correct	=	0,	0	

				with	torch.no_grad():	
								for	X,	y	in	dataloader:	
												pred	=	model(X)	
												test_loss	+=	loss_fn(pred,	y).item()	
												correct	+=	(pred.argmax(1)	==	
y).type(torch.float).sum().item()	

				test_loss	/=	num_batches	
				correct	/=	size	
				print(f"Test	Error:	\n	Accuracy:	{(100*correct):>0.1f}%,	
Avg	loss:	{test_loss:>8f}	\n")
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Execution of Train Loop and Test Loop

loss_fn	=	nn.CrossEntropyLoss()	
optimizer	=	torch.optim.SGD(model.parameters(),	
lr=learning_rate)	

epochs	=	10	
for	t	in	range(epochs):	
				print(f"Epoch	
{t+1}\n-------------------------------")	
				train_loop(train_dataloader,	model,	loss_fn,	
optimizer)	
				test_loop(test_dataloader,	model,	loss_fn)	
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