Multi-Agent Reinforcement Learning

Introduction to Deep Learning

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Deep Neural Networks

Input Layer e RS Hidden Layer € R® Hidden Layer € R™ Qutput Layer e R®

MARL 2021-22 Mirco Musolesi

Deep Neural Networks

Inputs Layer 1 Layer2 Layer 3 Layer 4 Outputs

MARL 2021-22

Deep Neural Networks

Inputs Layer 1 Layer2 Layer 3 Layer 4 Outputs

OCooO~NOOOPA~,WN=-0

MARL 2021-22

Deep Neural Networks

Inputs Layer 1 Layer2 Layer 3 Layer 4 Outputs

00
10.05
2 0.1
3 0.05
4 0.1
50.5
6 0.05
7 0.05
80
90

MARL 2021-22

Deep Neural Networks

Inputs Layer1 Layer1 Layer 1 Layer 1 Outputs

(s, a)

MARL 2021-22

Deep Neural Networks

Inputs Layer 1 Layer1 Layer 1 Layer 1 Outputs

The goal is to find
Weights Weights Weights Weights _ the right values for

Layer 1 Layer2 Layer 3 Layer4 these weights.

MARL 2021-22 Mirco Musolesi

MARL 2021-22

Deep Neural Networks

Outputs True
“Predictions” Targets

Inputs Layer1 Layer2 Layer3 Layer4

Weights Weights Weights Weights \

Layer 1 Layer2 Layer 3 Layer 4 Loss Function

Mirco Musolesi

Deep Neural Networks

Outputs True
“Predictions” Targets

Inputs Layer1 Layer2 Layer3 Layer4

Loss
Score

Weights Weights Weights Weights \ I

Layer 1 Layer2 Layer 3 Layer 4 Loss Function

MARL 2021-22 Mirco Musolesi

Deep Neural Networks

Outputs True
“Predictions” Targets

Inputs Layer1 Layer2 Layer3 Layer4

Loss
Score
Weights Weights Weights Weights I
Layfr 1 Layfr 2 Laxer 3 Layfr 4 Loss Function

Optimizer

MARL 2021-22 Mirco Musolesi

Deep Neural Networks

Outputs True
“Predictions” Targets

Inputs Layer1 Layer2 Layer3 Layer4

Loss
Score
Weights Weights Weights Weights I
Layfr 1 Layfr 2 Laxer 3 Layfr 4 Loss Function

Optimizer

MARL 2021-22 Mirco Musolesi

Deep Neural Networks

Input Layer e RS Hidden Layer € R® Hidden Layer € R™ Qutput Layer e R®

MARL 2021-22 Mirco Musolesi

Nodes/Units/Neurons

fis called the activation function, b is usually called the bias

MARL 2021-22

Activations Functions

» They are generally used to add non-linearity.
» Examples:

» Rectified Linear Unit: it returns the max between O and the
value in input. In other words, given the value z in input it
returns max(0,z).

) Logllst/c sigmoid: given the value in input z, it returns EEEEERE= e
1 4+ e2
-
» Arctan: given the value in input z, it returns tan™1(z). ———T

Credit: Wikimedia

MARL 2021-22 Mirco Musolesi

Nodes/Units/Neurons

Note that here the function in input of relu is 1-dimensional.

MARL 2021-22 Mirco Musolesi

Softmax Function

» Another function that we will use is softmax.

» But please note that softmax is not like the activation functions that we discussed
pbefore. The activations functions that we discussed before take in input real
numbers and returns a real number.

» A softmax function receives in input a vector of real numbers of dimension n and
returns a vector of real numbers of dimension 7.

p Softmax: given a vector of real numbers in input Z of dimension n, it normalises it
Into a probability distribution consisting of n probabilities proportional to the

exponentials of each element z; of the vector Z. More formally,
%

softmax(z); = -fori = 1,..n.

n
el

j=1

MARL 2021-22 Mirco Musolesi

Gradient-based Optimization

» We will now discuss a high-level description of the learning process of the
network, usually called gradient-based optimization.

» Each neural layer transforms his input layer as follows:
output = f(wx; + ... +w,x, + b)

» And in the case of a relu function, we will have
output = relu(wx; + ... +w,x, + b)

» Note that this is a simplified notation for one layer, it should be Wi for layer
l.

MARL 2021-22 Mirco Musolesi

Gradient-based Optimisation

» The learning is based on the gradual adjustment of the weight based on a
feedback signal, i.e., the loss described above.

» The training is based on the following training loop:

» Draw a batch of training examples X and corresponding targets Y,

» Run the network on X (forward pass) to obtain predictions Y pred

» Compute the loss of the network on the batch, a measure of the mismatch
between Y g aNd ¥,4rer-

» Update all weights of the networks in a way that reduces the loss of this
patch.

MARL 2021-22 Mirco Musolesi

Stochastic Gradient Descent

» Given a differentiable function, it’s theoretically possible to find its
minimum analytically.

» However, the function is intractable for real networks. The only way is
to try to approximate the weights using the procedure described
above.

» More precisely, since it is a differentiable function, we can use the
gradient, which provides an efficient way to perform the correction
mention before.

MARL 2021-22 Mirco Musolesi

Gradient-based Optimisation

J(w) Initial

f Gradient
/]
J
1

;l’
/

/4

]

I Y .
LA Global cost minimum

k[/ Jmin(W)

Credit: Sebastian Raschka

MARL 2021-22 Mirco Musolesi

Stochastic Gradient Descent

» More formally:

» Draw a batch of training example X and corresponding targets ¥, ¢
» Run the network on X (forward pass) to obtain predictions Ypred

» Compute the loss of the network on the batch, a measure of the mismatch between 'y, ., and ¥,

» Compute the gradient of the loss with regard to the network’s parameters (backward pass).

oJ

) Move the parameters in the opposite direction from the gradient with: W; < W, + AWJ- =W;— na—
W.
J

where J is the loss (cost) function.

» If you have a batch of samples of dimension k:

Wi < w; + ij =W, — 1 average(a—k) for all the k samples of the batch.

J
Wi

MARL 2021-22 Mirco Musolesi

Stochastic Gradient Descent

» This is called the mini-batch stochastic gradient descent (mini-batch SGD).
» The loss function J is a function of f(X), which is a function of the weights.

» Essentially, you calculate the value f(X), which is a function of the weights of the network.

» Therefore, by definition, the derivative of the loss function that you are going to apply will
be a function of the weights.

p The term stochastic refers to the fact that each batch of data is drawn randomly.

» The algorithm described above was based on a simplified model with a single function in a
sense.

p You can think about a network composed of three layers, e.g., three tensor operations on the
network itself.

MARL 2021-22 Mirco Musolesi

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

MARL 2021-22 Mirco Musolesi

https://www.cs.umd.edu/~tomg/projects/landscapes/

MARL 2021-22 Mirco Musolesi

Backpropagation Algorithm

» Suppose that you have three tensor operations/layers f, g, h with weights wl

W? and W? respectively for the first, second, third layer. You will have the
following function:

Vorea =S(WL, W2, W2, x) = f(W?, g(W?, (W), x)

with f() the rightmost function/layer and so on. In other words, the input layer is

connected to A(), which is connected to g(), which is connected to f(), which
returns the final resuilt.

» A network is a sort of chain of layers. You can derive the value of the “correction”
by applying the chain rule of the derivatives backwards.

» Remember the chain rule (f(g(x)))" = f'(g(x))g'(x).

MARL 2021-22 Mirco Musolesi

Backpropagation Algorithm

» The update of the weights starts from the right-most layer back to the left-most layer. For this
reason, this is called backpropagation algorithm.

» More specifically, backpropagation starts with the calculation of the gradient of final loss value
and works backwards from the right-most layers to the left-most layers, applying the chain
rule to compute the contribution that each weight had in the loss value.

» Nowadays, we do not calculate the partial derivates manually, but we use frameworks like
TensorFlow that supports symbolic differentiation for the calculation of the gradient.

» TensorFlow supports the automatic updates of the weights described above.
» There are various potential deep learning frameworks, namely Pytorch, Theano, etc.
» More theoretical details can be found in:

lan Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.

MARL 2021-22 Mirco Musolesi

References

» Chapter 1 of lan Goodfellow, Yoshua Bengio and Aaron Courville.
Deep Learning. MIT Press. 2016.

» Chapter 2 of Francois Chollet. Deep Learning with Python. Manning
2018.

MARL 2021-22 Mirco Musolesi

