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Definition of Multiagent Systems

» Several possible definitions:

» Multiagent systems are distributed systems of independent actors
called agents that are each independently controlled but that
interact with one another in the same environment. (See:
Wooldridge, “Introduction to Multiagent Systems”, 2002 and Tulys
and Stone, “Multiagent Learning Paradigms”, 2018).

» Multiagent systems are systems that include multiple autonomous
entities with (possibly) diverging information (see Shoham and
Leyton-Brown, “Multiagent systems”, 2009).
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Definition of Multiagent Learning

» We will use the following definition of multiagent learning:

» “The study of multiagent systems in which one or more of the
autonomous entities improves automatically through experience”.
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Characteristics of Multiagent Learning

» Different scale:

» A city or an ant colony or a football team.
» Different degree of complexity:

» A human, a machine, a mammal or an insect.
» Different types of interaction:

» Frequent interactions (or not), interactions with a limited number of
iIndividuals, etc.
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Presence of Regularity

» It is fundamental that there is a certain degree of regularity in the
system otherwise prediction of behaviour is not possible.

» Assumption: past experience is somehow predictive of future
expectations.

» Dealing with non-stationarity is a key problem.

p It is the usual problem of reinforcement learning at the end.
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Potential Paradigms

» We will consider 5 paradigms:
» Online Multi-agent Reinforcement Learning towards individual utility
» Online Multi-agent Reinforcement Learning towards social welfare
» Co-evolutionary learning
» Swarm intelligence

» Adaptive mechanism design
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Online Reinforcement Learning towards
Individual Utility

» One of the most-studied scenarios in multiagent learning is that in which
multiple independent agents take actions in the same environment and learn
online to maximise their own individual utility functions (i.e., expected returns).

» From a formal point view (game-theory point of view), this can be considered a
repeated normal form game.

» A repeated game is a game that is based of a certain number of repetitions.
» Normal form games are games that are presented using a matrix.

» As aside, an extensive form game is a game for which an explicit
representation of the sequence of the players’ possible moves, their
choices at every decision point and the information about other player’s
move and relative payoffs.
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Example: Prisoner’s Dilemma

» The Prisoner’s Dilemma is a classic 2-player game.

» Description of the “game”; two prisoners committed a crime together
and are being interrogated separately.

» If neither of them confesses to the crime (they both “cooperate”), then
they will both get a small punishment (corresponding to a payoff of 5).

» If one of them confesses (or “defects”), but the other does not, then
the one that confesses gets off for free (payoff of 10), but the other
gets the worst punishment possible (payoff of 0).

» If they both defect, they get a worst punishment (payoff of 1)
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Example: Prisoner’s Dilemma

» Normal games were initially introduced as one-shot game.

» The players know each other’s full utility (reward) functions and play
the game only once.

» In this setting, the concept of Nash equilibrium was introduced: a set
of actions such that no player would be better off deviating given that
the other player’s actions are fixed.

» Games can have one or multiple Nash equilibria.

» In the Prisoner’s Dilemma, the only Nash Equiliorium is for both
agents to defect.
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13 Whitehead, J. H. C., “Simple Homotopy Types.” If W = 1, Theorem 5 follows
from (17:3) on p. 155 of S. Lefschetz, Algebraic Topology, (New York, 1942) and argu-
ments in §6 of J. H. C. Whitehead, “On Simply Connected 4-Dimensional Polyhedra”
(Comm. Math. Helv., 22, 48-92 (1949)). However this proof cannot be generalized to
the case W = 1.

EQUILIBRIUM POINTS IN N-PERSON GAMES

By JonN F. NasH, Jr.*
PRINCETON UNIVERSITY

Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an n-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategies, one strategy
being taken for each player. For mixed strategies, which are probability
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Repeated Normal Form Games

» In repeated normal form games, players interact with one another
multiple times with the objectives of maximising their sum utilities (i.e.,
expected returns) over time.

» As you can imagine, Reinforcement Learning and possibly Deep
Reinforcement Learning is well suited for this type of problems.

» Reinforcement Learning can also be used to understand the problem
of the “evolution of cooperation” and the presence of altruism: why
do we humans cooperate even if in presence of maximisation of
personal reward function?
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“Both a fascinating biography of von Neumann...
and a brilliant social history of game theory and
its role in the Cold War and nuclear arms race.”

—San Francisco Chronicle
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JOHN VON NEUMANN,
GAME THEORY,
AND THE PUZZLE
OF THE BOMB

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi



THE

Evol)lg flon

Cooperation

ROBERT AXELROD

Autonomous and Adaptive Systems 2021-2022



A Cooperative Species

HUMAN RECIPROCITY AND ITS EVOLUTION

SAMUEL BOWLES & HERBERT GINTIS
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Online Reinforcement Learning towards
Social Welfare

» An alternative paradigm is the one in which multiple independent
agents take actions in the same environment and learn online to
maximise a global utility function.

» These are also called coordination games, where different players
coordinate to achieve a givenobjective (i.e., global expected return).
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Abstract

Multiagent systems appear in most social, economical, and political situations. In
the present work we extend the Deep Q-Learning Network architecture proposed
by Google DeepMind to multiagent environments and investigate how two agents
controlled by independent Deep Q-Networks interact in the classic videogame
Pong. By manipulating the classical rewarding scheme of Pong we demonstrate
how competitive and collaborative behaviors emerge. Competitive agents learn to
play and score efficiently. Agents trained under collaborative rewarding schemes
find an optimal strategy to keep the ball in the game as long as possible. We
also describe the progression from competitive to collaborative behavior. The
present work demonstrates that Deep Q-Networks can become a practical tool for
studying the decentralized learning of multiagent systems living in highly complex
environments.
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. but are sometimes capable of reaching a state where they never loose the ball.

https://www.youtube.com/watch?v=Gb9DprIgdGw
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The agents have learned to deal better with fast and bouncing balls.

https://www.youtube.com/watch?v=nn6_GUVDnVw
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Co-evolutionary Approaches

» Evolution can be also used to model and learn agent behaviour as
well. According to this paradigm, abstract Darwinian models of
evolution are applied to to refine populations of agents (knows as
individuals).

» These represent candidate solutions to a given problem.

» This process, usually called a genetic algorithm, consists of five steps:
representation, selection, generation of new individuals (crossover
and mutation), evaluation and replacement.
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Evolutionary Algorithms

» An evolutionary algorithm begins with an initial population of randomly-
generated agents. Each member of this population is then evaluated
and assigned a fitness value.

» The evolutionary algorithm then uses a fitness oriented procedure to
select agents, breeds and mutates them to produce child agents,
which are then added to the population, replacing older agents.

» One evaluation, selection and breeding cycle is knows as a generation.
P Successive generations refine a population.

» You have a given set goal and you might have a time budget.
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Images from Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence. MIT Press 2011.
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Problem of Representation

» Typically you encode a “vector” of information using binary coding (for
example 4 bits for element of the vector).

» This was the original version proposed by John Holland in 1970.
» Floating point representations are possible.

» Extensions include the use of real numbers.
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Fitness Function

» You evaluate the performance of the phenotype (i.e., the actual
performance of the behavior of your agent encoded through this
genotype).

» There is a clear mapping with the biological analogy.
» Darwin’s “survival of the fittest”.

» From a practical point of view, you can think about a performance
measure as we did in deep learning.
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Selection

p At each generation, only some of the individuals reproduce.
» The probability that an individual will make offsprings will be proportional to their fitness.

» One possibility is to have proportionate selection, i.e., the probability that an individual makes
an offspring is proportional to how good its fitness is with respect to the population fitness.

» The probability of reproduction will be:

b = fitness;
l Zj fitness;

with the sum at the denominator over the entire population.

» You might have a system where only the top K individuals will reproduce (i.e., you sub-select
first a set of individuals with high fithess and then you apply the form above).
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Cross-over

» In genetic algorithms, crossover (recombination) is an operator that
combine the genetic information of two parents to generate offsprings.

» It is one way to stochastically generate new solutions from an existing
population and it is analogous to the crossover that happens during
biological sexual reproduction.

: :
Parents_| |

crossover points |

Childre/ ——
I ——

Source: Wikimedia
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Mutation

» Mutation is an operator used to maintain genetic diversity from one
generation to the next (see biological mutation).

» Mutation alters one or more bits in the representation (chromosome).
» Example: bit string mutation (one or more bits)
» 10101 -> 10100

» A variety of mutation types have been explored (with different
distribution, for groups of bits, flipping bits, etc.)

Autonomous and Adaptive Systems 2021-2022 Mirco Musolesi



Evaluation and Replacement

p At each generation, the fithess of each individual is evaluated and
using the mechanisms described above, all the entire population is
usually entirely replaced by offspring (like in a real biological situation).

» Alternative solutions include an “elitist” solution where we maintain the

n best individuals from the previous generation to prevent loss of the
best individuals from the population (for example because of the
effects of mutations or sub-optimal fitness evaluation).
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Coevolution

» Coevoution is an extension of evolutionary algorithms for domains with
multiple agents.

» Using evolutionary algorithms, we can train a policy to perform a state
to action mapping. In this approach, rather than update the parameters
of a single agent interacting with the environment as is done in
reinforcement learning, one searches through a population of policies
that have the highest fithess for the task at hand.

» For example we can use a probabillity vector as a representation of the
policy.

p Alternative include the use of evolutionary algorithms for estimating the
nhyper-parameters of the networks.
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Aside: DNA Computing

» The evolutionary algorithms described above are based on
“simulated” DNA.

» Recently, “biological” DNA has been used for computation.
» This is usually called DNA computing.

p It is characterised by slow processing: response time in minutes/
hours, but highly parallel computations (possibly millions/billions).

» Problem: how are you going to read the output?
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Aside: DNA Computing

» Initial experiment was done by Leonard Adleman in 1994.

» He address the problem of the directed Hamiltonian Path Problem (“travelling salesman
problem?”).

» Different DNA fragment, one per city.

» DNA mixed in test tube, small fragments form bigger ones presenting the different travel
routes.

» Through a chemical reaction, the DNA fragments representing the longer were eliminated.
p But it took a while to get an answer...
» A week!

» ...but this was a proof of concepit.
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Aside: DNA Computing

» In 2002, Macdonald et al. created a DNA computer able to play tic-
tac-toe against a human computer.

» In 2002, the 3-SAT problem with 20 elements was solved (it’s a NP-
complete).

» Current efforts on reversibility, i.e., reuse of the DNA (DNA gates).
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Molecular Computation of Solutions to
Combinatorial Problems

Leonard M. Adleman

The tools of molecular biology were used to solve an instance of the directed Hamiltonian
path problem. A small graph was encoded in molecules of DNA, and the “operations” of
the computation were performed with standard protocols and enzymes. This experiment
demonstrates the feasibility of carrying out computations at the molecular level.

In 1959, Richard Feynman gave a visionary
talk describing the possibility of building
computers that were “sub-microscopic” (1).
Despite remarkable progress in computer
miniaturization, this goal has yet to be
achieved. Here, the possibility of comput-
ing directly with molecules is explored.

A directed graph G with designated ver-
tices v, and v, is said to have a Hamilto-
nian path (2) if and only if there exists a
sequence of compatible “one-way” edges e,,
e,, - - - €, (that is, a path) that begins at v, ,
ends at v, and enters every other vertex
exactly once. Figure 1 shows a graph that
forv,, = 0 and v, = 6 has a Hamiltonian
path, given by the edges 0—1, 1—2, 23,
3—4, 45, 5—6. If the edge 2—3 were
removed from the graph, then the result-
ing graph with the same designated verti-
ces would not have a Hamiltonian path.
Similarly, if the designated vertices were
changed to v,, = 3 and v, = 5 there

our

Department of Computer Science and Institute for Molec-
ular Medicine and Technology, University of Southern Cal-
ifornia, 941 West 37th Place, Los Angeles, CA 90089,
USA.

VOL. 266 -«
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would be no Hamiltonian path (because,
for example, there are no edges entering
vertex 0).

There are well-known algorithms for de-
ciding whether an arbitrary directed graph
with designated vertices has a Hamiltonian
path or not. However, all known algorithms
for this problem have exponential worst-case
complexity, and hence there are instances of
modest size for which these algorithms re-
quire an impractical amount of computer
time to render a decision. Because the direct-
ed Hamiltonian path problem has been
proven to be NP-complete, it seems likely
that no efficient (that is, polynomial time)
algorithm exists for solving it (2, 3).

The following (nondeterministic) algo-
rithm solves the directed Hamiltonian path
problem:

Step 1: Generate random paths through the
graph.
Step 2: Keep only those paths that begin with v
and end with v__,.
Step 3: If the graph has n vertices, then keep
only those paths that enter exactly n vertices.
Step 4: Keep only those paths that enter all of

1021
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The Future: Quantum Machine Learning

» Quantum computing is based on properties of quantum mechanics to compute
problems that are not feasible for classical computers.

» The basic idea is to use qubits, which are like the classic bits, with the two quantum
properties of super-position and entanglement.

» In classical computers, probabilistic methods are simulated. In quantum computers,
qguantum properties can be exploited for speeding up computation considerably.

» The current interest is on developing quantum neural networks (QNN) that used to
describe parametrised quantum computational model to be executed on quantum
computer.

» Quantum neural networks (QNN) are also called parametrised quantum circuit
(PQOQO).
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Quantum machine learning

Jacob Biamonte'?, Peter Wittek?, Nicola Pancotti*, Patrick Rebentrost®, Nathan Wiebe® & Seth Lloyd’

Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful
tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not
to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on
machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software
that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum
algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges

are still considerable.

patterns in data. Ptolemy fitted observations of the motions of the
stars to a geocentric model of the cosmos, with complex epicydes
to explain the retrograde motions of the planets. In the sixteenth century,
Kepler analysed the data of Copernicus and Brahe to reveal a previously
hidden pattern: planets move in ellipses with the Sun at one focus of the
ellipse. The analysis of astronomical data to reveal such patterns gave rise
to mathematical techniques such as methods for solving linear equations
(Newton-Gauss), learning optima via gradient descent (Newton),
polynomial interpolation (Lagrange), and least-squares fitting (Laplace). The
nineteenth and early twentieth centuries gave rise to a broad range of mathe-
matical methods for analysing data to reveal the patterns that it contained.
The construction of digital computers in the mid-twentieth century
allowed the automation of data analysis techniques. Over the past
half-century, the rapid progression of computer power has allowed
the implementation of linear algebraic data analysis techniques such

I ong before we possessed computers, human beings strove to find
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aset of instructions solving a problem, such as determining whether two
graphs are isomorphic, that can be performed on a quantum computer.
Quantum machine learning software makes use of quantum algorithms
as part of a larger implementation. By analysing the steps that quantum
algorithms prescribe, it becomes clear that they have the potential to out-
perform classical algorithms for specific problems (that is, reduce the
number of steps required). This potential is known as quantum speedup.

The notion of a quantum speedup depends on whether one takes a
formal computer science perspective—which demands mathematical
proofs—or a perspective based on what can be done with realistic, finite-
size devices—which requires solid statistical evidence of a scaling advan-
tage over some finite range of problem sizes. For the case of quantum
machine learning, the best possible performance of dassical algorithms
is not always known. This is similar to the case of Shor’s polynomial-time
quantum algorithm for integer factorization: no sub-exponential-time
classical algorithm has been found, but the possibility is not provably
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tf.keras.Input(shape=(), dtype=tf.dtypes.string),

# Parametrized Quantum Circuit (PQC) provides output
# data from the input circuits run on a quantum computer.
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# Output data from quantum computer passed through model.
tf.keras.layers.Dense(50)
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Swarm Intelligence

» Swarm intelligence is a bio-inspired machine learning technique
based on the behaviour of social insects (e.g., ants and honeybees).

» The goal is to develop self-organised and decentralised adaptive
algorithms.

» The learning is based on a large number of agents (usually with
limited “computation” capabillities) that locally interact.

» The idea is to develop algorithms that lead to the emergence of
cooperative behaviour in the population.

» Complex behaviour from simple local rules.
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Swarm Intelligence

137/4-63

Video from Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence. MIT Press 2011.
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Stigmergy

» The term stimergy indicates communication
among individuals through modification of
the environment.

» For example, some ants leave a chemical
(oheromone) trail behind to trace the path.

» The chemical decays over time.

» This allows other ants to find the paths
between the food and the nest.

» It also allows ants to find the shortest path
among alternatives.

Obstacle

Source: Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence. MIT Press 2011.
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Stigmergy and Shortest Paths

» As they move, ants deposit pheromone.

» Pheromone decays in time. o

» Ants follow the paths with the highest pheromone
concentration.

» Without pheromone, equal probability of choosing short
or long path.

» Shorter paths allow for higher number of passages (it
takes less time to go back and forth!)

» Therefore, pheromone level will be higher on the shorter
path.

» Ants will increasingly tend to choose the shorter path.

Source: Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence. MIT Press 2011.
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Ant Colony Optimization

» Ant Colony Optimization is an algorithm @:s
developed by Dongo et al: mspwed | Fadlty node o
upon stigmergic communication to find y N
the shortest path in a network.

p Typical examples are Internet/computer ]
networks problems and other problems N\ \
that can be described by the Travel / AN /
Salesman Problem. / A

—_ \\ »)

p Other problems include scheduling of ./ \
robots and coverage of areas !

(represented as networks).

o

—

Source: Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence. MIT Press 2011.
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Ant Colony Optimization: A New Meta-Heuristic

Marco Dorigo
IRIDIA
Université Libre de Bruxelles
mdorigo@ulb.ac.be

Abstract- Recently, a number of algorithms inspired by
the foraging behavior of ant colonies have been applied to
the solution of difficult discrete optimization problems. In
this paper we put these algorithms in a common frame-
work by defining the Ant Colony Optimization (ACO)
meta-heuristic. A couple of paradigmatic examples of ap-
plications of these novel meta-heuristic are given, as well
as a brief overview of existing applications.

1 Introduction

In the early nineties an algorithm called ant system was
proposed as a novel heuristic approach for the solution of
combinatorial optimization problems (Dorigo et al., 1991,
Dorigo, 1992; Dorigo et al., 1996). Ant system (AS), which
was first applied to the traveling salesman problem, was re-
cently extended and/or modified both to improve its perfor-
mance and to apply it to other optimization problems. Im-
proved versions of AS include, among others, ACS (Dorigo
& Gambardella, 1997), MAX-MIN Ant System (Stiitzle
& Hoos, 1998b), and AS,.nx (Bullnheimer er al., 1997b).
All these algorithms have been applied to the TSP with vary-
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2 The ACO meta-heuristic

The ACO meta-heuristic can be applied to discrete optimiza-
tion problems characterized as follows.

e C ={cy,ca,...,CN. } is a finite set of components.

o L={lcy, | (ci,cj) € C‘}, |L| < NZ is a finite set of
possible connections/transitions among the elements of
C, where C is a subset of the Cartesian product C x C.

® Jeic; = J(lcic;,t) is a connection cost function associ-
ated to each l.,.; € L, possibly parameterized by some
time measure {.

e Q = Q(C, L,t) is a finite set of constraints assigned
over the elements of C and L.

e s =(ci,Cj,...,Ck,-..) isasequence over the elements
of C (or, equivalently, of L). A sequence s is also
called a state of the problem. If S is the set of all pos-
sible sequences, the set S of all the (sub)sequences that
are feasible with respect to the constraints Q(C, L, t),
is a subset of S. The elements in S define the problem’s
feasible states. The length of a sequence s, that is, the
number of components in the sequence, is expressed by

e et e e e
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Ant Colony
Optimization

Marco Dorigo and Thomas Stitzle
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Adaptive Mechanism Design

p It is also possible to think of a multi-agent learning setting in which the agents are
fixed (or not controllable by us), but the interaction mechanism is to be learned.

p Typical example is an auction with a population of bidders.
» Several parameters can be controlled:

» Minimum price, simultaneous or non-simultaneous actions, mechanism
(English auction, Vickrey auction, Dutch auction, etc.).

» In this case, the auction house is not able to control the bidders (interacting
agents), but the rules of interaction.

» The parameters can be learned and refined over time (mechanism design).

» Other applications: frequency bidding, design of competition markets, etc.
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Open Problems in Cooperative Al

Allan Dafoe!, Edward Hughes?, Yoram Bachrach?, Tantum Collins?, Kevin R. McKee?, Joel Z. Leibo?,
Kate Larson® 3 and Thore Graepel?

1Centre for the Governance of Al, Future of Humanity Institute, University of Oxford, 2DeepMind, 3University of
Waterloo

Problems of cooperation—in which agents seek ways to jointly improve their welfare—are ubiquitous and
important. They can be found at scales ranging from our daily routines—such as driving on highways,
scheduling meetings, and working collaboratively—to our global challenges—such as peace, commerce,
and pandemic preparedness. Arguably, the success of the human species is rooted in our ability to
cooperate. Since machines powered by artificial intelligence are playing an ever greater role in our lives,
it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation.
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