Reinforcement Learning for Autonomous Systems Design

Monte Carlo Methods

Mirco Musolesi

mircomusolesi@acm.org

Monte Carlo Methods

- Monte Carlo methods are ways of solving the reinforcement learning problems based on averaging the sample returns.
- ▶ We focus on episodic tasks.
 - Only on the completion of episodes are values estimates and policies changed.
- Monte Carlo methods sample and average returns for each state-action pair much like the multi-armed bandits methods and average rewards for each action.
 - However, we now consider *multiple states*; and
 - The return after taking an action in one state depends on the actions taken in later states in the same episodes.
 - ▶ In other words: this is the "full" reinforcement learning problem.

Monte Carlo Methods

- If you have the full knowledge of the MDP you can compute the value functions (see Bellman equation, dynamic programming).
- We assume that we do not have full knowledge of the underlying MDP.
 - This is the case in general because the underlying dynamics and characteristics of the system are unknown (e.g., robot exploration) or because the system is too complex (e.g., games).
- Since we do not have full knowledge, we need to *learn* the values functions.

Monte Carlo Methods

- We consider three problems:
 - The prediction problem: the estimation of v_{π} and q_{π} for a fixed policy π .
 - The *policy improvement problem*: the estimation of v_{π} and q_{π} while trying at the same time to improve the policy π .
 - The *control problem*: the estimation of an optimal policy π_* .

Monte Carlo Prediction

▶ Goal: learning the state-value function for a given policy.

- Recall: the value of a state is the expected return (expected cumulative future discounted reward) from that state.
- Obvious/simple solution: average the returns observed after visiting that state. As more returns are observed, the average should converge to the expected value.

Monte Carlo Prediction

- More formally: we want to estimate $v_{\pi}(s)$, the value of a state *s* under policy π , given a set of episodes obtained by following π and passing through *s*.
- Each occurrence of a state s in an episode is called a *visit* to s.
- A state s can be visited multiple times.
- The first time a state *s* is visited in an episode is called the first visit to *s*.
- The first-visit Monte Carlo method estimates $v_{\pi}(s)$ as the average of the returns following first visits to s, whereas the every-visit Monte Carlo method averages the returns following all the visits to s.

First-visit Monte Carlo Prediction

Input: a policy π to be evaluated

Initialise:

 $V(s) \in \mathbb{R}$ arbitrarily for all $s \in \mathcal{S}$

 $Returns(s) \leftarrow$ empty list for all $s \in \mathcal{S}$

Loop forever (for each episode):

Generate an episode following $\pi: S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T$

$G \leftarrow 0$

Loop for each step of episode t = T - 1, T - 2, ..., 0:

 $G \leftarrow \gamma G + R_{t+1}$

```
If S_t does not appear in S_0, S_1, \ldots, S_{t-1}:
```

```
Append G to Returns(S_t)
```

```
V(S_t) \leftarrow average(Returns(S_t))
```

Multi-visit Monte Carlo Prediction

- Every-visit Monte Carlo would be the same except without the check for S_t having occurred earlier in the episode.
- Both first-visit Monte Carlo and every-visit Monte Carlo converge to $v_{\pi}(s)$ as the number of visits (or first visits) to *s* goes to infinity.

https://www.youtube.com/watch?time_continue=70&v=Do1MBeEmk6Q

Credit: Forbes

LiveSlides web content

To view

Download the add-in.

liveslides.com/download

Start the presentation.

Monte Carlo Estimation of Action Values

- The estimation of a state value makes sense when you have a model of the system.
 - ▶ With a model, state values alone are sufficient to determine a policy.
 - Without a model, it is necessary to estimate the value of each action in order for the value to be useful in suggesting a policy.
- The policy evaluation problem for action values is to estimate $q_{\pi}(s, a)$, the expected return when starting in state *s*, taking action *a* and then following policy π .

• Remember we assume that the policy π is fixed.

Monte Carlo Estimation of Action Values

- The methods for the Monte Carlo estimation of action values are essentially the same as those presented for state value, but now we talk about visits to the state-action pair instead of to a state.
- A state-action pair s, a is said to be visited in an episode if the state s is visited and the action a is taken in it.
- The first-visit method Monte Carlo method averages the returns following the first time in each episode that the state was visited and the action was selected.

Maintaining Exploration

- ▶ But there is a problem: many state-action pairs might never be visited.
- If π is a deterministic policy, then in following π, we will observe returns only for one of the actions of each state.
 - ▶ No return to average -> no improvement with experience.
 - ▶ We cannot compare alternatives, because no alternatives are explored.
- To compare alternatives, we need to estimate the value of all the actions from each state, not only the the one we currently prefer (according to our policy).
- How can we address this problem?

Maintaining Exploration

▶ This is the general problem of *maintaining exploration*.

- One way to do this is to have the episodes starting in a state-action pair and that every pair has non-zero probability of being selected as start.
- This ensures that asymptotically (infinite number of episodes), all the state-action pairs will be visited an infinite number of times.

On-policy and Off-policy Exploration

- The method described above is useful, but it cannot applied in general.
 - Think about the case for example where you have exploration with the environment. You cannot start by "jumping" to a certain state-action pair at the beginning.
- The most common alternative is to ensure that all the state-action pairs are explored anyway.
- We need to explore these states, not following the current policy (for example with a stochastic policy). In other words, the exploration is not performed on-policy as done until now in this lecture, but off-policy.
 - Various methods are possible: Off-policy prediction via Importance Sampling (not covered in this module - see Sutton and Barto Chapter 5.5).

Policy Improvement

We will focus now back on on-policy exploration, i.e., the policy is used to make decisions and to explore the various states.

Until now we assumed that the policy was fixed.

However, the policy itself can be *improved* while learning the value functions and, potentially, we might have to aim at obtaining an optimal policy.

Methods used for improving a policy in order to reach the optimal policy are usually referred to as *Monte Carlo control*.

Policy Improvement

Remember until now we assumed that the policy was fixed.

▶ Given that policy, we estimate the value functions.

- Now we consider how to improve the policy starting from an onpolicy method.
 - The policy that we use to make decisions is that we are trying to improve. We do not use a separate policy to explore the stateaction pairs (that would be an off-policy method).
- Policy improvement is done by making the policy greedy with respect to the current value functions.

Policy Improvement

▶ In this case we have an action-value function.

▶ No model is needed to construct the greedy policy.

For any action-value function q, the corresponding greedy policy is the one that, for each $s \in S$, deterministically chooses an action with maximal action-value:

$$\pi(s) \leftarrow \arg\max_{a} Q(s, a)$$

We have formal results that ensures that this process of policy improvement leads to optimal policy (usually referred to Monte Carlo control).

References

Chapter 5 of Sutton and Barto. Introduction to Reinforcement Learning. Second Edition. MIT Press. 2018.