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An Introduction to (Multi-Agent) 
Reinforcement Learning  
for Complex Systems

‣ In this module we will cover core topics in Reinforcement Learning.  

‣ I will provide with an overview of both theoretical foundations and 
applications. We will discuss key recent papers in this area and we 
will outline the open challenges in this field.
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http://incompleteideas.net/book/the-book.html
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Introduction to Reinforcement Learning

‣ Key idea: a natural way of thinking about learning is learning through 
interaction with the external world. 

‣ Learning from interaction is a foundational idea underlying nearly all 
theories of learning and intelligence.   

‣ Reinforcement learning is learning what to do - how to map situations 
to actions - so as to maximise a numerical reward. 

‣ Goal-directed learning from interaction. 

‣ The learner is not told which actions to take, but instead it must 
discover which actions yield the most reward by trying them.



Mirco Musolesi SSM RL 2020-2021

https://www.youtube.com/watch?v=eRwTbRtnT1I
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https://www.youtube.com/watch?v=gn4nRCC9TwQ
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Source: https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control
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Source: https://deepmind.com/blog/article/machine-learning-can-boost-value-wind-energy
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RL in Android

‣ RL used in Android for: 

‣ Adaptive battery: 

‣ It is used to learn and anticipate 
future battery use 

‣ Adaptive brightness of the video: 

‣ Algorithm learns preferences in terms 
of brightness from the user
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Finite Markov Decision Processes

‣ Markov Decision Processes (MDPs) are a mathematically idealised 
formulation of Reinforcement Learning for which precise theoretical 
statements can be made. 

‣ Tension between breadth of applicability and mathematical 
tractability. 

‣ MDPs provide a way for framing the problem of learning from 
experience, and, more specifically, from interacting with an 
environment.
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Markov Decision Processes: Definitions

‣ Two entities:  

‣ Agent: learner and decision maker. 

‣ Environment: everything else outside the agent.  

‣ The agent interacts with the environment selecting actions. 

‣ The environment changes following actions of the agent.
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Agent

Environment

Action At

St+1

Rt+1

State St Reward Rt
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Markov Decision Processes: Definitions

‣ The agent and the environment interact at each of a sequence of 
discrete time steps  

‣ At each time step , the agent receives some representation of the 
environment state  where  is the set of the states. 

‣ On that basis, an agent selects an action  where  is 
the set of the actions that can be taken in state . 

‣ At time  as a consequence of its action the agent receives a 
reward , where  is the set of rewards (expressed as real 
numbers).

t = 0,1,2,3,...

t
St ∈ 𝒮 𝒮

At ∈ 𝒜(St) 𝒜(St)
St

t + 1
Rt+1 ∈ ℛ ℛ
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Goals and Rewards

‣ The goal of the agent is formalised in terms of the reward it receives. 

‣ At each time step, the reward is a simple number . 

‣ Informally, the agent’s goal is to maximise the total amount it receives. 

‣ The agent should not maximise the immediate reward, but the 
cumulative reward.

Rt ∈ ℝ
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The “Reward Hypothesis”

‣We can formalise the goal of an agent by stating the “reward 
hypothesis”: 

All of what we mean by goals and purposes can be well thought of as 
the maximisation of the expected value of the cumulative sum of a 
received scalar signal (reward).
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Expected Returns

‣We will now try to conceptualise the idea of cumulative rewards 
more formally. 

‣ An agent receives a sequence of rewards  

‣ In order to define cumulative rewards, we introduce the concept of 
expected return , which is a function of the reward sequence.

Rt+1, Rt+2, Rt+3, . . .

Gt
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Episodic Tasks and Continuing Tasks

‣ Typically, we identify two cases: episodic tasks and continuing tasks. 

‣ An episodic task is one in which we can identify a final step of the 
sequence of rewards, i.e., in which the interaction between the agent and 
the environment can be broken into sub-sequences that we call episodes 
(such a play of a game, repeated tasks, etc.). 

‣ Each episode ends in terminal state after  steps, followed by a reset to a 
standard starting state or to a sample of a distribution of starting states. 

‣ The next episode is completely independent from the previous one. 

‣ A continuing task is one in which it is not possible to identify a final state 
(e.g., on-going process control or robots with a long-lifespan).

T
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Expected Return for Episodic Tasks and 
Continuing Tasks

‣ In the case of episodic tasks the expected return associated to the 
selection of an action  is the sum of rewards defined as follows: 

  

‣ In the case of continuing tasks the expected return associated to the 
selection of an action  is defined as follows: 

 

where  is the discount rate, with .

At

Gt ≐ Rt+1 + Rt+2 + Rt+3 + . . . + RT

At

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1

γ 0 ≤ γ ≤ 1
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Why Discounting?

‣ The definition of expected return that we used for episodic tasks 
would be problematic for continuing tasks: the expected return of 
time of termination  would be equal to  in some cases, such as 
when the reward is equal to 1 at each time step. 

‣ The discount rate determines the present value of future rewards: a 
reward received  time steps in the future is worth  what it would 
be worth if it were received immediately.

T ∞

k γk−1
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Relation between Returns at Successive 
Time Steps

‣ Returns at successive time steps are related to each others as 
follows: 

 

Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )

= Rt+1 + γGt+1
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Policies and Value Functions 

‣ Almost all reinforcement learning algorithms involve estimating value 
functions, i.e., functions of states (or of state-action pairs) that 
estimate how good it is for the agent to be in a given state (or how 
good it is to perform a given action in a given state). 

‣ A policy is used to to model how the behaviour of the agent based on 
the previous experience and the rewards (and consequently the 
expected returns) an agent received in the past.
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Definition of Policy

‣ Formally, a policy is a mapping from states to probabilities of each 
possible action. 

‣ If the agent is following policy  at time , then  is the 
probability that  if .

π t π(a |s)
At = a St = s
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Definition of State-Value Function

‣ The value function of a state  under a policy , denoted , is the 
expected return when starting in  and following  thereafter. 

‣ For MDPs, we can define the state-value function  for policy  formally as: 

  

for all  

where  denotes the expected value of a random variable given that the 
agent follows  and  is any time step. The value of the terminal state is 0. 

s π vπ(s)
s π

vπ π

vs ≐ Eπ[Gt |St = s] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

s ∈ 𝒮

Eπ[ . ]
π t
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Definition of Action-Value Function

‣ Similarly, we define the action-value function, i.e., the value of taking 
action  in state  under a policy , denoted , as the 
expected return starting from , taking the action , and thereafter 
following policy : 

a s π qπ(s, a)
s a

π

qπ(s, a) ≐ Eπ[Gt |St = s, At = a] = Eπ[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]
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Choosing the Rewards

‣When we model a real system as a Reinforcement Learning problem, 
the hardest problem is to select the right rewards. 

‣ Typically, we use negative values for actions that do not help us in 
reaching our goal and positive if they do (and sometimes we set the 
values to 0 if they do not help us in reaching the goal). 

‣ An alternative is to set the values of rewards to a negative number 
until we reach our goal (and we set the value to 0 when we reach our 
goal).
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Choosing the Rewards

‣ It is very important to keep in mind that we should not “reward” the 
intermediate steps or the single actions. 

‣We are not “teaching” the agent how to execute an intermediate step, 
but how to reach the final goal. If we do so, the agent will learn how 
to reach the intermediate step, e.g., how to execute a sub-task. 

‣ The reward should tell the agent if the current step is a step forward 
towards the final goal or not.
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Example of Rewards

Maze -> Rewards: -1 for no exit 0 for exit
Credit: Shutterstock
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Examples of Rewards

Chess -> Rewards: 1 for victory, -1 for defeat
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Choosing the Rewards

‣ Sometimes it’s not possible to know the reward until the end of an 
episode. The typical example is a board game (chess, go, etc.). 

‣ This is usually called credit assignment problem, i.e., the problem of 
assigning a reward to each step. 

‣ In that case the reward might be assigned at the end of a Montecarlo 
rollout for example (stochastic estimate of the reward). 

‣ For example if the game is successful we can use +1 as reward for all 
the steps that leads to the victory (or -1 otherwise).



SSM RL 2020-2021 Mirco Musolesi

Example of Rewards

‣ In Go or Chess, the reward will be 1 for winning or -1 losing for the 
terminal state (i.e., the state at time ), but we will know the result of 
the game only at the end. 

‣ Therefore, the reward can be assigned only at the end of an episode. 

‣ In Go or Chess, we can for example assign 1 or -1 to each step in 
case of victory or loss at the end of the episode after a Montecarlo 
playout/rollout.

T
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How to Estimate the State-Value (Action-
Value) Functions 

‣ If the behaviour of the MDP is known (i.e., the transitions probabilities 
between all the states are known), the state function or the action-
state function can be estimated by considering all the possible 
moves. 

‣ This is not possible when: 

‣ The transitions probabilities are not know. 

‣ The system is very complex (for example a board game has a very 
large number of potential game configurations). 
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How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods 

‣ Alternatively, the state-value function  and the action-value function 
 can be estimated through experience. 

‣ One possibility is to keep average values of the actual returns that 
have followed a certain state (or a certain action) while following a 
policy . These values will converge to the actual state-value function 

 and the action-value function  asymptotically. 

‣ These methods based on averaging sample returns are referred to as 
Monte Carlo methods.

vπ
qπ

π
vπ qπ
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How to Estimate the State-Value (Action-
Value) Functions: Monte-Carlo Methods 

‣ Monte Carlo methods are not appropriate in case the number of 
states is very large. 

‣ In this case, it is not practical to keep separate averages for each 
state individually. 

‣ Instead,  and  are maintained as parametrised functions with the 
number of parameters << number of states. 

‣ Various function approximators of different complexity are possible. 

‣ Artificial neural networks are a possible option as function 
approximators -> Deep Reinforcement Learning

vπ qπ
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Optimal Policies and Optimal Value 
Functions

‣ Solving a reinforcement learning is roughly equivalent to finding a policy 
that maximises the amount of reward over the long run. 

‣ In finite MDPs there is always at least one policy that is better or equal to 
all the other policies: this is called the optimal policy. 

‣ Although there may be more than one, we denote all the optimal policies 
with . They are characterised by the same value function  defined as 

 

for all .

π* v*

v*(s) ≐ max
π

vπ(s)

s ∈ 𝒮
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Optimal Policies and Optimal Value 
Functions

‣ Optimal policies also shares the same optimal action-value function 
, which is defined as  

 

for all  and . 

‣We can write  in terms of  as follows: 

.

q*

q* ≐ max
π

qπ(s, a)

s ∈ 𝒮 a ∈ 𝒜(s)

q* v*

q*(s, a) = E[Rt+1 + γv*(St+1) |St = s, At = a]
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Difference between Reinforcement 
Learning and Supervised Learning

‣ Supervised learning is learning from a set of labeled examples. 

‣ In interactive problems, it is hard to obtain labels in the first place. 

‣ In “unknown” situations, agent have to learn from their experience. In 
these situations, reinforcement learning is most beneficial.
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Difference between Reinforcement 
Learning and Unsupervised Learning

‣ Unsupervised learning is learning from datasets containing unlabelled 
data. 

‣ You might think that reinforcement learning is a type of unsupervised 
learning, because it does not rely on examples (labels) of correct 
behaviour and instead explores and learns it. However, in 
reinforcement learning the goal is to maximise a reward signal instead 
of trying to find a hidden structure. 

‣ For this reason, reinforcement learning is usually considered a third 
paradigm in addition to supervised and unsupervised learning.
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Temporal-Difference Learning

‣ Temporal-difference (TD) methods like Monte Carlo methods can 
learn directly from experience. 

‣ Unlike Monte Carlo methods, TD method update estimates based in 
part on other learned estimates, without waiting for the final outcome 
(we say that they bootstrap). 

‣We will first consider the problem of prediction (TD prediction) first 
(i.e., we fix a policy  and we try to estimate the value  for that 
given policy). 

‣ Then we will consider the problem of finding an optimal policy (TD 
control).

π vπ
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Three Key Problems

‣ Recall: we consider three key RL problems: 

‣ The prediction problem: the estimation of  and  for a fixed 
policy . 

‣ The policy improvement problem: the estimation of  and  while 
trying at the same time to improve the policy . 

‣ The control problem: the estimation of an optimal policy .

vπ qπ
π

vπ qπ
π

π*
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TD Prediction

‣ Both TD and Monte Carlo methods for the prediction problem are based on 
experience. 

‣ Roughly speaking, Monte Carlo methods wait until the return following the 
visit is known, then use that return as a target for . 

‣ An every-visit Monte Carlo method suitable for non-stationary environment 
is: . 

‣ where  is the actual return following time  and  is a constant size 
parameter. This is not based on the average values but on a weighted 

average (you can get the average if you consider instead  as step-size 

parameter).

V(S(t))

V(St) ← V(St) + α(Gt − V(St))

Gt t α

1
n
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TD Prediction

‣ Monte Carlo methods must wait until the end of the episode to 
determine the increment to , because only at that point it is 
possible to calculate . 

‣ TD methods instead need to wait only until the next step. 

‣ At time  they immediately from a target make a useful update 
using the observed reward  and the estimate .

V(S(t))
G(t)

t + 1
Rt+1 V(St+1)
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TD(0)

‣ The TD(0) method is based on the following update: 

 

on transition to  and receiving . 

This method is also called 1-step TD. 

‣ Essentially, the target for the Monte Carlo update is , whereas the 
target for the TD update is . 

V(St) ← V(St) + α(Rt+1 + γV(St+1) − V(St))

St+1 Rt+1

Gt
Rt+1 + γV(St+1)
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TD(0)

Input: the policy  to be evaluated 

Algorithm parameter: step size  

Initialise , for all , arbitrarily except that  

Loop for each episode: 

   Initialise  

   Loop for each step of episode: 

   action given by  for  

   Take action , observe  

    

     

until  is terminal

π

α ∈ (0,1]

V(s) s ∈ 𝒮+ V(terminal) = 0

S

A ← π S

A R, S′ 

V(S) ← V(S) + α[R + αV(S′ ) − V(S)]

S ← S′ 

S
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TD(0)

‣ Note that the quantity in brackets in the TD(0) update is a sort of error, 
measuring the difference between the estimated value of  and the better 
estimate . 

‣ The TD error is defined as: 

 

‣ The TD error at each time is the error in the estimate made at that time. 

‣ It is interesting to note that, since the TD error depends on the next state and 
next reward, it is not actually available until one time step later. 

‣ In other words,  is the error in  available at a time .

St
Rt+1 + γV(St+1)

δt ≐ Rt+1 + γV(St+1) − V(St)

δt V(St) t + 1
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Advantages of TD Prediction Methods

‣ Compared to Dynamic Programming methods, TD methods do not require a 
model of the environment, of its reward and next-state probability distributions. 

‣ Compared to Monte Carlo methods, TD methods are implemented in an 
online, fully incremental fashion. 

‣With Monte Carlo methods, one must wait until the end of an episode (i.e., 
when the return is known), instead with TD methods, we need to wait only 
one time step. 

‣Why does this matter? 

‣ Some applications have very long episodes. 

‣ Some applications are actually continuing tasks.
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Theoretical Basis of TD(0)

‣ Even if the learning process happens step-by-step, we have convergence 
guarantees supporting the methods presented in the lecture (see 
Sections 6.2 and 9.4 of Barto and Sutton 2018). 

‣ More precisely, for any fixed policy , TD(0) has been proved to converge 
to , in the mean for a constant step-size parameter if it is sufficiently 
small, and with probability 1 if the step-size decreases given stochastic 
approximation conditions (see Section 2.7 of Barto and Sutton 2018). 

‣ But what is the faster in terms of convergence between dynamic 
programming, Monte Carlo and TD? 

‣ It’s still an open question, in case you are looking for a research topic!

π
vπ
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On-Policy and Off-Policy Control

‣ Recall the difference between on-policy and off-policy control: 

‣ On-policy control: exploration of the states following the policy. 

‣ Off-policy control: exploration of the states not following the 
current policy (for example with a stochastic policy).
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Sarsa: On-Policy TD Control

‣We now consider the use of TD prediction methods for the control 
problem. 

‣ For an on-policy method, we must estimate  for the current 
behaviour policy  and for all the states  and actions . 

‣ Above, we consider the transitions from state to state and we learned 
the values of states. 

‣ Now we consider the transitions from state-action pair to state-action 
pair and learn the values of state-action pair.

qπ(s, a)
π s a
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Sarsa: On-policy TD Control

‣ Formally, these cases are identical: they are both Markov chain with a 
reward process. The theorems assuring the converge of state values 
under TD(0) also apply to the corresponding algorithm for action 
values: 

‣  

‣ This update is done after every transition from a non-terminal state .  

‣ If  is terminal, then .

Q(St, At) ← Q(St, At) + α(Rt+1 + γQ(St+1, At+1) − Q(St, At))

St

St+1 Q(St+1, At+1) ← 0
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Sarsa: Online TD(0) Control

‣ The update of Sarsa uses all the elements of the quintuple: . 

‣ This indicates a transition from a state to the next. 

‣ This quintuple gives rise to the name Sarsa. 

‣We can design an on-policy control algorithm based on the Sarsa prediction method. 

‣ As in all on-policy methods, we continually estimate  for the behaviour policy . 

‣ At the same time, we assume a greedy policy using  values. 

‣ By doing so we will have a convergence of the  values to .

(St, At, Rt+1, St+1, At+1)

qπ π

Q

Q q*
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Q-learning: Off-policy TD Control

‣ Q-learning is one of the classic RL algorithms.  

‣ Q-learning is an off-policy TD control algorithm, defined by: 

 

‣ In this case, the learned action-value function  directly approximates , the 
optimal action-value function, independent of the policy being followed. 

‣ Policy still matters since it determines which state-action pairs are visited/
updated. However, only requirement for convergence is that all pairs 
continue to be updated. 

‣ Early convergence proofs.

Q(St, At) ← Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a) − Q(St, At))

Q q*
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Summary

‣ The methods that we discussed are among the most-used methods 
in RL. 

‣ These methods are usually referred to as tabular methods, since the 
state-action space can fit in a table. 

‣ Table with 1 row per state-action entry. 

‣What happens if you can’t fit all the state-action entry in a table?  

‣We need function approximation rather than tables.
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Summary 

‣ Function Approximation will provide a mapping between a state or 
state-action to a value function. 

‣ More precisely, a value-function approximation is a function with in 
input the state (or the state and action), which gives in output the 
value for the state (or the state and action).
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Function 

Approximators ̂v



Mirco MusolesiSSM RL 2020-2021

Function 

Approximator

s

a

̂q
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Function 

Approximator ̂q


