SSM Course 2023-24

Value Function Approximation in
Reinforcement Learning

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Recap: What is Wrong with Tabular
Methods

p Tabular methods suffer from a series of drawbacks:
» Table with 1 row per state-action entry.

» What happens if you can’t fit all the state-action entry in a
table?

» We need function approximation rather than tables.

PhD Course: Introduction to RL 2023-24

Alternative: Function Approximation

» Function Approximation will provide a mapping between a state or
state-action to a value function.

» Recall: a value-function approximation is a function, with the state
(or the state and action) as input, which gives in output the value
function for the state (or the state and action).

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Function
Approximator

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Function . A
Approximator q

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Function n
>] > q
Approximator

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Function
Approximator

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

PhD Course: Introduction to RL 2023-24

Function of a
weight vector

w e R?

D

Mirco Musolesi

Approximation Methods

» In this lecture we will focus on the study of function approximation for
estimating state-value functions.

» In particular, we will consider an approach where the approximate
value function is represented not as a table but as a parametrised

functional form with weight vector w € R¥.

» We will start by considering how to approximate v_ from experience
generated using a policy .

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Board size nxn

1x1

2X2

3% 3

4dx4

HxbH

9x9

13x13

19x19

PhD Course: Introduction to RL 2023-24

Number of Moves in Go

3n2

31

19,683

43,046,721

847,288,609,443

4.43426488243x1038

4.30023359390x 1089

1.74089650659x 10172

Percentage of
Legal Positions

33.33%

70.37%

64.40%

56.49%

48.90%

23.44%

8.66%

1.20%

Number of Legal Positions

57

12,675

24,318,165

414,295,148,741

1.03919148791x1038

3.72497923077x1079

2.08168199382x10170

Data from Wikimedia and the On-line Encyclopedia of Integer Sequences (see A094777)

Mirco Musolesi

Combinatorics of Go

John Tromp Gunnar Farneback

January 31, 2016

Abstract
We present several results concerning the number of positions and
games of Go. We derive recurrences for L(m,n), the number of legal posi-
tions on an m x n board, and develop a dynamic programming algorithm
which computes L(m, n) in time O(m*n*\™) and space O(mA™), for some
constant A < 5.4. We used this to compute L(n,n) up to the standard
board size n = 19. In ternary (mapping 0,1,2 to empty,black,white)

900 O
PPRNOOCaD P Nllhdstatb,
‘+§=‘¢§+'3rv‘++‘+gsz‘+‘#x:

L(19,19) = (0 e fSastubd b

3

For even larger boards, we prove existence of a base of liberties

L= lim "™/L(m,n)=2975734192043357249381 . ..

m,n—>00

Based on a conjecture about vanishing error-terms, we derive an asymp-
totic formula for L(m,n), which is shown to be highly accurate.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
2'395%8 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane

Search Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A094777 Number of legal positions in Go played on an n X n grid (each group must have at least one g
liberty).

1, 57, 12675, 24318165, 414295148741, 62567386502084877, 83677847847984287628595,
990966953618170260281935463385, 103919148791293834318983090438798793469,
96498428501909654589630887978835098088148177857,
793474866816582266820936671790189132321673383112185151899,
57774258489513238998237970307483999327287210756991189655942651331169,
37249792307686396442294904767024517674249157948208717533254799550970595875237705,
212667732900366224249789357650440598098805861083269127196623872213228196352455447575029701325
(list; graph; refs; listen; history; text; internal format)
OFFSET 1,2

COMMENTS John Tromp wrote a small C program to compute the number for boards up to
size 4 X 5, given in the rec.games.go posting below. Gunnar Farnebaeck
(gunnar (AT)lysator.liu.se) wrote a pike script to compute the number by
dynamic programming, which handles sizes up to 12 X 12 (available upon
request).
LINKS John Tromp, Table of n, a(n) for n = 1..19
British Go Association, Go
Sandy Harris, Number of Possible Outcomes of a Game
John Tromp, Complexity of Chess and Go
John Tromp, Number of legal Go positions
John Tromp and Gunnar Farnebidck, Combinatorics of Go (2016)

FORMULA 3"(n*n) is a trivial upper bound.
Tromp & Farneback prove that a(n) = (1 + o(1l)) * L"(n"2), and conjecture
that a(n) ~ A * B*(2n) * L*(n"2) * (1 + O(n*p”°n)) for some constants A, B,
L, and p < 1. - Charles R Greathouse IV, Feb 08 2016
EXAMPLE The illegal 2 X 2 positions are the 2”4 with no empty points and the 4%2
having a stone adjacent to 2 opponent stones that share a liberty. That
leaves 3"4-16-8 = 57 legal positions.

CROSSREFS Sequence in context: A219077 A091749 A218425 * A218662 A331015 A093257
Adjacent sequences: A094774 A094775 A094776 * A094778 A094779 A094780

KEYWORD nonn

AUTHOR Jan Kristian Haugland, Jun 09 2004

EXTENSIONS More terms from John Tromp, Jan 27 2005

a(l0)-a(13) from John Tromp, Jun 23 2005

a(l4)-a(l5) from John Tromp, Sep 01 2005.

a(l6) from John Tromp, Oct 06 2005

Michal Koucky should be credited for carrying most of the computational load
for computing the n=14, 15 and 16 results with his file-based
implementation.

a(l7)-a(18) from John Tromp, Mar 08 2015

PhD Course: Introduction to RL 2023-24

Mirco Musolesi

Approximation Methods

» We will write V(s, W) = v_(s) for the approximate value of state s given weight vector
\\4

» ¥ in theory might be a linear function of the weights w, but more generally it can be a
non-linear function.

» A widely used technique is to use a multi-layer artificial neural network to compute v,
with W the vector of the connection weights in all the layers.

» By adjusting the values of the weights w a different range of functions can be
computed by the network.

» Typically, the number of weights w is much less than the number of states

d << |&|)where | & |is the cardinality of the states of the system under
consideration.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Approximation Methods

» There are various interesting aspects that need to be considered:

» Function approximation can be used also for partially observable
problems.

» With an approximation, we might build a function that does not
depend on certain aspects of the state and we can just build a
function assuming that they are not olbservable.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Value Function Approximation

» Classic methods are based on the idea of an update “towards” an (update) target. For example:

» In the Monte Carlo method the update target for the value prediction is G;,.

» In the TD(0) the update targetis R, | + yV(S,, 1, W,).
p In classic methods, what we do is to change the current estimation value “towards” the update.
» The estimation of value function approximation is different:
» Very complex methods are possible.
» We will use supervised learning (i.e., we will learn through sets of inputs-outputs).
» Since we are trying to learn how to link the inputs to real values we can this as a function

approximation problem.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Nonlinear Function Approximation:
Artificial Neural Networks

» Artificial neural networks (ANN) are widely used for nonlinear function
approximation.

» We have results that guarantees that an ANN with a single hidden
layer containing a large enough finite number of sigmoid units can
approximate any continuous function on a compact region of the
network’s input space to any degree of accuracy (see Cybenko
1989).

» Nowadays, we tend to use networks with more than one hidden layer
(we usually use the term deep learning for that reason).

» Learning Is based on stochastic gradient descent.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Math. Control Signals Systems (1989) 2: 303-314 Math ematics of Control
’

Signals, and Systems
© 1989 Springer-Veriag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Qur
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

\ pumber of d licaus { with 0 on of

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Stochastic Gradient Descent

p Stochastic gradient descent methods (SGD) adjust the weights after each example by a small
value in the direction that would most reduce the error on that example.

» We will discuss here the case for one example, but this can be done for multiple examples at a
time (remember mini-batch gradient descent methods).

» Remember the formula you use for the update of the weight for a deep learning network (valid for
a “shallow” artificial neural network as well):

oJ
Wi —wi+ Aw; =w; —n—

J

» We will indicate time here, since we are updating w; at each of a series of discrete time steps

t =0,1,2,... as follows:

oJ

Wil < Wi, F AW, =w;, —1

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Stochastic Gradient Descent

» Assuming that we have a loss function that represents the mean squared
error (which we call mean square error) as follows:

Jw) =) (U, = (S, W)

sES

» We will obtain the following

Wi =W, — 5’7 VIU, — (S, Wt)]2

=w,+n[U, — (S, w)] VIS, w,)
where U, is the target and 7 is the step-size parameter.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Stochastic Gradient Descent

» Recall the definition of gradient:

of(w) 0 0
viw = (2 fw) gtw) f(w))

W1 ﬁwz 6Wd

p Stochastic gradient methods are “gradient descent” methods because
the overall step in W, is proportional to the negative gradient of the

example’s squared error.

» Intuition: that is the direction in which the error falls more rapidly.

» Recall: they are stochastic since they are based on samples that are
randomly chosen.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Semi-gradient One-step Sarsa Prediction

P We can extend the mathematical framework we discussed for state value functions to state-action value
functions.

» In this case the target U, is an approximation of g_(S,, A,).

» The general gradient-descent update for action-value prediction is

W =W, +3lU, —q(S, A, Ww)IV§(S, A, W)

» For example, the update for the (episodic) semi-gradient one-step Sarsa method is the following:
WZ+1 = Wl‘ + rl[Rt+1 + y@(St+1’ At+1’ Wt) _ @(SZ’ At’ Wt)] Vé\](St, At’ Wt)

p It is called semi-gradient because we are not really taking the “real” gradient. The “real” gradient will require to
calculate the gradient of U..

» Why aren’t we calculating the gradient of U,? Essentially, the main reason is complexity. Additionally,

convergence is guaranteed also in this case: for a constant policy, this method converges in the same
way that TD(O) does.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Semi-gradient One-step Sarsa Control

p But, as usual, we are interested in the problem of control, i.e. we are interested In
finding the optimal policy.

» The method is essentially the same as for tabular methods.

» For each possible action a available in the current state S,, we can compute
q(S,, a, w,) and then find the greedy action using

A’ = argmax g(S; a, w,)

» Policy treatment is then done by changing the estimation policy to a soft
approximation of the greedy policy (e.g., €-greedy policy).

p Actions are selected according to this same policy (this is on-policy control).

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Semi-gradient One-step Sarsa Control

Input: a differentiable action-value function parameterisation § : & X & X R - R
Algorithm parameters: step size # > 0 and small e > 0

Initialise value-function weights w € R arbitrarily

Loop for each episode:

S, A <« initial state and action of episode

Loop for each step of episode:
Take action A (e.g., e-greedy), observe R, S’
If S"is terminal:
w—w+n[R—-4g(S,A,w)]VG(S,A,w)
Go to next episode

else:
Choose A’ as a function of g(5', ., W) (e.g., e-greedy)

W= W+n[R+7yq(S, A, w) — g(S,A, W) Vg(S, A, w)

S« SandA « A’

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Semi-gradient Q-Learning

» The basic procedure is similar to the “classic” Q-learning.

» The update is as follows:

W, =W, +7[R_;+ymaxqg(S,.,a,wW,)—qS,A,w)IVq(S,,A,w,)

where W, is the vector of the network’s weights, A, is the action
selected at time 7, and S, and S, +1 are respectively the inputs to the

network at time steps fand ¢ + 1.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves loannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value

functions or Eolici reﬁresentations. Clearlii the Eerformance of such sistems heavili relies on the

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu’, Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik’, Ioannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra!, Shane Legg' & Demis Hassabis'

The theory of reinforcement learning provides a normative account’,
deeply rooted in psychological’ and neuroscientific® perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans
and other animals seem to solve this problem through a harmonious
combination of reinforcement learning and hierarchical sensory pro-
cessing systems"’, the former evidenced by a wealth of neural data
revealing notable parallels between the phasicsignals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
algorithms’. While reinforcement learning agents have achieved some
successes in a variety of domains®®, their applicability has previously
been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks”'' to
develop a novel artificial agent, termed a deep Q-network, that can
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games'”. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all

revious algorithms and achieve a level comparable to that of a pro-

PhD Course: Introduction to RL 2023-24

agent is to selectactions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

O’ (s,a)= maxlE[r, 1+ P g2+ .. |si=s, ay=a, n},
n

which is the maximum sum of rewards r, discounted by y at each time-
step t, achievable by a behaviour policy © = P(als), after making an
observation (s) and taking an action (a) (see Methods)"’.
Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function®. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values r +7 max Q(s', a’).

We address these instabilities with a novel variant of Q—lea‘r‘ning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay*' ** that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values that are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the

by

Mirco Musolesi

Credit: Wikimedia

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

L' 39
=00 r1=1a

achiasioN

210 x 160 pixel image frames with 128 colours at 60Hz

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Deep Q-Network (DQN)

p Semi-gradient Q-learning is at the basis of the Deep-Q-Network (DQN) used for
iImplementing the agent. You can actually use the two terms interchangeably.

» It combines Q-learning with a deep (convolutional) multi-layer network.
» The gradient is based on back propagation.
» DQN’s reward is calculated as follows:

» +1 whenever the score of the game is increased;

» -1 whenever the score of the game is decreased;

» O otherwise.

» In other words the positive (and negative) values were capped to +1 (and -1).

PhD Course: Introduction to RL 2023-24

Mirco Musolesi

States and Actions

» The Atari games have a resolution of 210x160 pixel image frames with
128 colours at 60 Hz.

» Data were pre-processed in order to obtain a 84x84 array of
luminance values.

» Because the full states of many of the Atari games are not completely
observable from the images frames and to provide more information to
the agent for the decision, the authors “stacked” the four most recent
frames so that the inputs of the network has dimension 84x84x4.

» Otherwise you would have ended up with a 1-order Markov system
with the current image as state (no directionality for example, etc.)

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

States and Actions

» The activation levels of DQN’s outputs are the estimated optimal
values of the corresponding state-value pairs given the stack of
images in input.

» The assignment of output units to a game’s actions varied from game
to game (from 4 to 18).

» Not in all the games the output values are actually considered (but
they are still in the network).

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Fully connected Fully connected

-
"
-~

R T I R T R R N R N
R R I R I I
D T N T R R R

- AMP >
rr]e ¢ > |E

Figure 1 Schematic illustration of the convolutional neural network. The symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The inputto the neural layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0x)).

map ¢, followed by three convolutional layers (note: snaking blue line

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Deep Q-Network (DQN)

» DQN uses an e-greedy policy, with € decreasing linearly over the first
million frames and remaining at a low value for the rest of the learning
session.

» The network is trained using a mini-batch stochastic gradient descent
after processing 32 images (and previous 3 for each image).

» Changes proportional to the running average to the magnitudes of
recent gradients for that weight (RSMProp).

» A key modification to standard Q-learning is the use of experience
replay.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

https://www.youtube.com/watch?v=0yl2wJ6F8rO

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

https://www.youtube.com/watch?v=TmPfTpjtdgg

EXperience Replay

» In DQN the authors made a series of changes to the standard basic
Q-learning.

» First they used a method called experience replay in order to deal
with the convergence problem of Q-learning.

» In Q-learning, if the updates are highly correlated, the learning
pProcess converges very slowly.

» The key idea of experience reply is to store agent’s experience in a
replay memory that is accessed to perform the weight updates.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Machine Learning, 8, 293-321 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Self-Improving Reactive Agents Based On
Reinforcement Learning, Planning and Teaching

LONG-JI LIN ljl@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract. To date, reinforcement learning has mostly been studied solving simple learning tasks. Reinforcement
learning methods that have been studied so far typically converge slowly. The purpose of this work is thus two-
fold: 1) to investigate the utility of reinforcement learning in solving much more complicated learning tasks than
previously studied, and 2) to investigate methods that will speed up reinforcement learning.

This paper compares eight reinforcement learning frameworks: adaptive heuristic critic (AHC) learning due
to Sutton, Q-learning due to Watkins, and three extensions to both basic methods for speeding up learning. The
three extensions are experience replay, learning action models for planning, and teaching. The frameworks were
investigated using connectionism as an approach to generalization. To evaluate the performance of different frame-
works, a dynamic environment was used as a testbed. The environment is moderately complex and nondetermin-
istic. This paper describes these frameworks and algorithms in detail and presents empirical evaluation of the
frameworks.

Keywords. Reinforcement learning, planning, teaching, connectionist networks

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

EXperience Replay

» The training is done through an emulator.

p After the emulator executes action A, in a state represented by image
stack S, and returned reward R, ; and the following image stack

S,.1, it added the tuple (S,, A, R, 1, 5,,1) to the replay memory (also
called replay buffer).

» The experience replay memory accumulates experiences over many
plays of the same game.

» Each Q-learning update is performed by randomly sampling from the
experience replay buffer.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

EXperience Replay

» Instead of S, | becoming the new S, for the next update, as it would

be in the usual Q-learning, a new unconnected experience is drawn
from the replay memory.

» Important point: since Q-learning is an off-policy algorithm, it does
not need to learn from “connected” trajectories.

» The random selection of uncorrelated “experiences” reduces the
variance of the update. This allows Q-learning to converge more
quickly.

» Dealing with the variance of the update is a key issue for RL and it
IS an active area of research.

PhD Course: Introduction to RL 2023-24 Mirco Musolesi

Video Pinbal
Boxing

Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game

e
—
-
—
=
—

>
¢z

Road Runner

g
:

James Bond
Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot
Enduro

Fishing Derby
Up and Down
ice Hockey
Q'bert
H.E.R.O.

-
3
[

\

At human-level or above

| I Y N (N TN N (R (R S NN N T S S S S N _—_——

Astenx

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

| I T T T -

%

Amidar

g
&5

Seaquest
Double Dunk

:

LU W N T S R R TR S

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

-y

Below human-level

))

T T T
100 200 300

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods™ in the literature. The perfformance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 X (DQN score — random play
score)/(human score — random play score). It can be seen that DQN

[~

PhD Course: Introduction to RL 2023-24

1 I oo 1
400 500 600 1,000 4,500%

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

Mirco Musolesi

References

» Chapters 9 and 16 of Barto and Sutton. Introduction to
Reinforcement Learning. Second Edition. MIT Press. 2018.

PhD Course: Introduction to RL 2023-24

