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fis called the activation function, b is usually called the bias
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Activations Functions

» They are generally used to add non-linearity.
» Examples:

» Rectified Linear Unit: it returns the max between O and the
value in input. In other words, given the value z in input it
returns max(0,z).

) Logllst/c sigmoid: given the value in input z, it returns EEEEERE= e
1 4+ e2
-
» Arctan: given the value in input z, it returns tan™1(z). ———T

Credit: Wikimedia
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Note that here the function in input of relu is 1-dimensional.
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Softmax Function

» Another function that we will use is softmax.

» But please note that softmax is not like the activation functions that we discussed
pbefore. The activations functions that we discussed before take in input real
numbers and returns a real number.

» A softmax function receives in input a vector of real numbers of dimension n and
returns a vector of real numbers of dimension 7.

p Softmax: given a vector of real numbers in input Z of dimension n, it normalises it
Into a probability distribution consisting of n probabilities proportional to the

exponentials of each element z; of the vector Z. More formally,
%

softmax(z); = -fori = 1,..n.

n
el

j=1
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Gradient-based Optimization

» We will now discuss a high-level description of the learning process of the
network, usually called gradient-based optimization.

» Each neural layer transforms his input layer as follows:
output = f(wx; + ... +w,x, + b)

» And in the case of a relu function, we will have
output = relu(wx; + ... +w,x, + b)

» Note that this is a simplified notation for one layer, it should be Wi for layer
l.
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Gradient-based Optimisation

» The learning is based on the gradual adjustment of the weight based on a
feedback signal, i.e., the loss described above.

» The training is based on the following training loop:

» Draw a batch of training examples X and corresponding targets Y,

» Run the network on X (forward pass) to obtain predictions Y pred

» Compute the loss of the network on the batch, a measure of the mismatch
between Y g aNd ¥,4rer-

» Update all weights of the networks in a way that reduces the loss of this
patch.

MARL 2021-22 Mirco Musolesi



Stochastic Gradient Descent

» Given a differentiable function, it’s theoretically possible to find its
minimum analytically.

» However, the function is intractable for real networks. The only way is
to try to approximate the weights using the procedure described
above.

» More precisely, since it is a differentiable function, we can use the
gradient, which provides an efficient way to perform the correction
mention before.
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Gradient-based Optimisation
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Stochastic Gradient Descent

» More formally:

» Draw a batch of training example X and corresponding targets ¥, ¢
» Run the network on X (forward pass) to obtain predictions Ypred

» Compute the loss of the network on the batch, a measure of the mismatch between 'y, ., and ¥,

» Compute the gradient of the loss with regard to the network’s parameters (backward pass).

oJ

) Move the parameters in the opposite direction from the gradient with: W; < W, + AWJ- =W;— na—
W.
J

where J is the loss (cost) function.

» If you have a batch of samples of dimension k:

Wi < w; + ij =W, — 1 average(a—k) for all the k samples of the batch.

J
Wi
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Stochastic Gradient Descent

» This is called the mini-batch stochastic gradient descent (mini-batch SGD).
» The loss function J is a function of f(X), which is a function of the weights.

» Essentially, you calculate the value f(X), which is a function of the weights of the network.

» Therefore, by definition, the derivative of the loss function that you are going to apply will
be a function of the weights.

p The term stochastic refers to the fact that each batch of data is drawn randomly.

» The algorithm described above was based on a simplified model with a single function in a
sense.

p You can think about a network composed of three layers, e.g., three tensor operations on the
network itself.
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https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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https://www.cs.umd.edu/~tomg/projects/landscapes/
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Backpropagation Algorithm

» Suppose that you have three tensor operations/layers f, g, h with weights wl

W? and W? respectively for the first, second, third layer. You will have the
following function:

Vorea =S(WL, W2, W2, x) = f(W?, g(W?, (W), x)

with f() the rightmost function/layer and so on. In other words, the input layer is

connected to A(), which is connected to g(), which is connected to f(), which
returns the final resuilt.

» A network is a sort of chain of layers. You can derive the value of the “correction”
by applying the chain rule of the derivatives backwards.

» Remember the chain rule (f(g(x)))" = f'(g(x))g'(x).
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Backpropagation Algorithm

» The update of the weights starts from the right-most layer back to the left-most layer. For this
reason, this is called backpropagation algorithm.

» More specifically, backpropagation starts with the calculation of the gradient of final loss value
and works backwards from the right-most layers to the left-most layers, applying the chain
rule to compute the contribution that each weight had in the loss value.

» Nowadays, we do not calculate the partial derivates manually, but we use frameworks like
TensorFlow that supports symbolic differentiation for the calculation of the gradient.

» TensorFlow supports the automatic updates of the weights described above.
» There are various potential deep learning frameworks, namely Pytorch, Theano, etc.
» More theoretical details can be found in:

lan Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.
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