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Multi-armed Bandits

‣We will start by considering a simplified version of reinforcement 
learning called multi-armed bandits. 

‣ In the case of a multi-armed bandits, no state is used for the selection 
of the next actions. 

‣We will then consider an “intermediate case”, where the state is used 
but the state itself does not depend on the previous actions, called 
“contextual bandits”.
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Multi-Armed Bandits, Contextual Bandits 
and Reinforcement Learning

No state is used Multi-Armed Bandits

State is used


State does not depend on 
previous actions

Contextual Bandits

State is used


State depends on previous 
actions

Reinforcement Learning
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Multi-Armed Bandits, Contextual Bandits 
and Reinforcement Learning: 

Alternative View

No state is used Multi-Armed Bandits

State is used


The action that is selected 
does not affect the next 

state/situation.

Contextual Bandits

State is used


The action that is selected 
affects the next state/

situation.

Reinforcement Learning
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k-armed Bandit Problem

‣We can model a k-armed bandit problem as follows: 

‣  different actions; 

‣ After each choice you receive a numerical value that depends only on the 
action you selected. 

‣ The goal is to maximise the expected reward over a certain number of time 
steps. 

‣ This is the “classic” k-armed bandit problem, which is named by analogy to a slot 
machine or “one-armed” bandit, except it has  levers instead than one. 

‣ Like in a slot machine, we need to learn which lever provides us with the 
highest reward.

k

k
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k-armed Bandit Problem

‣ The problem is the same, maximising: 

 

‣ In the case of the k-armed bandit problem, the state is always the same (or, in other words, it does 
not matter). You can think about having  with  constant. 

‣ In other words the problem is equal to maximise: 

 

with  one of the  actions.

E[Gt |St = s, At = a] ≐ E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s, At = a]

= E[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

s = s s

E[Gt |St = s, At = a] ≐ E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s, At = a]

= E[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

a k
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k-armed Bandit Problem

‣ In a k-armed bandit problem, each of the  actions has a value, equal 
to the expected or mean reward given that that action is selected. 

‣As in the general RL case, we denote the action selected on time step 
 as  and the corresponding reward as . 

‣ The value of an arbitrary action  denoted as  is the expected 
reward given that  is selected. More formally: 

 

k

t At Rt

a q*(a)
a

q*(a) ≐ E[Rt |At = a]
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k-armed Bandit Problem

‣ Trivial case: we know the value of each action, then solving the k-
armed bandit problem is very easy. It is sufficient to always select the 
action with the highest value. 

‣ However, in general, we do not know the action values with certainty, 
we only know estimates. 

‣We denote the estimated value of action  at time step  as .  

‣ Ideally, we would like to have that the value of  would be very 
close to .

a t Qt(a)

Qt(a)
q*(a)
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Exploration vs Exploitation

‣We maintain the estimates of each action value. 

‣ At any step there is at least one action whose estimated value is the greatest (we 
refer to this action as greedy action). 

‣When we select one of these actions, we are exploiting our current knowledge of 
the values of the actions (exploitation). 

‣ If we select non-greedy actions, we say that we are exploring (alternative actions). 
By doing so, we can improve our estimation of the value functions of the non-
greedy actions. 

‣ Balancing exploration and exploitation in a smart way is the key aspect. 

‣ Several theoretical results in terms of bounds, etc. given specific assumptions.
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Evaluating Action-value Methods

‣ Multi-armed bandits are a very good way of approaching the general 
problem of Reinforcement Learning. 

‣ Simplification: the state does not change, which means: 

‣ Your actions do not modify the state; 

‣ Since the state does not change, the agent’s actions will not 
depend on the previous actions (the two things are strictly linked). 

‣We will consider later the “full” reinforcement learning problem where 
the agent’s actions do modify the state an the agent’s action do depend 
on the previous actions.
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Evaluating Action-value Methods

‣ Recall: the true value of an action is the mean reward when that action is 
selected.  

‣ A possible way to estimate this is to estimate this is by averaging the rewards 
actually received: 

 

where 1 denotes the random variables that is 1 if the predicate  is true and 
0 if not. If the denominator is 0, we set  to some default value (e.g., 0).

Qt(a) ≐
sum of rewards when an action a is taken prior time t

number of times an action a is taken prior time t

=
∑t−1

i=1 Ri1Ai=a

∑t−1
i=1 1Ai=a

Ai = a
Qt(a)
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Evaluating Action-value Methods

‣ As the denominator goes to infinity, by the law of large numbers, 
 converges to . 

‣ This is called the sample-average method, because each estimate is 
the average of the sample of the rewards. 

Qt(a) q*(a)
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Greedy Action Selection Rule

‣ The simplest selection rule is to select one of the actions with the 
highest estimated value. This is usually referred to as greedy selection 
rule. 

‣ More formally, a greedy selection rule is one that selects  so that: 

 

i.e., the action  for which  is maximised.

At

At ≐ arg max
a

Qt(a)

a Qt(a)
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-greedy Selection Ruleϵ

‣ A simple alternative is to behave greedily most of time, but from time 
to time, with a probability  instead select randomly from among all 
the actions with equal probability. We call this method -greedy. 

‣ One of the advantages of the method is that, in the limit, as the 
number of steps increases, all the actions will be sampled an infinite 
amount of time, that ensuring that for all  the  will converge to 

.  

ϵ
ϵ

a Qt(a)
q*(a)
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Incremental Implementation

‣We now discuss how to implement these methods in practice. 

‣ To simplify the notation, we consider on a single action . 

‣ Let  the reward received after the th selection of the action . 

‣ Let  denote the estimate of its action value after it has been selected 
 times. 

‣We can write: 

a

Ri(a) i a

Qn(a)
n − 1

Qn(a) ≐
R1(a) + R2(a) + . . . + Rn−1(a)

n − 1
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Incremental Implementation

‣ The trivial implementation would be to maintain a record of all the 
rewards and the execute the formula when that value would be 
needed. 

‣ However, if this is done, the computational requirements would grow 
over time. 

‣ Possible alternative: an incremental implementation.
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Incremental Implementation

Qn+1 =
1
n

n

∑
i=1

Ri

=
1
n

(Rn +
n−1

∑
i=1

Ri)

=
1
n

(Rn + (n − 1)
1

n − 1

n−1

∑
i=1

Ri)

=
1
n

(Rn + (n − 1)Qn)

=
1
n

(Rn + nQn − Qn)

= Qn +
1
n

(Rn − Qn)
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Incremental Implementation

‣ This form of update rule is quite common in reinforcement learning. 

‣ The general form is as follows: 

NewEstimate <- OldEstimate + StepSize (Target - OldEstimate) 

‣ The expression (Target-OldEstimate) is usually defined as error in the 
estimate.
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Tracking a Nonstationary Problem

‣ The  averaging method discussed before is appropriate for stationary 
bandit problems. 

‣ However, many problems are non-stationary. 

‣ In these cases, it makes sense to give more weight to recent rewards 
rather than long-past rewards. 

‣ One of the most popular way of doing this is to use constant step-

size parameter (in the example above was ).
1
n
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Tracking a Nonstationary Problem

‣ The incremental update rule for updating an average  of the past 
rewards is modified to be: 

 

where the step-size parameter  is constant. 

‣ This results in  being a weighted average of past rewards and the initial 
estimate. 

‣ More formally:

Qn n − 1

Qn+1 ≐ Qn + α(Rn − Qn)

α ∈ (0,1]

Qn+1

Qn+1 ≐ Qn + α(Rn − Qn) = (1 − α)nQ1 +
n

∑
i=1

α(1 − α)(n−i)Ri
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Tracking a Nonstationary Problem

‣ This is called a weighted average since 

 

‣ The quantity  is less than 1 and the weight given to  
decreases as the number of rewards increases (actually it’s 
exponential, and for this reason it is sometimes called exponential-
recency-weighted average).

(1 − α)nQ1 +
n

∑
i=1

α(1 − α)(n−i) = 1

1 − α Ri
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Optimistic Initial Values

‣ These methods are dependent on the initial action-value estimates 
. 

‣We say that these methods are biased by their initial estimates.  

‣ Initial values can be used as a simple way to encourage exploration. 

‣ If the learner is “disappointed” by the initial values and explore 
more. 

‣ For example, if the initial values for each action  are selected in order 
to be quite high with respect to the actual optimal values, all the 
actions are tried several times before we get convergence.

Q1(a)

a
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Optimistic Initial Values: Example

‣ Suppose that we have a multi-armed bandit, where the optimal action 
values  for every action  are selected from a normal distribution 
with mean 0 and variance 1. 

‣ In this case, an initial value  for each activity is highly  
disappointing.  

‣ Remember the formula: 

NewEstimate <- OldEstimate + StepSize (Target - OldEstimate) 

‣ This will lead to a lot of exploration, also in pure greedy action 
selection.

q*(a) a

Q1(a) = 10
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Upper-Confidence-Bound (UCB) Action 
Selection

‣ Exploration is needed because there is always uncertainty of the actual-
value estimates. 

‣ Greedy actions might be the best ones, but it might not be the case. 

‣ -greedy action selection forces the non-greedy actions to be tried, 
but indiscriminately with no preferences for those that are nearly 
greedy or particularly uncertain. 

‣ It would be better to select among the non-greedy actions considering 
their potential of being optimal, taking into account both how close their 
estimates are to being optimal and the uncertainties in these estimates.

ϵ
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Upper-Confidence-Bound (UCB) Action 
Selection

‣ One effective way of doing this is to select actions according to: 

 

where  is the time at which action  is taken,  denotes the number 
of times that action  has been selected prior to time  and the number 

 controls the degree of exploration. 

‣ The idea of this upper confidence bound (UCB) action selection is that 
the square-root term is a measure of the uncertainty or variance of the 
estimate of the actual value of action .

At ≐ arg max
a

(Qt(a) + c
lnt

Nt(a)
)

t At Nt(a)
a t

c > 0

a
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Contextual Bandits

‣ Multi-armed bandits are used when the selection of the action is not 
dependent on the state. 

‣ But for many applications (e.g., ads on a webpage), actually the state 
is very important. 

‣When the action selection depends on the state, but on its previous 
history, we have the case of contextual bandits. 

‣ Since the action associated an action to the state, contextual bandits 
are also defined as a problem of associative search.
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Contextual Bandits

‣ They require to learn a policy, i.e., a mapping from the current state to 
the probabilities of each action. 

‣ As we said, contextual bandits differ from the “full” reinforcement 
learning problem in that the action does not affect the future state. 

‣ In case, the action affects the future state, we have the “full” 
reinforcement learning problem.



Contextual Bandits

‣ Recall the definition of policy:  

‣ A policy is a mapping from states to probabilities of each possible 
action. 

‣ If the agent is following policy  at time , then  is the 
probability that  if . 

‣ In contextual bandits, the action  that is selected does not modify the 
state. In other words, the action a does not modify the next situation. 

‣ Methods are similar to those for full reinforcement learning.

π t π(a |s)
At = a St = s

a
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Additional Readings

‣  Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A 
contextual-bandit approach to personalized news article 
recommendation. Proceedings of the 19th International Conference 
on World Wide Web (WWW 2010): 661–670.
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