SSM Course 2023-24

INntroduction to TensorkFlow and Keras

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

TensorFlow and Keras

» TensorFlow is an end-to-end open source platform for machine
learning.

» Current version is 2.13.

p It can be used with various high-level APIs like Keras.

Lf::i|

Keras

TensorFlow

SSM Course 2023-2024 Mirco Musolesi

Deep Neural Networks

Outputs True
“Predictions” Targets

Inputs Layer1 Layer2 Layer3 Layer4

Loss
Score
Weights Weights Weights Weights I
Layfer 1 Layfer 2 Layéer 3 Layfer 4 Loss Function

Optimizer

SSM Course 2023-2024 Mirco Musolesi

Data Representations for Neural
Networks

» Keras is based on the Numpy library.
» Numpy is one of the fundamental packages in Python for scientific computing.
» It contains:

p efficient abstractions for N-dimensional arrays;

p functions for managing N-dimensional arrays;

» tools for integrating C/C++ and Fortran code;

» linear algebra and Fourier transform operations;

» random number generators.

SSM Course 2023-2024 Mirco Musolesi

Numpy lensors

» Multi-dimensional arrays in Numpy are called tensors.
» Tensors are a sort of generalisation of the concept of matrix that you know.
» There are different types of tensors:

» Scalars (0D tensors)

» Vectors (1D tensors)

» Matrices (2D tensors)

» (3D) tensors

» 4D+tensors

SSM Course 2023-2024 Mirco Musolesi

Scalars (0D Tensors)

» A tensor that contains only one number is called a scalar (or scalar tensors, or OD tensor).

» In Numpy, a float32 or float64 number is a scalar tensor (or scalar array).

» The number of axes (also called dimension or rank) of a scalar tensor is O (obtained through
ndim).

>>> import numpy as np
>>> X = np.array(256)
>>> X

array(256)

>>>X.ndim

SSM Course 2023-2024 Mirco Musolesi

Vectors (1D Tensors)

» An array of numbers is called a vector or 1D tensor.
>»> X = np.array([1, 2, 3, 4, 5])

>>> X

array([1, 2, 3, 4, 5])

>>> X.ndim

SSM Course 2023-2024

Matrices (2D Tensors)

» An array of vectors is a matrix, or 2D tensor. A matrix has two axes
(rows and columns).

>>> x = np.array([[1, 2, 3, 4],
[SJ 6, 7, 8]:
[9, 10, 11, 12]])

>>> X.ndim

SSM Course 2023-2024 Mirco Musolesi

3D Tensors and Higher-Dimensional
lensors

p If you take an array of matrices, you obtain a 3D tensor.

>>> x = np.array([[[1, 2, 3, 4,

[6) 7) 8) 9)

[11,
[[16,
[21,
[26,
[[31,
[36,
[41,

>>> x.dim

12,

17,

22,

27,

32,

37,

42,

13,

18,

23,

28,

33,

38,

43,

51,
1e],
14,
19,
24,
29,
34,
39,

44,

1511,
20],
25],
3011,
35],

4017,

45111)

» If you then take an array of 3D tensors, you obtain a 4D tensor.

» And if you take an array of 4D tensors, you obtain a 5D tensor and so on.

SSM Course 2023-2024

Mirco Musolesi

Key Attributes

» A tensor is defined by three key attributes:

» Number of axes (rank): a 3D tensor has three axes and a matrix has two axes. A
batch of 2D images had 3 dimensions (more about batches soon).

» Shape: this is a tuple of integers that describes how many dimensions the tensor has
along each axis. For example, in the previous examples, the previous matrix example
has shape (3, 4) and the 3D tensor example has shape (3, 3, 5). A vector has

a shape with a single element, such as (5,), whereas a scalar has an empty shape

().

» Data type (usually called dtype in Python). This is the type of the data contained in
the tensor. For instance, a tensor’s type could be float32, uint8, float64 and so
on.

» No strings (because tensors are in pre-allocated contiguous memory segments).

SSM Course 2023-2024 Mirco Musolesi

Example: MNIST Dataset

>>> from tensorflow.keras.dataset import mnist

(train_images, train labels), (test images, test labels) =
mnist.load data()

>>> print (train_images).shape
(60000, 28, 28)
>>> print(train_images.dtype)

uint8

We have a 3D tensor of 8-bit integers (60000 matrices of 28x28 integers). Each matrix is a
greyscale image with coefficients between 0 and 255.

SSM Course 2023-2024 Mirco Musolesi

Example: MNIST Dataset

» Let’s display the 42nd digit in the 3D tensor using Matplotlib.

import matplotlib.pyplot as plt

import tensorflow

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test images, test labels) = mnist.load data()
digit = train_images[42]

plt.imshow(digit, cmap=plt.cm.binary)

plt.show()

SSM Course 2023-2024 Mirco Musolesi

20 1

25 1

SSM Course 2023-2024 Mirco Musolesi

Manipulating Tensors

» In the previous example, we selected a specific digit alongside the
first axis using the syntax train_images|i]. Selecting specific
elements in a tensor is called tensor slicing.

» The following example selects digits from 10 to 100 (with 100 not
included) and put them in an array of shape (90, 28, 28).

>>> my _slice = train_images[10:100]
>>> print(my _slice.shape)

(90, 28, 28)

SSM Course 2023-2024

Data Batches

» In general the first axis (axis O, because indexing starts at 0) in
data sensors Is the sample axis.

» In MNIST examples are images of digits.

» In deep learning we usually process batches. The following returns
pbatches of MNIST digits with batch size of 128:

>>> batch = train_images[:128]
>>> batch = train_images[128:256]

>>> batch = train_images[128*n:128*(n+1)]

SSM Course 2023-2024 Mirco Musolesi

Key Components

» The key components of a network in Keras are:
» Layers, which are combined in a network (model);
» The input data and corresponding targets;

» The loss function, which defines the feedback signal used for
learning;

» The optimiser, which determines how the the network is trained.

SSM Course 2023-2024

Example

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y _train),(x_test, y test) = mnist.load data()
X_train, x_test = x _train / 255.0, x _test / 255.0

model = tf.keras.models.Sequential(]
tf.keras.layers.Flatten(input_shape = (28, 28)),

tf.keras.layers.Dense(128, activation = 'relu'),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10, activation = 'softmax')
1)

loss _fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits = false)
model.compile(optimizer="adam’,

loss= loss fn,

metrics=["accuracy'])
model.fit(x_train, y train, epochs=5)

model.evaluate(x _test, y test)

SSM Course 2023-2024 Mirco Musolesi

Example

Inputs Flatten Dense Softmax

0
) 1
) 2
3
" 4
. 5
" 6
7
8
9

SSM Course 2023-2024

Mirco Musolesi

SSM Course

Example (after training)

Inputs Flatten Dense Softmax

OOOOOOO

ooo~NOOOGOA~,WOMN-=-0

2023-2024

O

0.9

OHOHORON®

0.1

o O

Example of Pair Used for Training

Inputs Flatten Dense Softmax

llllll

OOOOOOO

OHONOHOHOROROGHGE- NG
S
©OCooO~NOOCOGOAPR~,WDN=-0

SSM Course 2023-2024

Layers

» The fundamental data structure in neural networks is the layer.

» A layer Is a data-processing module that takes in input one or more
tensors and that outputs one or more tensors.

» Some layers are stateless, but more frequently layers have a state,
..e., the layer’s weights.

» Different layers are appropriate for different tensor formats ana
different types of data.

SSM Course 2023-2024 Mirco Musolesi

Layers

» For instance simple vector data (2D tensors) are often processed by
densely connected layers (Dense class in TensorFlow/Keras).

» Sequence data (3D tensors) are typically processed by recurrent
layers (LSTM layer in TensorFlow/Keras).

SSM Course 2023-2024 Mirco Musolesi

Layers Compatibility

» Building deep learning networks in Tensorflow/Keras is done by clipping together
compatible layers to form useful data-transformation pipelines.

» The notion of layer-compatibility here refers specifically to the fact the every layer will
only accept input tensors of a certain shape and will return output tensors of a
certain shape

» Let us consider the following example:

from keras import layers

tf.keras.layers.Flatten(input_shape=(28, 28)),

» In this case we are creating a layer that will only accept 28 x 28 tensor that will
flatten into a 784-element vector.

SSM Course 2023-2024 Mirco Musolesi

Layers Compatibility

» Let us consider now:

tf.keras.layers.Dense(128, activation=‘relu’)

» This layer can only be connected downstream to a layer that expects
128-dimensional vectors as input.

» We do not specify the input shape argument. The layer automatically
infers its input shape as being the output shape of the layer that
comes before.

SSM Course 2023-2024 Mirco Musolesi

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y _train),(x_test, y test) = mnist.load data()
X_train, x_test = x _train / 255.0, x _test / 255.0

model = tf.keras.models.Sequential(]
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax"')

1)

loss _fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits = false)
model.compile(optimizer="adam’,

loss= loss fn,

metrics=["accuracy'])
model.fit(x_train, y train, epochs=5)

model.evaluate(x _test, y test)

SSM Course 2023-2024 Mirco Musolesi

Dropout

» Dropout is a regularisation techniques for avoiding overfitting in deep
learning.

p It is based on removing (dropping) units in neural networks.

» Practically, it consists in randomly select a fraction of inputs and set
them to O (0.2 in the example) at each update during training time.

SSM Course 2023-2024 Mirco Musolesi

SSM Course 2023-2024

Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISHQCS.TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYAQCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHUQCS.TORONTO.EDU
Department of Computer Science
University of Toronto
10 Kings College Road, Rm 3302
Toronto, Ontario, M5S 3G/, Canada.
Editor: Yoshua Bengio

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,
it is easy to approximate the effect of averaging the predictions of all these thinned networks
by simply using a single unthinned network that has smaller weights. This significantly
reduces overfitting and gives major improvements over other regularization methods. We
show that dropout improves the performance of neural networks on supervised learning
tasks in vision, speech recognition, document classification and computational biology,

Mirco Musolesi

Example

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y _train),(x_test, y test) = mnist.load data()
X_train, x_test = x _train / 255.0, x _test / 255.0

model = tf.keras.models.Sequential(]
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax"')

1)

loss _fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits = false)
model.compile(optimizer="adam’,

loss= loss fn,

metrics=["accuracy'])
model.fit(x_train, y train, epochs=5)

model.evaluate(x _test, y test)

SSM Course 2023-2024 Mirco Musolesi

Adam Optimizer

» Adam is a method for efficient stochastic optimisation of the weight which
requires limited memory.

» In particular, the method computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the
gradients.

» The first moment is the mean.
» The second moment is the variance.
» The name Adam derives from agaptive moment estimation.

p It is particularly suited for the optimisation of stochastic objectives with high-
dimensional spaces.

SSM Course 2023-2024 Mirco Musolesi

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba®
University of Amsterdam, OpenAl University of Toronto
dpkingmalopenai.com jimmy@psi.utoronto.ca
ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and 1s well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

I INTRODUCTION

Stochastic gradient-based optimization is of core practical importance in many fields of science and
engineering. Many problems in these fields can be cast as the optimization of some scalar parameter-
ized objective function requiring maximization or minimization with respect to its parameters. If the
function is differentiable w.r.t. its parameters, gradient descent is a relatively efficient optimization
method, since the computation of first-order partial derivatives w.r.t. all the parameters is of the same
computational complexity as just evaluating the function. Often, objective functions are stochastic.

SSM Course 2023-2024

Mirco Musolesi

Other Optimizers

» There is a variety of optimizers, which implement a variety of
algorithms that have been presented in the literature in the past years.

» You can also find a “vanilla” stochastic gradient descent called sgd.

» In sgd you can set the learning rate as follows:

optimiser=keras.optimizers.sgd(lr=0.1)

» You can find all the optimisers under keras.optimizers.

SSM Course 2023-2024 Mirco Musolesi

Example

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y _train),(x_test, y test) = mnist.load data()
X_train, x_test = x _train / 255.0, x _test / 255.0

model = tf.keras.models.Sequential(]
tf.keras.layers.Flatten(input _shape = (28, 28)),
tf.keras.layers.Dense(128, activation = 'relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation = ‘softmax')

1)

loss fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits = true)
model.compile(optimizer ='adam',

loss = loss_fn,

metrics = ['accuracy'])

model.fit(x_train, y train, epochs=5)
model.evaluate(x _test, y test)

SSM Course 2023-2024 Mirco Musolesi

Loss Function: Sparse Categorical Cross
Entropy

» [t measures the distance between two probability distributions.

» In this case, it measures the distance between the probability distribution
output by the network and the true distribution of the network.

» By minimising the distance between these two distributions you train the
network to output a value that is as close as possible to the true value.

» The mathematical formula is as follows:

1 N
Jw) == — Z:, [yilog(3) + (1 — y)log(l —$,)]

SSM Course 2023-2024 Mirco Musolesi

Other Losses

» We use the sparse categorical cross entropy loss because we have
sparse labels (i.e., for each instance, there is just a target class index,
from O to 9 in this case) and the classes are exclusive.

» Instead if we have one target probability per class for each instance
(such as one-hot vectors, e.g., a vector with all zeros except for the
corresponding class, i.e., 1 let’s say in correspondence to 4 and O for
the others), we will use categorical cross-entropy.

» In case of binary classification (with one or more binary labels) we will
use the sigmoid (logistic) activation function instead of a softmax layer.

» You can find the documentation about the available losses under
tf.keras.losses.

SSM Course 2023-2024 Mirco Musolesi

Example

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y _train),(x_test, y test) = mnist.load data()
X_train, x_test = x _train / 255.0, x _test / 255.0

model = tf.keras.models.Sequential(]
tf.keras.layers.Flatten(input _shape = (28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax"')

1)

loss _fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits = True)
model.compile(optimizer="adam’,

loss= loss fn,

metrics=["accuracy'])
model.fit(x_train, y train, epochs=5)

model.evaluate(x _test, y test)

SSM Course 2023-2024 Mirco Musolesi

Metric: Accuracy

» The accuracy function calculates how often predictions matches
labels.

p It keeps two variables internally, one for the total account and one for
the actual correct predictions.

SSM Course 2023-2024 Mirco Musolesi

Model Summary

» The model's summary () displays all the model’s layers, including each
layers name (which is automatically generated unless you set it), its
output shape and its non-trainable parameters.

» For example the first “dense layer” in our example has 784*128=
100352 parameters for the weights plus 128 parameters for the noise.

p Bemember the formula

y;, = Z WiX; + bj for each node each layer
J

X, is a 784-dimensional vector over all the j (128 nodes) -> 128*784

SSM Course 2023-2024 Mirco Musolesi

>>> model.summary()

Model: "sequential™

Layer (type) Output Shape Param #
flatten (Flatten) (Nome, 784) o
dense (Dense) (None, 128) 100480
dropout (Dropout) (None, 128) 0

dense 1 (Dense) (None, 10) 1290

Total params: 101,770
Trainable params: 101,770
Non-trainable params: ©

SSM Course 2023-2024

Mirco Musolesi

Model Layers

p It Is possible to access the layers and getting the values of the
weights.

» This might be particularly important for debugging.

» The connection weights are usually initialised randomly and the
biases to zero.

» Please note that you can set the initial values of the weights and the
biases (see documentation for that, not needed in general).

SSM Course 2023-2024 Mirco Musolesi

Model Layer

>>> model.layers

[<tensorflow.python
0x1112F25d0>,
<tensorflow.python
OX65c386690>,
<tensorflow.python
Ox65c41bd10>,
<tensorflow.python
Ox65c41bedo> |

>>> hiddenl.name

‘dense’

SSM Course 2023-2024

.keras

.keras

.keras

.keras

.layers.
.layers.
.layers.

.layers.

core

core

core

core

.Flatten at
.Dense at
.Dropout at

.Dense at

Mirco Musolesi

Weights

>>> hiddenl = model.layers[1]
>>> weights, biases = hiddenl.get weights()
>>> weights

.0067068 , 0.0444955 , -0.06906993, ..., 0.0191/812,
.0571864 , -0.05091941],

array([[©
%)
[©.07298902, ©.03879048, -0.07611574, ..., -0.0537806 ,
%)
%)
%)

.04074715, 0.00973181],
[©0.01252006, -0.01403704, -0.0160231 , ..., ©0.01923724,

.05250163, 0.01036092],
e
| 9.02924076, ©.02288403, -0.05628259, ..., -0.00877253,
-0.00582412, ©.04741878],
| 9.04770205, ©.00977071, -0.04665522, ..., ©.05703158,
-0.0407013 , ©.06358352],
[0.06874896, ©0.06481764, -0.07729561, ..., -0.03910512,

©.07737378, ©.06048525]], dtype= float32)

SSM Course 2023-2024 Mirco Musolesi

>>> biases

array([©.

.12271099,
.13083696,
.02496499,
.1734516
.03355813,
.16180542,
.08186771,
.08898257,
.13002615,
.02093072,
.04910273,
.01080153,
.21790975,
.014523
.02265464,
.09707657,
.15046684,
.06387051,
.07698131,
.03360102,
.08821745, O.
.1351053 , -0.
.1303266 , -0.
.03989958, -0.
.05985961, -0.

15436447,

OO 0O OOITOOOOTOOOTOOOOOOO

SSM Course 2023-2024

.10200647,
.06399174,
.01591714,
.04548947,
.02672073,
.00542628,
.01927859,
.04619434,
.01036496,
.092703019,
.13398051,
.00876658,
.12881082,
.093310108,
.16850016,
.91207699,
.22076793, -0.
.09202639, -0.
.00093352, -0.
.05069286, O.
.03794497, 0.
92148618, ©.
92953506, -0.
23609331, -0.
93431396, -0.
04696511, O.

OO OO0 OOOOOO

()

.21357839,
.08149339,
.09653516,
.06404063,
.00857907,
.0633577
.1280381
.13776259,
.06565045,
.91211506,
.12281404,
.08874512,
.00631847,
.11083294,
.10065471,
.04100839,

Blases

OO OO OOTOIOOTOITOOTOOITOOOOO

11211801,
158566

I
()

16877012, -0.
04499756, O.
22851145, -0. 0
0684126 , -0. 0
.08103541, ©.
0
0
)

02828003, ©

04407614, O.
11035573, O.

.21006949, -0.
.06964093, 0.
.11157246, ©.
.00701183, 0.
.00574968, -0.
.11311906, ©.
.02355766, O.
.05937123, -0.
.02765695, 0.
.04039115, O.
.08231556, -0.
.10410592, -0.
.1724271 , -0.
.00176234, -0.
.22509257, -0.
.0889826 , O.
.09468664, -0.
.12476195, O.
9276502 , -0.
11598568, O.
.11295109,
.08890733,

98310112,
08671904,

90159562,
93475453,

22284533], dtype=float32

93842947,
91241389,
10728992,
92384211,
17148587,
08636814,
94206759,
1820551
10485286,
09769704,
91917284,
00363306,
92265261,
20714733,
95203338,
13444117,
00847345,
93112048,
0544424
92794787,

01204334,

.13649496,
.0170306

Mirco Musolesi

Prediction

» We can use the predict() method of model to make predictions on new instances.

» For example, we can consider the digit in position 42 and print the corresponding probabilities:
>>> digit = x_test[42:43]

>>> y_prob = model.predict(digit)

>>> y_prob.round(2)

array([ro., o., o., 0., 1., o., 0., 0., 0., 0.]], dtype=float32)

p Alternatively we can predict the class directly associated to that output (numerical here, but there are methods
to associate labels as well):

>>> y _pred = model.predict classes(digit)
>>> print(y_pred.round(2))

4

SSM Course 2023-2024 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

» Neural networks gives you great flexibility, but that is also their main drawback.

» You can use a variety of network architectures, you can change number of layers, number of
neurons per layer, the type of activation function to use in each layer, the weight initialisation logic,
etc.

» How do you select these parameters?
» This is a search problem: a variety of methods are possible:
» Grid search

» Randomised search

» Scikit-Learn offers a series of functions for grid search (GridSearchCV) and randomised
search (RandomizedSearchCV). | would invite you to take a look at them.

SSM Course 2023-2024 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

» A randomised search is not efficient. There are a variety of techniques and tools for
optimising the parameters by “zooming” on certain ranges, etc.

p A variety of tools is available:
» Hyperopt
» Hyperas
» Talos
» Spearmint
> ...

p Companies also provide this optimisation as a service in the cloud (see Google Tuning).

SSM Course 2023-2024 Mirco Musolesi

Fine-Tuning Neural Network
Hyperparameters

» Hyperparameter tuning is still an active area of research.

» Recent proposals also include evolutionary algorithms, i.e., algorithms
that mimic biological systems based on reproduction, mutation,
recombination and selection. Solutions are selected through a
“survival” of the fithess in a population of potential candidates.

» See Population Based Training (PBT) by DeepMind.

SSM Course 2023-2024 Mirco Musolesi

Population Based Training of Neural Networks

Max Jaderberg Valentin Dalibard Simon Osindero Wojciech M. Czarnecki
Jeff Donahue Ali Razavi Oriol Vinyals Tim Green Iain Dunning

Karen Simonyan Chrisantha Fernando Koray Kavukcuoglu
DeepMind, London, UK

Abstract

Neural networks dominate the modern machine learning landscape, but their training and
success still suffer from sensitivity to empirical choices of hyperparameters such as model
architecture, loss function, and optimisation algorithm. In this work we present Population
Based Training (PBT), a simple asynchronous optimisation algorithm which effectively
utilises a fixed computational budget to jointly optimise a population of models and their
hyperparameters to maximise performance. Importantly, PBT discovers a schedule of hy-
perparameter settings rather than following the generally sub-optimal strategy of trying to
find a single fixed set to use for the whole course of training. With just a small mod-
ification to a typical distributed hyperparameter training framework, our method allows
robust and reliable training of models. We demonstrate the effectiveness of PBT on deep
reinforcement learning problems, showing faster wall-clock convergence and higher final
performance of agents by optimising over a suite of hyperparameters. In addition, we show
the same method can be applied to supervised learning for machine translation, where PBT

SSM Course 2023-2024

Mirco Musolesi

Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning

Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune

Uber AI Labs
{felipe.such, jeffclune}@uber.com

Abstract 1. Introduction
Deep artificial neural networks (DNNs) are typ- A recent trend in machine learning and Al research is that
ically trained via gradient-based learning al- old algorithms work remarkably well when combined with
| gorithms, namely backpropagation. Evolution sufficient computing resources and data. That has been
strategies (ES) can rival backprop-based algo- the story for (1) backpropagation applied to deep neu-
rithms such as Q-learning and policy gradi- ral networks 1n supervised learning tasks such as com-
ents on challenging deep reinforcement learning puter vision (Krizhevsky et al., 2012) and voice recog-
(RL) problems. However, ES can be consid- nition (Seide et al., 2011), (2) backpropagation for deep
ered a gradient-based algorithm because it per- neural networks combined with traditional reinforcement
forms stochastic gradient descent via an oper- learning algorithms, such as Q-learning (Watkins & Dayan,
ation similar to a finite-difference approxima- 1992; Mnih et al., 2015) or policy gradient (PG) methods
tion of the gradient. That raises the question (Sehnke et al., 2010; Mnih et al., 2016), and (3) evolution

of whether non-ﬁradient-based evolutionaa al- iiiiiﬁﬁlii ‘ﬁii inn"iq m ﬁliﬁiﬁﬁﬂiii Iﬁﬂiﬂliﬁ m“h-

SSM Course 2023-2024 Mirco Musolesi

References

» Francois Chollet. Deep Learning with Python. Manning. Second
Edition. 2022.

» Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras
and TensorFlow. Third Edition. O’Reilly. 2022.

» TensorFlow. Official Documentation website.

p Some of the material in these slides has been taken from the official
TensorFlow documentation.

SSM Course 2023-2024 Mirco Musolesi

