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Computers and Brains

Supercomputer Personal Computer Human Brain
Computational units 10° GPUs + CPUs 8 CPU cores 10% columns

10" transistors 1019 transistors 10'! neurons
Storage units 10'° bytes RAM 1010 bytes RAM 10'! neurons

10! bytes disk 10'? bytes disk 104 synapses
Cycle time 10~ sec 10~ sec 1073 sec
Operations/sec 1018 1010 10%7

From: Stuart Russell and Peter Norvig. Introduction to Artificial Intelligence. 4th Edition. 2020.
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From Theories of Biological Learning to
Deep Learning

» Three waves:
» Cybernetics (1940s-1960s)
» Connectionism (1980s-1990s)
» Deep learning (2006-today)

» Some of the earliest learning algorithms were intended to be
computational models of the brain. As a result, one of the names
used for deep learning is artificial neural networks (ANNS).
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Artificial Neural Networks and
Neuroscience

» The earliest predecessors of modern deep learning were simple linear
models motivated from a neuroscience perspective.

» These models were designed to take a series of n input values
X1, X5, . .., X, @nd associate them to an output y.

» These models would be based or learn a set of weights:
y=fX,W)=wx;+...+wx,
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BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

I. Introduction

Theoretical neurophysiology rests on certain cardinal assump-
tions. The nervous system is a net of neurons, each having a soma
and an axon. Their adjunctions, or synapses, are always between the
axon of one neuron and the soma of another. At any instant a neuron
has some threshold, which excitation must exceed to initiate an im-
pulse. This, except for the fact and the time of its occurrence, is de-
termined by the neuron, not by the excitation. From the point of ex-
citation the impulse is propagated to all parts of the neuron. The
velocity along the axon varies directly with its diameter, from less
than one meter per second in thin axons, which are usually short, to
more than 150 meters per second in thick axons, which are usually

loni. The time for axonal conduction is consauentli of little imﬁr-

Mirco Musolesi



Neural Architectures 2020-2021

UEL WIT VHITL 4allu EIVED VIT DalLUT 1TDULW, Qlivivupi, Pliluiapys ave aa vao

same time. Various applications of the calculus are discussed.

I. Introduction

Theoretical neurophysiology rests on certain cardinal assump-
tions. The nervous system is a net of neurons, each having a soma
and an axon. Their adjunctions, or synapses, are always between the
axon of one neuron and the soma of another. At any instant a neuron
has some threshold, which excitation must exceed to initiate an im-
pulse. This, except for the fact and the time of its occurrence, is de-
termined by the neuron, not by the excitation. From the point of ex-
citation the impulse is propagated to all parts of the neuron. The
velocity along the axon varies directly with its diameter, from less
than one meter per second in thin axons, which are usually short, to
more than 150 meters per second in thick axons, which are usually
long. The time for axonal conduction is consequently of little impor-
tance in determining the time of arrival of impulses at points un-
equally remote from the same source. Excitation across synapses oc-
curs predominantly from axonal terminations to somata. It is still a
moot point whether this depends upon irreciprocity of individual syn-
apses or merely upon prevalent anatomical configurations. To sup-
pose the latter requires no hypothesis ad hoc and explains known ex-
ceptions, but any assumption as to cause is compatible with the cal-
culus to come. No case is known in which excitation through a single
synapse has elicited a nervous impulse in any neuron, whereas any

115
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The McCulloch-Pitts Neural Model

» In “A Logical Calculus of the Ideas Imminent in Nervous Activity” (1943),
McCulloch and Pitts suggested a model about how thought executes.

» This is the original inspiration of current deep learning models.
» The set of operations is defined over two values:

» True (1)

» False (0)

» The calculus contained NOT, AND, OR. By changing the (fixed) values
of the weights, you can obtain different functions.
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McCulloch-Pitts Model of Neuron

Inputs Weights Outputs

Heaviside Function

In the McCulloch-Pitts model, the values of the weights are fixed.
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The Organvation
of Behavor

A NEUROPSYCHOLOGICAL THEORY

D. O. HEBB
McGul University

1949
New York - JOHN WILEY & SONS, Inc.
London - CHAPMAN ¢& HALL, Limited
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Hebb’s Law

» From Hebb’s “The Organization of Behavior” (1949): “When an axon
cell A is near enough to excite cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes
place in one or both cells such as that A’s efficiency, as one of the
cells firing B Is increased”.

» This is usually referred to as “Hebb’s Law”.

» First simulations of artificial neural networks in 1950s based on
Hebb’s model.

» Weights of the models are also called synaptic connectivity.
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Hebb’s Model ot Neuron

Inputs Weights The Hebbian network model
Outputs has n-node input layer:
X = [x,%p,... ,xn]T

and an m-node output layer
T
N o—220 Y =10y Yl
1

Each output is connected to
all input as follow:
n

w
‘/V/v
V= D Wik
j=1
X1 w
w
W/v

X1

Wi
2,1
> )
n,l
" The learning rule is the
X, 2.m following:

\ Z >
TO " Wi Wfild + Xy,

X, 1 is the learning rate.
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Psychkological Review
Vol. 65, No, 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN!

F. ROSENBLATT

Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system ?

2. In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
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and the stored pattern. According to
this hypothesis, if one understood the
code or “‘wiring diagram’’ of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the ““memory traces’’ which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory”’ of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
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Rosenblatt’s Perceptron Model

» Frank Rosenblatt’s perceptron models is the first one with variable
weights that are learned from examples:

» Learning the weights of categories given examples of these
categories.

» The perceptron was intended to be a machine rather than a program.

» First implementation was actually for IBM 704.
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IBM 704
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Built for image
recognition

400 photocells

randomly connected
to the neurons

Weights encoded in
potentiometers
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Limitations of Perceptrons

» Linear models have many limitations.

» Most famously, they cannot learn the XOR function where
f([O,l],W) — 1 andf([l,O],W) — 1 bUtf([l,l],W) — O aﬂd
f(10,0],w) = 0.

» This was observed by Minsky and Papert in 1969 in Perceptrons.

» This was the first major dip in the popularity of neural networks.
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Neurocognitron and Convolutional Neural
Networks

» Neuroscience can be an inspiration for the design of novel
architectures and solutions.

» The basic idea of having multiple computational units that become
intelligent via their interactions with each others is inspired by the
orain.

» The neurocognitron introduced by Fukushima can lbe considered as a
basis for the modern convolutional networks architectures.

» The neurocognitron was the basis of the modern convolutional
network architectures (see Yann LeCun et al.’s LeNet architecture).
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Biol. Cybernetics 20, 121—136 (1975)
© by Springer-Verlag 1975

Cognitron: A Self-organizing Multilayered Neural Network

Kunihiko Fukushima
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

Received: February 4, 1975

Abstract

A new hypothesis for the organization of synapses between
neurons is proposed: “The synapse from neuron x to neuron y 1S
reinforced when x fires provided that no neuron in the vicinity of y
is firing stronger than y”. By introducing this hypothesis, a new
algorithm with which a multilayered neural network is effectively
organized can be deduced. A self-organizing multilayered neural
network, which is named “cognitron”, is constructed following this
algorithm, and is simulated on a digital computer. Unlike the
organization of a usual brain models such as a three-layered per-
ceptron, the self-organization of a cognitron progresses favorably
without having a “teacher” which instructs in all particulars how the
individual cells respond. After repetitive presentations of several
stimulus patterns, the cognitron is self-organized in such a way that
the receptive fields of the cells become relatively larger in a deeper
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At present, however, the algorithm with which a
neural network is self-organized is not known.
Although several hypothesis for it have been proposed,
none of them has been physiologically substantiated.

The three-layered perceptron proposed by Rosen-
blatt (1962) is one of the examples of the brain models
based on such hypotheses. For a while after the per-
ceptron was proposed, its capability for information
processing was greatly expected, and many research
works on it have been made. With the progress of the
researches, however, it was gradually revealed that the
capability of the perceptron is not so large as it had
been expected at the beginning.

layer. Each cell in the final layer integrates the information from Althouﬁh the Eerccﬁtron consists of only three
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a)

b)

c)

Fig. 4a—c. Three possible methods for interconnecting layers. The
connectable area of cach cell is differently chosen in these three
methods. Method ¢ 1s adopted for the cognitron discussed in this

paper

NN

\

AR

N

Mirco Musolesi



PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document
Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio. and Patrick Haffner

Abstract—

Multilayer Neural Networks trained with the backpropa-
gation algorithm constitute the best example of a successful
Gradient-Based Learning technique. Given an appropriate
network architecture, Gradient-Based Learning algorithms
can be used to synthesize a complex decision surface that can
classify high-dimensional patterns such as handwritten char-
acters, with minimal preprocessing. This paper reviews var-
ious methods applied to handwritten character recognition
and compares them on a standard handwritten digit recog-
nition task. Convolutional Neural Networks, that are specif-
ically designed to deal with the variability of 2D shapes, are
shown to outperform all other techniques.

Real-life document recognition systems are composed
of multiple modules including field extraction, segmenta-
tion, recognition, and language modeling. A new learning
paradigm, called Graph Transformer Networks (GTN), al-
lows such multi-module systems to be trained globally using
Gradient-Based methods so as to minimize an overall per-
formance measure.

Two systems for on-line handwriting recognition are de-
scribed. Experiments demonstrate the advantage of global
training, and the flexibility of Graph Transformer Networks.

A Graph Transformer Network for reading bank check is
also described. It uses Convolutional Neural Network char-
acter recognizers combined with global training techniques
to provides record accuracy on business and personal checks.
It is deployed commercially and reads several million checks
per day.

I. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applied to neural networks, have played
an increasingly important role in the design of pattern
recognition systems. In fact, it could be argued that the
availability of learning techniques has been a crucial fac-
tor in the recent success of pattern recognition applica-
tions such as continuous speech recognition and handwrit-
ing recognition.

The main message of this paper is that better pattern
recognition systems can be built by relying more on auto-
matic learning, and less on hand-designed heuristics. This
is made possible by recent progress in machine learning
and computer technology. Using character recognition as
a case study, we show that hand-crafted feature extrac-
tion can be advantageously replaced by carefully designed
learning machines that operate directly on pixel images.
Using document understanding as a case study, we show
that the traditional way of building recognition systems by
manually integrating individually designed modules can be
replaced by a unified and well-principled design paradigm,
called Graph Transformer Networks, that allows training
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C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16 @5x5

6@28x28 62: 1. maps |

Full coanection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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Connectionism

» The second wave of neural network research was in 1980s and started in the
cognitive science. It was called connectionism or parallel distributed processing.

» This followed the first winter (mid 70s-1980).

» The focus was on devising models of cognition combining symbolic reasoning and
artificial neural network models.

» Many ideas are inspired by Hebb’s models.

» The idea of distributed representation, i.e., using the raw data without devising
features or pre-categorisation of the inputs was introduced by this research
movement.

» The other key contribution of connectionism was the development of the back-
propagation algorithm for training neural networks, which is central in deep learning.
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PARALLEL DISTRIBUTED

PROCESSING

E xploralions inthe Microsimc:urc of Cognition
VYolume 2: Psychological and Biological Models

JAMES L McCLELLAND,. DAVID E.RUMELHART,
AND THE PDP RESEARCH GROUP -
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NATURE VOL. 323 § OCTOBER 1986 MTOW 33

delincating the absolute indigeneity of amino acids in fossils.
As AMS techniques are refined to handle smaller samples, it
may also become possible to date individual amino acid enan-
tiomers by the "“C method. If one enantiomer is entirely derived
D- and L-enantiomers for a given amino acid should have
identical "“C ages.

Older, more poorly preserved fossils may not always prove
amenable to the determination of amino acid indigeneity by the
stable isotope method, as the prospects for complete replace-

when stratigraphic controls can be used to estimate a general
age range for the fossil in question.

Finally, the development of techniques for determining the
stable isotopic composition of amino acid enantiomers may

carbonaceous meteorites” are indigenous, or result in part from
ial A
M.H.E. thanks the NSF, Division of Earth Sciences (grant
EAR-8352055) and the following contributors to his Presidential
Young Investigator Award for partial support of this research:

Arco, Exxon, Phillips Petroleum, Texaco Inc., The Upjohn Co.
We also acknowledge the donors of the Petroleum Research
Fund, administered by the American Chemical Society (grant
16144-AC2 to M.H.E., grant 14805-AC2 to S.A.M.) for support.
S.A.M. acknowledges NSERC (grant A2644) for partial support.
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Learning representations
by back-propagating errors

David E. Rumelhart®*, Geoffrey E. Hinton?
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Camegie-Meilon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
petworks of neurome-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference betweea the actual output vector of the
pet and the desired output vector. As a result of the weight
adjustments, internal *hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these unmits. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-coavergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively casy to find learning rules that
iteratively adjust the relative strengths of the connections so as

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are “feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
¥i, of the units that are connected to j and of the weights, w;,
on these connections

x; =5 yw, (1)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y,, which is a non-linear
function of its total input
1

- 1+e™ @)

/]

© 1986 Nature Publishing Group
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Second Al Winter and Current Al Summer

» The second wave of neural networks lasted until mid 1990s.

» Loss of interest and lot of disappointment due to unrealistic goals
led to a new “winter”.

» During the second winter, a lot of work continued especially in
Canada (and NYU).

» The summer returned in 2006 when Geoffrey Hinton showed that a
particular neural network called a deep belief network could be very
efficiently trained (the strategy is called greedy layer-wise pre-training).
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Geoffrey E. Hinton and Simon Osindero
Department of Computer Science University of Toronto
10 Kings College Road
Toronto, Canada MS5S 3G4
{hinton, osindero } @cs.toronto.edu

Abstract

We show how to use “complementary priors” to
eliminate the explaining away effects that make
inference difficult in densely-connected belief
nets that have many hidden layers. Using com-
plementary priors, we derive a fast, greedy algo-
rithm that can learn deep, directed belief networks
one layer at a time, provided the top two lay-
ers form an undirected associative memory. The
fast, greedy algorithm is used to initialize a slower
learning procedure that fine-tunes the weights us-
ing a contrastive version of the wake-sleep algo-
rithm. After fine-tuning, a network with three
hidden layers forms a very good generative model
of the joint distribution of handwritten digit im-
ages and their labels. This generative model gives
better digit classification than the best discrimi-
native learning algorithms. The low-dimensional
manifolds on which the digits lie are modelled by
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A fast learning algorithm for deep belief nets *

Yee-Whye Teh

Department of Computer Science
National University of Singapore
3 Science Drive 3, Singapore, 117543
tehyw@ comp.nus.edu.sg

remaining hidden layers form a directed acyclic graph that
converts the representations in the associative memory into
observable variables such as the pixels of an image. This hy-
brid model has some attractive features:

1. There is a fast, greedy learning algorithm that can find
a fairly good set of parameters quickly, even in deep
networks with millions of parameters and many hidden
layers.

2. The learning algorithm is unsupervised but can be ap-
plied to labeled data by learning a model that generates
both the label and the data.

3. There is a fine-tuning algorithm that learns an excel-
lent generative model which outperforms discrimina-
tive methods on the MNIST database of hand-written
digits.

4. The generative model makes it easy to interpret the dis-
tributed representations in the deep hidden layers.

5. The inference required for forming a percept is both fast
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Networks and Computational Graphs

+1

+1[~(x)

From: Stuart Russell and Peter Norvig. Introduction to Artificial Intelligence. 4th Edition. 2020.
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Deep Learning Applications

» The number of application of deep learning is increasing everyday:
» Image and video processing and vision;
» Machine translation;
» Speech generation;
» Applications to many scientific fields (astronomy, biology, etc.).
p See for example the problem of protein folding.
» One of the biggest achievement is the extension of the domain of reinforcement learning.

» We refer to the convergence of deep learning and reinforcement learning as deep
reinforcement learning.

» Applications of deep reinforcement learning include games, robotics, etc.
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Convolutional Networks

» Convolutional networks are
networks that contain a mix of
convolutional layers, pooling

1 [ e | 1 layers and dense layers.

» A convolutional layer is a layer of
a deep neural network, which
contains a convolutional filter.

128 97 53 | 281 | 198

35 | 22 | 25 | 208 | 195 181

37 24 28 197 | 182
23 | 28 | o2 | 105 | 179 » A convolutional filter is a matrix

31 | 40 | 100 | 192 | 177 having the same rank as the
iInput matrix but a smaller shape.
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Convolutional Networks

53| 1 » A pooling layer reduces a matrix (or
s | 2|5 matrices created by an earlier
convolutional layer to a smaller

sl Ml matrix. Pooling usually involves
taking either maximum of average
value across the pooled area.
51311 5|31
8| 2]5 8| 215 » A pooling operation divides the
9|43 9l4]|3 matrix into slices and then slides
that convolutional operation by
315 -
strides.
915
\
5/3]1 5/311 » A stride is the delta in each
8215 81215 dimension of the convolutional
914(3 91413

operation.
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Convolutional Networks
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5 3

8 2

9 4
5[3[1 531
812]5 8|25
o[4l3 EAE

85

95
5[ 3[4 5[3[1
8215 825
ol4l3 ol4l3

» Pooling helps enforce translational
Invariance, which allows algorithms
to classity images when the position
of the objects within the images
change, in the input matrix.

» Pooling for vision applications is
usually called spatial pooling.

» Pooling for time-series applications
IS usually referred to as temporal
pooling.

» You can also hear the expressions
subsampling and downsampling.
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Recurrent Neural Networks
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Recurrent Neural Networks and NLP

» In a recurrent neural network language model, each input is encoded
as a word embedding vector X..

» The network is based on a hidden layer with output Z,, which gets
passed as input from one step to the next.

» We are interested in doing multi-class classification and, therefore, the

output y, will be a softmax probability distribution over the possible
values of the next word in the sentence.
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LSTMS

p It is a kind of RNN that does not suffer from the problem of vanishing
gradients.

» In fact, an LSTM can choose to remember part of the input, copying
it over to the next time step and to forget other parts.

» LSTM stands from long short-term memory. LSTM is a kind of RNN
with gating units that does not suffer
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LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jurgen Schmidhuber
Fakultat fur Informatik IDSIA
Technische Universitat Miinchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik.tu-muenchen.de juergen@idsia.ch
http://wwwT7.informatik.tu-muenchen.de/"hochreit http://www.idsia.ch/ juergen
Abstract

Learning to store information over extended time intervals via recurrent backpropagation
takes a very long time, mostly due to insufficient, decaying error back flow. We briefly review
Hochreiter’s 1991 analysis of this problem, then address it by introducing a novel, efficient,
gradient-based method called “Long Short-Term Memory” (LSTM). Truncating the gradient
where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constant error low through “constant error carrousels” within
special units. Multiplicative gate units learn to open and close access to the constant error
flow. LSTM is local in space and time; its computational complexity per time step and weight
is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy
pattern representations. In comparisons with RTRL, BPTT, Recurrent Cascade-Correlation,
Elman nets, and Neural Sequence Chunking, LSTM leads to many more successful runs, and

learns much faster. LSTM also solves complex, artificial long time lag tasks that have never
- —
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Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com
Abstract N "
. . g s 56-layer
Deeper neural networks are more difficult to train. We g T 20-layer
present a residual learning framework to ease the training ® S6-layer E
of networks that are substantially deeper than those used § o 2
previously. We explicitly reformulate the layers as learn- i =z

ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error

on the ImageNet test set. This result won the 1st place on the
» (] > ity Ao ~ r
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?

AN _NNn 2 - N_Aan AAering N (111 Al V42 Ne_Nororio

Mirco Musolesi



Neural Architectures 2020-2021

Word Embeddings
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From: Stuart Russell and Peter Norvig. Introduction to Artificial Intelligence. 4th Edition. 2020.
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Feedforward Part-of-Speech Tagging
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Basic Sequence to Sequence Model

El hombre es alto <end>

Source [ | Source | |Source | |Source | | Target | | Target | | Target | | Target | | Target

LSTM | [LSTM | |[LSTM | |LSTM | |[LSTM | |[LSTM | |LSTM | |LSTM | ([LSTM
The man 1S tall <start> El hombre es alto
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Attentional Sequence-to-Sequence

Model

La puerta de entrada es

I}a pu?rta The .
Target Target
Attentional [— Attentional — --- front
LSTM LSTM
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Source [ _|Source | _|Source |_|Source [_[Source is
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The front door is red red
(2)
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Attention Is All You Need

Ashish Vaswani”*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1lion@google.com
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Google Brain Google Research Google Research
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Aidan N. Gomez* T
University of Toronto
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Transformers
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@ GitHub Copilot Signup >

Technical Preview

Your Al pair programmer

With GitHub Copilot, get suggestions for whole lines or entire functions right inside your editor.

sentiment.ts
#!/usr/bin/env ts—-node

import { fetch } from "fetch-h2";

async function isPositive(text: string): Promise<boolean> {

s . . . . \ e
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GPT-3

» GPT-3 is an autoregressive language model based on deep learning
(transformers).

» It was introduced in June 2020.
» GPT stands for Generative Pre-trained Transformer 3.
» Based on 175 million parameters.

» Microsoft has licensed exclusive use of GPT-3 in terms of underlying
model. There is still a public API.

» Other large language models exists such as BERT, RoBERTa, etc.
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Language Models are Few-Shot Learners

Tom B. Brown™ Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
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On the Opportunities and Risks of
Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora
Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill
Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji
Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue
Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh
Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman
Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt
Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain
Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani
Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi
Ananya Kumar Faisal Ladhak MinaLee Tony Lee Jure Leskovec Isabelle Levent
Xiang Lisa Li XuechenLi TengyuMa Ali Malik Christopher D. Manning
Suvir Mirchandani  Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan
Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan
Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech
Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren
Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh
Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin
Rohan Taori Armin W. Thomas Florian Tramér Rose E. Wang William Wang Bohan Wu
Jiajun Wu  Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia
Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou
Percy Liang*'

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)
Stanford University

Al is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these
models foundation models to underscore their critically central yet incomplete character. This report
provides a thorough account of the opportunities and risks of foundation models, ranging from their
capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles
(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their
applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic
and environmental impact, legal and ethical considerations). Though foundation models are based
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Neuroscience and Deep Learning:
Some Caveats

» Neuroscience can be an inspiration, but we should remember that we are trying
to “engineer” a system.

» Actual neurons are not based on the simple functions that we use in our systems.

» At the moment, more complex functions haven’t led to improve performance
yet.

» Neuroscience has inspired the design of several neural architectures, but our
knowledge is limited in terms of how the brain actually learn.

» For this reason, neuroscience is of limited help for improving the design of the
learning algorithms themselves.

» Deep learning is not an attempt to simulate the brain!
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Deep Learning and Computational
Neuroscience

p At the same time, it iIs worth noting that there is an entire field of
neuroscience devoted to understanding the brain using mathematical
and computational models. The area is called computational
neuroscience.

» Al and neuroscience are strictly linked and indeed understanding
brain biology will lead to improvement in the design of Al systems.

» This is currently an area of intense research.
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Neuron

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,'?"* Dharshan Kumaran,'-®> Christopher Summerfield,"-* and Matthew Botvinick'-?

DeepMind, 5 New Street Square, London, UK

2Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK
3Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
4Department of Experimental Psychology, University of Oxford, Oxford, UK

“Correspondence: dhcontact@google.com
http://dx.doi.org/10.1016/j.neuron.2017.06.011

The fields of neuroscience and artificial intelligence (Al) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the Al and neuroscience fields and emphasize current
advances in Al that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

In recent years, rapid progress has been made in the related
fields of neuroscience and artificial intelligence (Al). At the
dawn of the computer age, work on Al was inextricably inter-
twined with neuroscience and psychology, and many of the early
pioneers straddled both fields, with collaborations between
these disciplines proving highly productive (Churchland and
Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,
1982; McCulloch and Pitts, 1943; Turing, 1950). However,
more recently, the interaction has become much less common-
place, as both subjects have grown enormously in complexity
and disciplinary boundaries have solidified. In this review, we
argue for the critical and ongoing importance of neuroscience

tively. For example, if an algorithm is not quite attaining the level
of performance required or expected, but we observeit is core to
the functioning of the brain, then we can surmise that redoubled
engineering efforts geared to making it work in artificial systems
are likely to pay off.

Of course from a practical standpoint of building an Al
system, we need not slavishly enforce adherence to biological
plausibility. From an engineering perspective, what works is
ultimately all that matters. For our purposes then, biological
plausibility is a guide, not a strict requirement. What we are
interested in is a systems neuroscience-level understanding
of the brain, namely the algorithms, architectures, functions,

Cell°ress

in ﬂeneratinﬂ ideas that will accelerate and ﬁuide Al research and reﬁresentations it utilizes. This rouahlx corresEonds to
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THEORETICAL NEUROSCIENCE
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Superintelligence

NICK BOSTROM

SUPERINTELLIGENCE

Paths, Dangers, Strategies
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ARE YOU LIVING IN A COMPUTER SIMULATION?

BY NICK BOSTROM

[Published in Philosophical Quarterly (2003) Vol. 53, No. 211, pp. 243-255. (First version: 2001)]

This paper argues that at least one of the following propositions is true: (1)
the human species is very likely to go extinct before reaching a
“posthuman” stage; (2) any posthuman civilization is extremely unlikely
to run a significant number of simulations of their evolutionary history (or
variations thereof); (3) we are almost certainly living in a computer
simulation. It follows that the belief that there is a significant chance that
we will one day become posthumans who run ancestor-simulations is
false, unless we are currently living in a simulation. A number of other
consequences of this result are also discussed.

I. INTRODUCTION

Many works of science fiction as well as some forecasts by serious technologists

and futurologists predict that enormous amounts of computing power will be
e —
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s the Singularity near?

KURZWEIL

» THE AGE OF SPIRITUAL MACHINES
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Exponential Growth of Computing
Twentieth through twenty first century
Logarnithmic Plot
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Neural correlates of
consciousness

(NCC). The minimum neural
mechanisms jointly

sufficient for any one specific
conscious experience.
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Conscious Machines

REVIEWS

Neural correlates of consciousness:
progress and problems

Christof Koch', Marcello Massimini*3, Melanie Boly*> and Giulio Tononi®

Abstract | There have been a number of advances in the search for the neural correlates of
consciousness — the minimum neural mechanisms sufficient for any one specific conscious
percept. In this Review, we describe recent findings showing that the anatomical neural
correlates of consciousness are primarily localized to a posterior cortical hot zone that includes
sensory areas, rather than to a fronto-parietal network involved in task monitoring and reporting.
We also discuss some candidate neurophysiological markers of consciousness that have

proved illusory, and measures of differentiation and integration of neural activity that offer more
promising quantitative indices of consciousness.

Being conscious means that one is having an experience  This Review focuses on visual and auditory studies; for
— the subjective, phenomenal ‘what it is like’ to see an  accounts of the NCC for metacognition, body, tactile
image, hear a sound, think a thought or feel an emotion. and olfactory experiences, see REFS 4-7.

Although our waking experiences usually refer to the

external world, we continue to be conscious when weday-  Behavioural correlates of consciousness

dream and during those periods of sleep when we dream'.  Although experiences are private, we can usually infer that

Ol O ) d dWAdK dIl( d DUTI'DO =

Ol O (1€ O dNISNES AUuring areamie CED O DEOD
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Conscious Machines

Trends in Cognitive Sciences

No-Report Paradigms:
Extracting the True Neural
Correlates of Consciousness

Naotsugu Tsuchiya, ** Melanie Wilke,>** Stefan Frassle,® and
Victor A.F. Lamme’

The goal of consciousness research is to reveal the neural basis of phenomenal
experience. To study phenomenology, experimenters seem obliged to ask
reports from the subjects to ascertain what they experience. However, we argue
that the requirement of reports has biased the search for the neural correlates of
consciousness over the past decades. More recent studies attempt to dissoci-
ate neural activity that gives rise to consciousness from the activity that enables
the report; in particular, no-report paradigms have been utilized to study con-
scious experience in the full absence of any report. We discuss the advantages
and disadvantages of report-based and no-report paradigms, and ask how
these jointly bring us closer to understanding the true neural basis of
consciousness.

Cell

Trends

To study the neural correlates of con-
sciousness (NCC), some forms of
behavioral reports from subjects may
seem absolutely necessary. However,
strong reliance on reports has biased
much of the NCC research towards the
search for the neural correlates of per-
ceptual reports.

Stringent requirement of behavioral
reports not only overestimates the true
NCC, owing to the inclusion of the
neural correlates of reports, but also
underestimates it because there are
some aspects of real conscious experi-
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Alternative Minds
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Brithant" GUARDIAN

Entbealling ...
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METAZOA

ANIMAL MINDS AND THE
BIRTH OF CONSCIOUSNESS

OTHER MINDS

THE OCTOPUS AND THE EVOLUTION
OF INTELLIGENT LIFE

PETER GODFREY-SMITH
PETER GODFREY-SMITH BESTSELLING AUTHOR OF OTHER MINDS
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Attribution Notice

» Portion of the material in the slides about convolutional networks,
recurrent networks are modifications based on work created and
shared by Google and used according to terms described in the
Creative Commons 4.0 Attribution License.

p Source: https://developers.google.com/machine-learning/glossary/

p Attribution license: https://creativecommons.org/licenses/by/4.0/
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Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolov@google.com kaichen@google.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
gcorrado@google.com jeff@google.com
Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared to the previ-
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
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Part of Speech Tagging

Tag Word  Description Tag Word Description

CC and Coordinating conjunction PRP$  your Possessive pronoun

CD three Cardinal number RB quickly ~ Adverb

DT the Determiner RBR  quicker = Adverb, comparative

EX there Existential there RBS quickest  Adverb, superlative

FW per se  Foreign word RP off Particle

IN of Preposition SYM + Symbol

I purple  Adjective TO to to

JIR better =~ Adjective, comparative UH eureka Interjection

AN best Adjective, superlative VB talk Verb, base form

LS 1 List item marker VBD  talked Verb, past tense

MD should Modal VBG talking Verb, gerund

NN kitten ~ Noun, singular or mass VBN  ralked Verb, past participle

NNS kittens  Noun, plural VBP  talk Verb, non-3rd-sing

NNP Ali Proper noun, singular VBZ  talks Verb, 3rd-sing

NNPS Fords  Proper noun, plural WDT  which Wh-determiner

PDT all Predeterminer WP who Wh-pronoun

POS ’s Possessive ending WP$  whose Possessive wh-pronoun

PRP you Personal pronoun WRB  where Wh-adverb

$ $ Dollar sign # # Pound sign

“ ¢ Left quote ” ’ Right quote

( [ Left parenthesis ) ] Right parenthesis
Comma ! Sentence end

Mid-sentence punctuation
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