
Reinforcement Learning for
Autonomous Systems Design

Multi-Armed Bandits

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org
mailto:mircomusolesi@acm.org

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Credit: Carl Raw

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Multi-armed Bandits

‣We will start by considering a simplified version of reinforcement
learning called multi-armed bandits.

‣ In the case of a multi-armed bandits, no state is used for the selection
of the next actions.

‣We will then consider an “intermediate case”, where the state is used
but the state itself does not depend on the previous actions, called
“contextual bandits”.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Multi-Armed Bandits, Contextual Bandits
and Reinforcement Learning

No state is used Multi-Armed Bandits

State is used

State does not depend on
previous actions

Contextual Bandits

State is used

State depends on previous
actions

Reinforcement Learning

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Multi-Armed Bandits, Contextual Bandits
and Reinforcement Learning:

Alternative View

No state is used Multi-Armed Bandits

State is used

The action that is selected
does not affect the next

state/situation.

Contextual Bandits

State is used

The action that is selected
affects the next state/

situation.

Reinforcement Learning

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

k-armed Bandit Problem

‣We can model a k-armed bandit problem as follows:

‣ different actions;

‣ After each choice you receive a numerical value that depends only on the
action you selected.

‣ The goal is to maximise the expected reward over a certain number of time
steps.

‣ This is the “classic” k-armed bandit problem, which is named by analogy to a slot
machine or “one-armed” bandit, except it has levers instead than one.

‣ Like in a slot machine, we need to learn which lever provides us with the
highest reward.

k

k

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

k-armed Bandit Problem

‣ The problem is the same, maximising:

‣ In the case of the k-armed bandit problem, the state is always the same (or, in other words, it does
not matter). You can think about having with constant.

‣ In other words the problem is equal to maximise:

with one of the actions.

E[Gt |St = s, At = a] ≐ E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s, At = a]

= E[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

s = s s

E[Gt |St = s, At = a] ≐ E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s, At = a]

= E[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

a k

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

k-armed Bandit Problem

‣ In a k-armed bandit problem, each of the actions has a value, equal
to the expected or mean reward given that that action is selected.

‣As in the general RL case, we denote the action selected on time step
 as and the corresponding reward as .

‣ The value of an arbitrary action denoted as is the expected
reward given that is selected. More formally:

k

t At Rt

a q*(a)
a

q*(a) ≐ E[Rt |At = a]

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

k-armed Bandit Problem

‣ Trivial case: we know the value of each action, then solving the k-
armed bandit problem is very easy. It is sufficient to always select the
action with the highest value.

‣ However, in general, we do not know the action values with certainty,
we only know estimates.

‣We denote the estimated value of action at time step as .

‣ Ideally, we would like to have that the value of would be very
close to .

a t Qt(a)

Qt(a)
q*(a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Exploration vs Exploitation

‣We maintain the estimates of each action value.

‣ At any step there is at least one action whose estimated value is the greatest (we
refer to this action as greedy action).

‣When we select one of these actions, we are exploiting our current knowledge of
the values of the actions (exploitation).

‣ If we select non-greedy actions, we say that we are exploring (alternative actions).
By doing so, we can improve our estimation of the value functions of the non-
greedy actions.

‣ Balancing exploration and exploitation in a smart way is the key aspect.

‣ Several theoretical results in terms of bounds, etc. given specific assumptions.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Evaluating Action-value Methods

‣ Multi-armed bandits are a very good way of approaching the general
problem of Reinforcement Learning.

‣ Simplification: the state does not change, which means:

‣ Your actions do not modify the state;

‣ Since the state does not change, the agent’s actions will not
depend on the previous actions (the two things are strictly linked).

‣We will consider later the “full” reinforcement learning problem where
the agent’s actions do modify the state an the agent’s action do depend
on the previous actions.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Evaluating Action-value Methods

‣ Recall: the true value of an action is the mean reward when that action is
selected.

‣ A possible way to estimate this is to estimate this is by averaging the rewards
actually received:

where 1 denotes the random variables that is 1 if the predicate is true and
0 if not. If the denominator is 0, we set to some default value (e.g., 0).

Qt(a) ≐
sum of rewards when an action a is taken prior time t

number of times an action a is taken prior time t

=
∑t−1

i=1 Ri1Ai=a

∑t−1
i=1 1Ai=a

Ai = a
Qt(a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Evaluating Action-value Methods

‣ As the denominator goes to infinity, by the law of large numbers,
 converges to .

‣ This is called the sample-average method, because each estimate is
the average of the sample of the rewards.

Qt(a) q*(a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Greedy Action Selection Rule

‣ The simplest selection rule is to select one of the actions with the
highest estimated value. This is usually referred to as greedy selection
rule.

‣ More formally, a greedy selection rule is one that selects so that:

i.e., the action for which is maximised.

At

At ≐ arg max
a

Qt(a)

a Qt(a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

-greedy Selection Ruleϵ

‣ A simple alternative is to behave greedily most of time, but from time
to time, with a probability instead select randomly from among all
the actions with equal probability. We call this method -greedy.

‣ One of the advantages of the method is that, in the limit, as the
number of steps increases, all the actions will be sampled an infinite
amount of time, that ensuring that for all the will converge to

.

ϵ
ϵ

a Qt(a)
q*(a)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Incremental Implementation

‣We now discuss how to implement these methods in practice.

‣ To simplify the notation, we consider on a single action .

‣ Let the reward received after the th selection of the action .

‣ Let denote the estimate of its action value after it has been selected
 times.

‣We can write:

a

Ri(a) i a

Qn(a)
n − 1

Qn(a) ≐
R1(a) + R2(a) + . . . + Rn−1(a)

n − 1

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Incremental Implementation

‣ The trivial implementation would be to maintain a record of all the
rewards and the execute the formula when that value would be
needed.

‣ However, if this is done, the computational requirements would grow
over time.

‣ Possible alternative: an incremental implementation.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Incremental Implementation

Qn+1 =
1
n

n

∑
i=1

Ri

=
1
n

(Rn +
n−1

∑
i=1

Ri)

=
1
n

(Rn + (n − 1)
1

n − 1

n−1

∑
i=1

Ri)

=
1
n

(Rn + (n − 1)Qn)

=
1
n

(Rn + nQn − Qn)

= Qn +
1
n

(Rn − Qn)

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Incremental Implementation

‣ This form of update rule is quite common in reinforcement learning.

‣ The general form is as follows:

NewEstimate <- OldEstimate + StepSize (Target - OldEstimate)

‣ The expression (Target-OldEstimate) is usually defined as error in the
estimate.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Tracking a Nonstationary Problem

‣ The averaging method discussed before is appropriate for stationary
bandit problems.

‣ However, many problems are non-stationary.

‣ In these cases, it makes sense to give more weight to recent rewards
rather than long-past rewards.

‣ One of the most popular way of doing this is to use constant step-

size parameter (in the example above was).
1
n

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Tracking a Nonstationary Problem

‣ The incremental update rule for updating an average of the past
rewards is modified to be:

where the step-size parameter is constant.

‣ This results in being a weighted average of past rewards and the initial
estimate.

‣ More formally:

Qn n − 1

Qn+1 ≐ Qn + α(Rn − Qn)

α ∈ (0,1]

Qn+1

Qn+1 ≐ Qn + α(Rn − Qn) = (1 − α)nQ1 +
n

∑
i=1

α(1 − α)(n−i)Ri

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Tracking a Nonstationary Problem

‣ This is called a weighted average since

‣ The quantity is less than 1 and the weight given to
decreases as the number of rewards increases (actually it’s
exponential, and for this reason it is sometimes called exponential-
recency-weighted average).

(1 − α)nQ1 +
n

∑
i=1

α(1 − α)(n−i) = 1

1 − α Ri

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Optimistic Initial Values

‣ These methods are dependent on the initial action-value estimates
.

‣We say that these methods are biased by their initial estimates.

‣ Initial values can be used as a simple way to encourage exploration.

‣ If the learner is “disappointed” by the initial values and explore
more.

‣ For example, if the initial values for each action are selected in order
to be quite high with respect to the actual optimal values, all the
actions are tried several times before we get convergence.

Q1(a)

a

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Optimistic Initial Values: Example

‣ Suppose that we have a multi-armed bandit, where the optimal action
values for every action are selected from a normal distribution
with mean 0 and variance 1.

‣ In this case, an initial value for each activity is highly
disappointing.

‣ Remember the formula:

NewEstimate <- OldEstimate + StepSize (Target - OldEstimate)

‣ This will lead to a lot of exploration, also in pure greedy action
selection.

q*(a) a

Q1(a) = 10

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Upper-Confidence-Bound (UCB) Action
Selection

‣ Exploration is needed because there is always uncertainty of the actual-
value estimates.

‣ Greedy actions might be the best ones, but it might not be the case.

‣ -greedy action selection forces the non-greedy actions to be tried,
but indiscriminately with no preferences for those that are nearly
greedy or particularly uncertain.

‣ It would be better to select among the non-greedy actions considering
their potential of being optimal, taking into account both how close their
estimates are to being optimal and the uncertainties in these estimates.

ϵ

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Upper-Confidence-Bound (UCB) Action
Selection

‣ One effective way of doing this is to select actions according to:

where is the time at which action is taken, denotes the number
of times that action has been selected prior to time and the number

 controls the degree of exploration.

‣ The idea of this upper confidence bound (UCB) action selection is that
the square-root term is a measure of the uncertainty or variance of the
estimate of the actual value of action .

At ≐ arg max
a

(Qt(a) + c
lnt

Nt(a)
)

t At Nt(a)
a t

c > 0

a

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Contextual Bandits

‣ Multi-armed bandits are used when the selection of the action is not
dependent on the state.

‣ But for many applications (e.g., ads on a webpage), actually the state
is very important.

‣When the action selection depends on the state, but on its previous
history, we have the case of contextual bandits.

‣ Since the action associated an action to the state, contextual bandits
are also defined as a problem of associative search.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Contextual Bandits

‣ They require to learn a policy, i.e., a mapping from the current state to
the probabilities of each action.

‣ As we said, contextual bandits differ from the “full” reinforcement
learning problem in that the action does not affect the future state.

‣ In case, the action affects the future state, we have the “full”
reinforcement learning problem.

Contextual Bandits

‣ Recall the definition of policy:

‣ A policy is a mapping from states to probabilities of each possible
action.

‣ If the agent is following policy at time , then is the
probability that if .

‣ In contextual bandits, the action that is selected does not modify the
state. In other words, the action a does not modify the next situation.

‣ Methods are similar to those for full reinforcement learning.

π t π(a |s)
At = a St = s

a

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

Additional Readings

‣ Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. Proceedings of the 19th International Conference
on World Wide Web (WWW 2010): 661–670.

RL for Autonomous Systems Design 2019-2020 Mirco Musolesi

References

‣ Chapter 2 of Sutton and Barto. Introduction to Reinforcement
Learning. Second Edition. MIT Press. 2018.

