
An Introduction to (Multi-Agent)
Reinforcement Learning for Complex Systems

Introduction to the Course
Overview of RL Basics

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

SSM RL 2020-2021 Mirco Musolesi

An Introduction to (Multi-Agent)
Reinforcement Learning
for Complex Systems

‣ In this module we will cover core topics in Reinforcement Learning.

‣ I will provide with an overview of both theoretical foundations and
applications. We will discuss key recent papers in this area and we
will outline the open challenges in this field.

SSM RL 2020-2021 Mirco Musolesi

An Introduction to (Multi-Agent)
Reinforcement Learning
for Complex Systems

‣ Mirco Musolesi

‣W: https://www.mircomusolesi.org

‣ E: mircomusolesi@acm.org

SSM RL 2020-2021 Mirco Musolesi

http://incompleteideas.net/book/the-book.html

SSM RL 2020-2021 Mirco Musolesi

Introduction to Reinforcement Learning

‣ Key idea: a natural way of thinking about learning is learning through
interaction with the external world.

‣ Learning from interaction is a foundational idea underlying nearly all
theories of learning and intelligence.

‣ Reinforcement learning is learning what to do - how to map situations
to actions - so as to maximise a numerical reward.

‣ Goal-directed learning from interaction.

‣ The learner is not told which actions to take, but instead it must
discover which actions yield the most reward by trying them.

Mirco Musolesi SSM RL 2020-2021

https://www.youtube.com/watch?v=eRwTbRtnT1I

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

ççç

https://www.youtube.com/watch?v=gn4nRCC9TwQ

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco Musolesi SSM RL 2020-2021

Mirco MusolesiSSM RL 2020-2021

Source: https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control

Mirco MusolesiSSM RL 2020-2021

Mirco MusolesiSSM RL 2020-2021

Source: https://deepmind.com/blog/article/machine-learning-can-boost-value-wind-energy

Mirco MusolesiSSM RL 2020-2021

RL in Android

‣ RL used in Android for:

‣ Adaptive battery:

‣ It is used to learn and anticipate
future battery use

‣ Adaptive brightness of the video:

‣ Algorithm learns preferences in terms
of brightness from the user

SSM RL 2020-2021 Mirco Musolesi

Finite Markov Decision Processes

‣ Markov Decision Processes (MDPs) are a mathematically idealised
formulation of Reinforcement Learning for which precise theoretical
statements can be made.

‣ Tension between breadth of applicability and mathematical
tractability.

‣ MDPs provide a way for framing the problem of learning from
experience, and, more specifically, from interacting with an
environment.

SSM RL 2020-2021 Mirco Musolesi

Markov Decision Processes: Definitions

‣ Two entities:

‣ Agent: learner and decision maker.

‣ Environment: everything else outside the agent.

‣ The agent interacts with the environment selecting actions.

‣ The environment changes following actions of the agent.

SSM RL 2020-2021 Mirco Musolesi

Agent

Environment

Action At

St+1

Rt+1

State St Reward Rt

SSM RL 2020-2021 Mirco Musolesi

Markov Decision Processes: Definitions

‣ The agent and the environment interact at each of a sequence of
discrete time steps

‣ At each time step , the agent receives some representation of the
environment state where is the set of the states.

‣ On that basis, an agent selects an action where is
the set of the actions that can be taken in state .

‣ At time as a consequence of its action the agent receives a
reward , where is the set of rewards (expressed as real
numbers).

t = 0,1,2,3,...

t
St ∈ 𝒮 𝒮

At ∈ 𝒜(St) 𝒜(St)
St

t + 1
Rt+1 ∈ ℛ ℛ

SSM RL 2020-2021 Mirco Musolesi

Goals and Rewards

‣ The goal of the agent is formalised in terms of the reward it receives.

‣ At each time step, the reward is a simple number .

‣ Informally, the agent’s goal is to maximise the total amount it receives.

‣ The agent should not maximise the immediate reward, but the
cumulative reward.

Rt ∈ ℝ

SSM RL 2020-2021 Mirco Musolesi

The “Reward Hypothesis”

‣We can formalise the goal of an agent by stating the “reward
hypothesis”:

All of what we mean by goals and purposes can be well thought of as
the maximisation of the expected value of the cumulative sum of a
received scalar signal (reward).

SSM RL 2020-2021 Mirco Musolesi

Expected Returns

‣We will now try to conceptualise the idea of cumulative rewards
more formally.

‣ An agent receives a sequence of rewards

‣ In order to define cumulative rewards, we introduce the concept of
expected return , which is a function of the reward sequence.

Rt+1, Rt+2, Rt+3, . . .

Gt

SSM RL 2020-2021 Mirco Musolesi

Episodic Tasks and Continuing Tasks

‣ Typically, we identify two cases: episodic tasks and continuing tasks.

‣ An episodic task is one in which we can identify a final step of the
sequence of rewards, i.e., in which the interaction between the agent and
the environment can be broken into sub-sequences that we call episodes
(such a play of a game, repeated tasks, etc.).

‣ Each episode ends in terminal state after steps, followed by a reset to a
standard starting state or to a sample of a distribution of starting states.

‣ The next episode is completely independent from the previous one.

‣ A continuing task is one in which it is not possible to identify a final state
(e.g., on-going process control or robots with a long-lifespan).

T

SSM RL 2020-2021 Mirco Musolesi

Expected Return for Episodic Tasks and
Continuing Tasks

‣ In the case of episodic tasks the expected return associated to the
selection of an action is the sum of rewards defined as follows:

‣ In the case of continuing tasks the expected return associated to the
selection of an action is defined as follows:

where is the discount rate, with .

At

Gt ≐ Rt+1 + Rt+2 + Rt+3 + . . . + RT

At

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1

γ 0 ≤ γ ≤ 1

SSM RL 2020-2021 Mirco Musolesi

Why Discounting?

‣ The definition of expected return that we used for episodic tasks
would be problematic for continuing tasks: the expected return of
time of termination would be equal to in some cases, such as
when the reward is equal to 1 at each time step.

‣ The discount rate determines the present value of future rewards: a
reward received time steps in the future is worth what it would
be worth if it were received immediately.

T ∞

k γk−1

SSM RL 2020-2021 Mirco Musolesi

Relation between Returns at Successive
Time Steps

‣ Returns at successive time steps are related to each others as
follows:

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . .)

= Rt+1 + γGt+1

SSM RL 2020-2021 Mirco Musolesi

Policies and Value Functions

‣ Almost all reinforcement learning algorithms involve estimating value
functions, i.e., functions of states (or of state-action pairs) that
estimate how good it is for the agent to be in a given state (or how
good it is to perform a given action in a given state).

‣ A policy is used to to model how the behaviour of the agent based on
the previous experience and the rewards (and consequently the
expected returns) an agent received in the past.

SSM RL 2020-2021 Mirco Musolesi

Definition of Policy

‣ Formally, a policy is a mapping from states to probabilities of each
possible action.

‣ If the agent is following policy at time , then is the
probability that if .

π t π(a |s)
At = a St = s

SSM RL 2020-2021 Mirco Musolesi

Definition of State-Value Function

‣ The value function of a state under a policy , denoted , is the
expected return when starting in and following thereafter.

‣ For MDPs, we can define the state-value function for policy formally as:

for all

where denotes the expected value of a random variable given that the
agent follows and is any time step. The value of the terminal state is 0.

s π vπ(s)
s π

vπ π

vs ≐ Eπ[Gt |St = s] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

s ∈ 𝒮

Eπ[.]
π t

SSM RL 2020-2021 Mirco Musolesi

Definition of Action-Value Function

‣ Similarly, we define the action-value function, i.e., the value of taking
action in state under a policy , denoted , as the
expected return starting from , taking the action , and thereafter
following policy :

a s π qπ(s, a)
s a

π

qπ(s, a) ≐ Eπ[Gt |St = s, At = a] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

SSM RL 2020-2021 Mirco Musolesi

Choosing the Rewards

‣When we model a real system as a Reinforcement Learning problem,
the hardest problem is to select the right rewards.

‣ Typically, we use negative values for actions that do not help us in
reaching our goal and positive if they do (and sometimes we set the
values to 0 if they do not help us in reaching the goal).

‣ An alternative is to set the values of rewards to a negative number
until we reach our goal (and we set the value to 0 when we reach our
goal).

SSM RL 2020-2021 Mirco Musolesi

Choosing the Rewards

‣ It is very important to keep in mind that we should not “reward” the
intermediate steps or the single actions.

‣We are not “teaching” the agent how to execute an intermediate step,
but how to reach the final goal. If we do so, the agent will learn how
to reach the intermediate step, e.g., how to execute a sub-task.

‣ The reward should tell the agent if the current step is a step forward
towards the final goal or not.

SSM RL 2020-2021 Mirco Musolesi

Example of Rewards

Maze -> Rewards: -1 for no exit 0 for exit
Credit: Shutterstock

SSM RL 2020-2021 Mirco Musolesi

Examples of Rewards

Chess -> Rewards: 1 for victory, -1 for defeat

SSM RL 2020-2021 Mirco Musolesi

Choosing the Rewards

‣ Sometimes it’s not possible to know the reward until the end of an
episode. The typical example is a board game (chess, go, etc.).

‣ This is usually called credit assignment problem, i.e., the problem of
assigning a reward to each step.

‣ In that case the reward might be assigned at the end of a Montecarlo
rollout for example (stochastic estimate of the reward).

‣ For example if the game is successful we can use +1 as reward for all
the steps that leads to the victory (or -1 otherwise).

SSM RL 2020-2021 Mirco Musolesi

Example of Rewards

‣ In Go or Chess, the reward will be 1 for winning or -1 losing for the
terminal state (i.e., the state at time), but we will know the result of
the game only at the end.

‣ Therefore, the reward can be assigned only at the end of an episode.

‣ In Go or Chess, we can for example assign 1 or -1 to each step in
case of victory or loss at the end of the episode after a Montecarlo
playout/rollout.

T

SSM RL 2020-2021 Mirco Musolesi

How to Estimate the State-Value (Action-
Value) Functions

‣ If the behaviour of the MDP is known (i.e., the transitions probabilities
between all the states are known), the state function or the action-
state function can be estimated by considering all the possible
moves.

‣ This is not possible when:

‣ The transitions probabilities are not know.

‣ The system is very complex (for example a board game has a very
large number of potential game configurations).

SSM RL 2020-2021 Mirco Musolesi

How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods

‣ Alternatively, the state-value function and the action-value function
 can be estimated through experience.

‣ One possibility is to keep average values of the actual returns that
have followed a certain state (or a certain action) while following a
policy . These values will converge to the actual state-value function

 and the action-value function asymptotically.

‣ These methods based on averaging sample returns are referred to as
Monte Carlo methods.

vπ
qπ

π
vπ qπ

SSM RL 2020-2021 Mirco Musolesi

How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods

‣ Monte Carlo methods are not appropriate in case the number of
states is very large.

‣ In this case, it is not practical to keep separate averages for each
state individually.

‣ Instead, and are maintained as parametrised functions with the
number of parameters << number of states.

‣ Various function approximators of different complexity are possible.

‣ Artificial neural networks are a possible option as function
approximators -> Deep Reinforcement Learning

vπ qπ

SSM RL 2020-2021 Mirco Musolesi

Optimal Policies and Optimal Value
Functions

‣ Solving a reinforcement learning is roughly equivalent to finding a policy
that maximises the amount of reward over the long run.

‣ In finite MDPs there is always at least one policy that is better or equal to
all the other policies: this is called the optimal policy.

‣ Although there may be more than one, we denote all the optimal policies
with . They are characterised by the same value function defined as

for all .

π* v*

v*(s) ≐ max
π

vπ(s)

s ∈ 𝒮

SSM RL 2020-2021 Mirco Musolesi

Optimal Policies and Optimal Value
Functions

‣ Optimal policies also shares the same optimal action-value function
, which is defined as

for all and .

‣We can write in terms of as follows:

.

q*

q* ≐ max
π

qπ(s, a)

s ∈ 𝒮 a ∈ 𝒜(s)

q* v*

q*(s, a) = E[Rt+1 + γv*(St+1) |St = s, At = a]

SSM RL 2020-2021 Mirco Musolesi

Difference between Reinforcement
Learning and Supervised Learning

‣ Supervised learning is learning from a set of labeled examples.

‣ In interactive problems, it is hard to obtain labels in the first place.

‣ In “unknown” situations, agent have to learn from their experience. In
these situations, reinforcement learning is most beneficial.

SSM RL 2020-2021 Mirco Musolesi

Difference between Reinforcement
Learning and Unsupervised Learning

‣ Unsupervised learning is learning from datasets containing unlabelled
data.

‣ You might think that reinforcement learning is a type of unsupervised
learning, because it does not rely on examples (labels) of correct
behaviour and instead explores and learns it. However, in
reinforcement learning the goal is to maximise a reward signal instead
of trying to find a hidden structure.

‣ For this reason, reinforcement learning is usually considered a third
paradigm in addition to supervised and unsupervised learning.

Mirco MusolesiSSM RL 2020-2021

Temporal-Difference Learning

‣ Temporal-difference (TD) methods like Monte Carlo methods can
learn directly from experience.

‣ Unlike Monte Carlo methods, TD method update estimates based in
part on other learned estimates, without waiting for the final outcome
(we say that they bootstrap).

‣We will first consider the problem of prediction (TD prediction) first
(i.e., we fix a policy and we try to estimate the value for that
given policy).

‣ Then we will consider the problem of finding an optimal policy (TD
control).

π vπ

Mirco MusolesiSSM RL 2020-2021

Three Key Problems

‣ Recall: we consider three key RL problems:

‣ The prediction problem: the estimation of and for a fixed
policy .

‣ The policy improvement problem: the estimation of and while
trying at the same time to improve the policy .

‣ The control problem: the estimation of an optimal policy .

vπ qπ
π

vπ qπ
π

π*

Mirco MusolesiSSM RL 2020-2021

TD Prediction

‣ Both TD and Monte Carlo methods for the prediction problem are based on
experience.

‣ Roughly speaking, Monte Carlo methods wait until the return following the
visit is known, then use that return as a target for .

‣ An every-visit Monte Carlo method suitable for non-stationary environment
is: .

‣ where is the actual return following time and is a constant size
parameter. This is not based on the average values but on a weighted

average (you can get the average if you consider instead as step-size

parameter).

V(S(t))

V(St) ← V(St) + α(Gt − V(St))

Gt t α

1
n

Mirco MusolesiSSM RL 2020-2021

TD Prediction

‣ Monte Carlo methods must wait until the end of the episode to
determine the increment to , because only at that point it is
possible to calculate .

‣ TD methods instead need to wait only until the next step.

‣ At time they immediately from a target make a useful update
using the observed reward and the estimate .

V(S(t))
G(t)

t + 1
Rt+1 V(St+1)

Mirco MusolesiSSM RL 2020-2021

TD(0)

‣ The TD(0) method is based on the following update:

on transition to and receiving .

This method is also called 1-step TD.

‣ Essentially, the target for the Monte Carlo update is , whereas the
target for the TD update is .

V(St) ← V(St) + α(Rt+1 + γV(St+1) − V(St))

St+1 Rt+1

Gt
Rt+1 + γV(St+1)

Mirco MusolesiSSM RL 2020-2021

TD(0)

Input: the policy to be evaluated

Algorithm parameter: step size

Initialise , for all , arbitrarily except that

Loop for each episode:

 Initialise

 Loop for each step of episode:

 action given by for

 Take action , observe

until is terminal

π

α ∈ (0,1]

V(s) s ∈ 𝒮+ V(terminal) = 0

S

A ← π S

A R, S′

V(S) ← V(S) + α[R + αV(S′) − V(S)]

S ← S′

S

Mirco MusolesiSSM RL 2020-2021

TD(0)

‣ Note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the difference between the estimated value of and the better
estimate .

‣ The TD error is defined as:

‣ The TD error at each time is the error in the estimate made at that time.

‣ It is interesting to note that, since the TD error depends on the next state and
next reward, it is not actually available until one time step later.

‣ In other words, is the error in available at a time .

St
Rt+1 + γV(St+1)

δt ≐ Rt+1 + γV(St+1) − V(St)

δt V(St) t + 1

Mirco MusolesiSSM RL 2020-2021

Advantages of TD Prediction Methods

‣ Compared to Dynamic Programming methods, TD methods do not require a
model of the environment, of its reward and next-state probability distributions.

‣ Compared to Monte Carlo methods, TD methods are implemented in an
online, fully incremental fashion.

‣With Monte Carlo methods, one must wait until the end of an episode (i.e.,
when the return is known), instead with TD methods, we need to wait only
one time step.

‣Why does this matter?

‣ Some applications have very long episodes.

‣ Some applications are actually continuing tasks.

Mirco MusolesiSSM RL 2020-2021

Theoretical Basis of TD(0)

‣ Even if the learning process happens step-by-step, we have convergence
guarantees supporting the methods presented in the lecture (see
Sections 6.2 and 9.4 of Barto and Sutton 2018).

‣ More precisely, for any fixed policy , TD(0) has been proved to converge
to , in the mean for a constant step-size parameter if it is sufficiently
small, and with probability 1 if the step-size decreases given stochastic
approximation conditions (see Section 2.7 of Barto and Sutton 2018).

‣ But what is the faster in terms of convergence between dynamic
programming, Monte Carlo and TD?

‣ It’s still an open question, in case you are looking for a research topic!

π
vπ

Mirco MusolesiSSM RL 2020-2021

On-Policy and Off-Policy Control

‣ Recall the difference between on-policy and off-policy control:

‣ On-policy control: exploration of the states following the policy.

‣ Off-policy control: exploration of the states not following the
current policy (for example with a stochastic policy).

Mirco MusolesiSSM RL 2020-2021

Sarsa: On-Policy TD Control

‣We now consider the use of TD prediction methods for the control
problem.

‣ For an on-policy method, we must estimate for the current
behaviour policy and for all the states and actions .

‣ Above, we consider the transitions from state to state and we learned
the values of states.

‣ Now we consider the transitions from state-action pair to state-action
pair and learn the values of state-action pair.

qπ(s, a)
π s a

Mirco MusolesiSSM RL 2020-2021

Sarsa: On-policy TD Control

‣ Formally, these cases are identical: they are both Markov chain with a
reward process. The theorems assuring the converge of state values
under TD(0) also apply to the corresponding algorithm for action
values:

‣

‣ This update is done after every transition from a non-terminal state .

‣ If is terminal, then .

Q(St, At) ← Q(St, At) + α(Rt+1 + γQ(St+1, At+1) − Q(St, At))

St

St+1 Q(St+1, At+1) ← 0

Mirco MusolesiSSM RL 2020-2021

Sarsa: Online TD(0) Control

‣ The update of Sarsa uses all the elements of the quintuple: .

‣ This indicates a transition from a state to the next.

‣ This quintuple gives rise to the name Sarsa.

‣We can design an on-policy control algorithm based on the Sarsa prediction method.

‣ As in all on-policy methods, we continually estimate for the behaviour policy .

‣ At the same time, we assume a greedy policy using values.

‣ By doing so we will have a convergence of the values to .

(St, At, Rt+1, St+1, At+1)

qπ π

Q

Q q*

Mirco MusolesiSSM RL 2020-2021

Q-learning: Off-policy TD Control

‣ Q-learning is one of the classic RL algorithms.

‣ Q-learning is an off-policy TD control algorithm, defined by:

‣ In this case, the learned action-value function directly approximates , the
optimal action-value function, independent of the policy being followed.

‣ Policy still matters since it determines which state-action pairs are visited/
updated. However, only requirement for convergence is that all pairs
continue to be updated.

‣ Early convergence proofs.

Q(St, At) ← Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a) − Q(St, At))

Q q*

Mirco MusolesiSSM RL 2020-2021

Mirco MusolesiSSM RL 2020-2021

Mirco MusolesiSSM RL 2020-2021

Summary

‣ The methods that we discussed are among the most-used methods
in RL.

‣ These methods are usually referred to as tabular methods, since the
state-action space can fit in a table.

‣ Table with 1 row per state-action entry.

‣What happens if you can’t fit all the state-action entry in a table?

‣We need function approximation rather than tables.

Mirco MusolesiSSM RL 2020-2021

Summary

‣ Function Approximation will provide a mapping between a state or
state-action to a value function.

‣ More precisely, a value-function approximation is a function with in
input the state (or the state and action), which gives in output the
value for the state (or the state and action).

Mirco MusolesiSSM RL 2020-2021

Function

Approximators ̂v

Mirco MusolesiSSM RL 2020-2021

Function

Approximator

s

a

̂q

Mirco MusolesiSSM RL 2020-2021

Function

Approximator ̂q

