
Reinforcement Learning for
Autonomous Systems Design

Monte Carlo Methods

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org
mailto:mircomusolesi@acm.org

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Methods

‣ Monte Carlo methods are ways of solving the reinforcement learning problems based
on averaging the sample returns.

‣We focus on episodic tasks.

‣ Only on the completion of episodes are values estimates and policies changed.

‣ Monte Carlo methods sample and average returns for each state-action pair much
like the multi-armed bandits methods and average rewards for each action.

‣ However, we now consider multiple states; and

‣ The return after taking an action in one state depends on the actions taken in
later states in the same episodes.

‣ In other words: this is the “full” reinforcement learning problem.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Methods

‣ If you have the full knowledge of the MDP you can compute the value
functions (see Bellman equation, dynamic programming).

‣We assume that we do not have full knowledge of the underlying
MDP.

‣ This is the case in general because the underlying dynamics and
characteristics of the system are unknown (e.g., robot exploration)
or because the system is too complex (e.g., games).

‣ Since we do not have full knowledge, we need to learn the values
functions.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Methods

‣We consider three problems:

‣ The prediction problem: the estimation of and for a fixed
policy .

‣ The policy improvement problem: the estimation of and while
trying at the same time to improve the policy .

‣ The control problem: the estimation of an optimal policy .

vπ qπ
π

vπ qπ
π

π*

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Prediction

‣ Goal: learning the state-value function for a given policy.

‣ Recall: the value of a state is the expected return (expected
cumulative future discounted reward) from that state.

‣ Obvious/simple solution: average the returns observed after visiting
that state. As more returns are observed, the average should
converge to the expected value.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Prediction

‣ More formally: we want to estimate , the value of a state under policy
, given a set of episodes obtained by following and passing through .

‣ Each occurrence of a state in an episode is called a visit to .

‣ A state can be visited multiple times.

‣ The first time a state is visited in an episode is called the first visit to .

‣ The first-visit Monte Carlo method estimates as the average of the
returns following first visits to , whereas the every-visit Monte Carlo method
averages the returns following all the visits to .

vπ(s) s
π π s

s s

s

s s

vπ(s)
s

s

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

First-visit Monte Carlo Prediction

Input: a policy to be evaluated

Initialise:

 arbitrarily for all

 empty list for all

Loop forever (for each episode):

 Generate an episode following :

 Loop for each step of episode

 If does not appear in :

 Append to

π

V(s) ∈ ℝ s ∈ 𝒮

Returns(s) ← s ∈ 𝒮

π S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

G ← 0

t = T − 1,T − 2,...,0 :

G ← γG + Rt+1

St S0, S1, . . . , St−1

G Returns(St)

V(St) ← average(Returns(St))

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Multi-visit Monte Carlo Prediction

‣ Every-visit Monte Carlo would be the same except without the check
for having occurred earlier in the episode.

‣ Both first-visit Monte Carlo and every-visit Monte Carlo converge to
 as the number of visits (or first visits) to goes to infinity.

St

vπ(s) s

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Example: Blackjack

https://www.youtube.com/watch?time_continue=70&v=Do1MBeEmk6Q
Credit: Forbes

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Estimation of Action Values

‣ The estimation of a state value makes sense when you have a model of
the system.

‣With a model, state values alone are sufficient to determine a policy.

‣Without a model, it is necessary to estimate the value of each action
in order for the value to be useful in suggesting a policy.

‣ The policy evaluation problem for action values is to estimate ,
the expected return when starting in state , taking action and then
following policy .

‣ Remember we assume that the policy is fixed.

qπ(s, a)
s a

π

π

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Monte Carlo Estimation of Action Values

‣ The methods for the Monte Carlo estimation of action values are
essentially the same as those presented for state value, but now we
talk about visits to the state-action pair instead of to a state.

‣ A state-action pair is said to be visited in an episode if the state
is visited and the action is taken in it.

‣ The first-visit method Monte Carlo method averages the returns
following the first time in each episode that the state was visited and
the action was selected.

s, a s
a

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Maintaining Exploration

‣ But there is a problem: many state-action pairs might never be visited.

‣ If is a deterministic policy, then in following , we will observe returns only
for one of the actions of each state.

‣ No return to average -> no improvement with experience.

‣We cannot compare alternatives, because no alternatives are explored.

‣ To compare alternatives, we need to estimate the value of all the actions
from each state, not only the the one we currently prefer (according to our
policy).

‣ How can we address this problem?

π π

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Maintaining Exploration

‣ This is the general problem of maintaining exploration.

‣ One way to do this is to have the episodes starting in a state-action
pair and that every pair has non-zero probability of being selected as
start.

‣ This ensures that asymptotically (infinite number of episodes), all the
state-action pairs will be visited an infinite number of times.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

On-policy and Off-policy Exploration

‣ The method described above is useful, but it cannot applied in general.

‣ Think about the case for example where you have exploration with the
environment. You cannot start by “jumping” to a certain state-action pair
at the beginning.

‣ The most common alternative is to ensure that all the state-action pairs are
explored anyway.

‣We need to explore these states, not following the current policy (for example
with a stochastic policy). In other words, the exploration is not performed on-
policy as done until now in this lecture, but off-policy.

‣ Various methods are possible: Off-policy prediction via Importance
Sampling (not covered in this module - see Sutton and Barto Chapter 5.5).

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Policy Improvement

‣We will focus now back on on-policy exploration, i.e., the policy is
used to make decisions and to explore the various states.

‣ Until now we assumed that the policy was fixed.

‣ However, the policy itself can be improved while learning the value
functions and, potentially, we might have to aim at obtaining an
optimal policy.

‣ Methods used for improving a policy in order to reach the optimal
policy are usually referred to as Monte Carlo control.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Policy Improvement

‣ Remember until now we assumed that the policy was fixed.

‣ Given that policy, we estimate the value functions.

‣ Now we consider how to improve the policy starting from an on-
policy method.

‣ The policy that we use to make decisions is that we are trying to
improve. We do not use a separate policy to explore the state-
action pairs (that would be an off-policy method).

‣ Policy improvement is done by making the policy greedy with respect
to the current value functions.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Policy Improvement

‣ In this case we have an action-value function.

‣ No model is needed to construct the greedy policy.

‣ For any action-value function , the corresponding greedy policy is the one
that, for each , deterministically chooses an action with maximal
action-value:

‣We have formal results that ensures that this process of policy improvement
leads to optimal policy (usually referred to Monte Carlo control).

q
s ∈ 𝒮

π(s) ← arg max
a

Q(s, a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

References

‣ Chapter 5 of Sutton and Barto. Introduction to Reinforcement
Learning. Second Edition. MIT Press. 2018.

