
Privacy and Ethics Issues

Mirco Musolesi
Department of Geography, UCL

m.musolesi@ucl.ac.uk

Example: Location-based
Social Network Systems

2

Privacy, Ethics and the Law

• Mining social and geographic data raises a series of
ethical concerns related to the privacy rights of the
individuals.

• It is fundamental to consider the ethical implications of
the various types of analysis we perform on the data.

• A typical example is related to the analysis of mobility
patterns: we can easily extract not only home and
work locations, but also religion (looking at religious
places visited by the individual regularly), political
affiliation (e.g., an individual attending a rally), etc.

3

Privacy Issues concerning Social and
Geographic Data

• Privacy is a key concern for various reasons
including:
– Information are almost by definition of personal nature;
– Information such a location can be linked to personal

identity;
– In general, data mining and data fusion techniques might

be applied to infer information about the profile of the
users;

– Data might include health information (see sensor data
extracted from Apple Watch, Fitbit devices, etc.)

4

Location&Privacy

• Possible solutions for preserving users’ privacy
include:
– Obfuscation: the precision of the data is blurred
– Data aggregation: data of individuals are aggregated

and are presented together as a statistical sample
– Anonimysation: the identity of the people is not revealed

• Possible techniques include: encryption, mapping with keys
that are not publicly available

• Possible problem: linking different data sources (more later)

5

Location&Privacy

• Location has been investigated for long time by
the research and industrial community.

• A good survey is the following:

Krumm, J., 2009. A survey of computational location privacy.
Personal and Ubiquitous Computing, 13(6), pp.391-399.

6

Linked Data and Privacy Issues

• Another emerging problem is the availability of
datasets collected by means of different sources:
– Commercial data (fidelity cards, online shopping, etc.)
– Financial data (bank transactions, etc.)
– Governmental data (fiscal, etc.)
– Sensor data (for example, CCTVs, card readers, but

also mobile sensing data)

7

De-anonymisation

• By linking all the data sources, it might be possible
to de-anonymise the data, revealing for example
the identity of people or information about them
(for example their locations)

• When you design a privacy-preserving system,
you should keep in mind potential use of
additional data sources for de-anonymise your
information

8

Identification and Obfuscation

• Data can be used to determine the identity of an
individual: few points might be sufficient to
determine the identity of a person.

• By adding “noise” it is possible to avoid user
identification (these are usually called obfuscation
techniques).

• An interesting book on the topic is the following:

Brunton, Finn, and Helen Nissenbaum. Obfuscation: A User's
Guide for Privacy and Protest. MIT Press, 2015. 9

Data Use and Sharing

• Another problem is the use of the personal data
• Usually, a consent from the user is required

– See, for example, the “agreement” when you
install a mobile app;

• Personal data collected must be stored securely:
– For example, personal data collected by mobile

apps must be stored in an encrypted way in a
secure server;

• Sharing is usually not permitted if not regulated by
the initial agreement.

10

So is Mining Big Data Good or Evil?

• Big opportunities but also potential issues
especially related to privacy

• Many interesting applications:
– Intelligent marketing
– Personalisation
– Transportation
– Understanding groups, communities, cities, nations, etc.
– …

Mirco Musolesi. Big Mobile Data Mining: Good or Evil? In IEEE
Internet Computing. January-February 2014.

11

Further Readings

• de Montjoye, Yves-Alexandre, et al. "Unique in the crowd:
The privacy bounds of human mobility." Scientific reports 3
(2013).

• Rossi, L., Walker, J., & Musolesi, M. (2015). Spatio-
temporal techniques for user identification by means of
GPS mobility data. EPJ Data Science, 4(1), 1-16.

• Gross, Ralph, and Alessandro Acquisti. "Information
revelation and privacy in online social networks."
Proceedings of the 2005 ACM workshop on Privacy in the
electronic society. ACM, 2005.

12

Further Readings

• Zheleva, Elena, and Lise Getoor. "To join or not to join: the
illusion of privacy in social networks with mixed public and
private user profiles." Proceedings of the 18th international
conference on World Wide Web. ACM, 2009.

• Narayanan, Arvind, and Vitaly Shmatikov. "De-
anonymizing social networks." Security and Privacy. IEEE,
2009 (very technical, but the finding is very interesting).

• boyd, danah. It's complicated: The social lives of
networked teens. Yale University Press, 2014.

13

Location-Based Social Networks

• The proliferation of GPS enabled devices has led to the
popularity of Location-Based Social Networks

• Foursquare: > 45 million users (beginning 2014)

Location-Based Social Networks

• Based on the concept of check-in
– A user can register his/her presence at a certain location and

share this information with social contacts, along with comments,
recommendations, etc.

Location-Based Social Networks

• Based on the concept of check-in
– A user can register his/her presence at a certain location and

share this information with social contacts, along with comments,
recommendations, etc.

• Users are encouraged to disseminate location
information in the network

Location-Based Social Networks

• Based on the concept of check-in
– A user can register his/her presence at a certain location and

share this information with social contacts, along with comments,
recommendations, etc.

• Users are encouraged to disseminate location
information in the network

• Tagging can lead to release of location information of
users that have no control over the data

Location-Based Social Networks

• Based on the concept of check-in
– A user can register his/her presence at a certain location and

share this information with social contacts, along with comments,
recommendations, etc.

• Users are encouraged to disseminate location
information in the network

• Tagging can lead to release of location information of
users that have no control over the data

• Increasing concern about possibility of identifying users
from geo-social media

A Toy Example

• The attacker has access to both unanonymised LBSN
data and a source of anonymised location information

• The attacker�s goal is that of revealing the identities of ui
by linking location information across the two databases

– Along with potentially sensitive information si

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

How Does the Data Look Like?

• For each user u we have 1 set of check-ins C(u)

User%ID%

Loca,on%ID%

Timestamp%

GPS%posi,on%

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

• For each user u we have 1 set of check-ins C(u)

How Does the Data Look Like?

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

• For each user u we have 1 set of check-ins C(u)

How Does the Data Look Like?

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

User%ID%

Loca,on%ID%

Timestamp%

GPS%posi,on%

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

• For each user u we have 1 set of check-ins C(u)

How Does the Data Look Like?

User%ID%

Loca,on%ID%

Timestamp%

GPS%posi,on%

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Assumption: the set of unlabelled test points belongs to
a single user u

• 1 user corresponds to 1 spatio-temporal trajectory
• Rationale: use the spatio-temporal information of the

check-ins to assign the unlabelled points to the closest
trajectory

• Let T(v) denote the trajectory associated to v

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Trajectory Based Identification

• Directed Hausdorff distance from A to B: point a of A such
that the distance from its nearest neighbour b in B is
maximal

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Frequency Based Identification

• Assumption: the set of unlabelled check-in points
belongs to a single user u

• Rationale: characterise a user with the frequencies of
visit to the different locations

• Simple Naïve Bayes model

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

Frequency Based Identification

• Alice (0.25, 0.25, 0.25, 0.25)
• Bob (0.14, 0.14, 0.14, 0.58)
• Charlie (0.62, 0.25, 0.13, 0.00)

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

Frequency Based Identification

• Alice (0.25, 0.25, 0.25, 0.25) : 0.25 x 0.25 x 0.25 =
0.015625

• Bob (0.14, 0.14, 0.14, 0.58)
• Charlie (0.62, 0.25, 0.13, 0.00)

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

Frequency Based Identification

• Alice (0.25, 0.25, 0.25, 0.25) : 0.25 x 0.25 x 0.25 =
0.015625

• Bob (0.14, 0.14, 0.14, 0.58) : 0.58 x 0.14 x 0.58 =
0.047096

• Charlie (0.62, 0.25, 0.13, 0.00) :

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

Frequency Based Identification

• Alice (0.25, 0.25, 0.25, 0.25) : 0.25 x 0.25 x 0.25 =
0.015625

• Bob (0.14, 0.14, 0.14, 0.58) : 0.58 x 0.14 x 0.58 =
0.047096

• Charlie (0.62, 0.25, 0.13, 0.00) : 0.0 x 0.62 x 0.0 = 0.0

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

Frequency Based Identification

• Alice (0.25, 0.25, 0.25, 0.25) : 0.25 x 0.25 x 0.25 =
0.015625

• Bob (0.14, 0.14, 0.14, 0.58) : 0.58 x 0.14 x 0.58 =
0.047096

• Charlie (0.62, 0.25, 0.13, 0.00) : 0.0 x 0.62 x 0.0 = 0.0

l1 l2 l3 l4

Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1

u2 l1, l1, l1 s2

u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.

Frequency Based Identification

• Multinomial Model: multinomial distribution associated
to each users. Parameters estimation via standard MLE

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

In our setting we let
P(v) = 1/number of
users

Frequency Based Identification

• Multinomial Model: multinomial distribution associated
to each users. Parameters estimation via standard MLE

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

Probability of observing
the user v at location i

Frequency Based Identification

• Multinomial Model: multinomial distribution associated
to each users. Parameters estimation via standard MLE

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

Maximum Likelihood
Estimation

Frequency based Estimation

Time dependent
multinomial model

Social Smoothing

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

Frequency based Estimation

Time dependent
multinomial model

Social Smoothing

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

Venue

Fr
eq

ue
nc

y

User 1
User 2
User 3

Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v
⇤ = argmax

v2U
P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v 2 U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v
⇤ = argmax

v2U
P (v)

mY

i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
N

v
iPn

j=1 N
v
j

(8)

where N
v
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
N

v
i + ↵Pn

j=1 N
v
j + ↵|L| (9)

where ↵ > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ⇠ 2 ⌅ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

P⇠(ci|v) =
N

v
i (⇠) + ↵Pn

j=1 N
v
j (⇠) + ↵|L| (10)

where P⇠(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ⇠ and N

v
i (⇠) is the

number of check-ins of user v at location l_idi during the time in-
terval ⇠.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu 2 Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h
>
u hv

||hu||||hv||
(11)

where a
>
b denotes the dot product between a and b and ||a|| is

the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =
N

v
i + µ

P
w2S(v) s(v, w)Nw

i + ↵
Pn

j=1 N
v
j + µ

P
w2S(v)

Pn
j=1 s(v, w)Nw

j + ↵|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

�(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)

Datasets

• Brightkite
– 4,491,143 check-ins from 58,228 users over 772,764 location,

from April 2008 to October 2010
• Gowalla

– 6,442,890 check-ins from 196,591 users over 1,280,969
locations, collected from February 2009 to October 2010

• Foursquare
– 2,073,740 check-ins from 18,107 users over 43,063 locations,

from August 2010 to November 2011

Experimental Setup

• For each user u we remove 10 check-ins from C(u) to
create Ctest(u) and Ctrain(u)

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Experimental Setup

• For each user u we remove 10 check-ins from C(u) to
create Ctest(u) and Ctrain(u)

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

10 points

Experimental Setup

• For each user u we remove 10 check-ins from C(u) to
create Ctest(u) and Ctrain(u)

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

The remainder

Experimental Setup

• For each user u we remove 10 check-ins from C(u) to
create Ctest(u) and Ctrain(u)

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Experimental Setup

• How does the number of points observed in Ctest(u)
change our ability to classify an individual?

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Experimental Setup

• How does the number of points observed in Ctest(u)
change our ability to classify an individual?

Remains fixed

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Experimental Setup

• How does the number of points observed in Ctest(u)
change our ability to classify an individual?

Varies between 1 and 10 points

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

SFB NYB LAB SFG NYG LAG SFF NYF LAF

number of users 525 494 371 2,203 1,280 690 697 2,592 473
number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
Let C(u) denote the set of check-ins ci with u_idi = u and u 2 U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v 2 U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a2A

min
b2B

||a� b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3
pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1
|A|

X

a2A

min
b2B

||a� b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2

as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

⌧ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting ⌧ ! 1 we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for ⌧ ! 1, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1
|Ttest(u)|

X

p12Ttest(u)

min
p22Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of

Experimental Setup

• Given Ctest(u) our task is that of finding the user u* that
originated the check-ins

• Evaluation in terms of
– Accuracy: ratio of successfully identified users

• 100 repetitions: avg. accuracy +/- std. error

Experimental Results

• We measure the identification complexity (accuracy) for 4
different attack models

San Francisco

−10 −8 −6 −4 −2 0

0.7

0.72

0.74

0.76

0.78

0.8

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(a) Brightkite

−10 −8 −6 −4 −2 0
0.7

0.75

0.8

0.85

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(b) Gowalla

−10 −8 −6 −4 −2 0

0.25

0.3

0.35

0.4

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(c) Foursquare

Figure 3: The effect of the social smoothing on the average classification accuracy for the users in San Francisco.

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 4: The average classification accuracy in the city of San Francisco on the three datasets for increasing size of Csample(u). In the
Foursquare dataset, the trajectory-based strategy is the best performing one when the number of sampled check-ins is small. Overall, the
hybrid model is the best performing one: it consistently outperforms all the other methods in the Brightkite and Gowalla datasets.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 5: The average score in the city of San Francisco on the three datasets for increasing size of Csample(u). In terms of average
score, the hybrid model consistently outperforms all the other strategies. Also, in the Foursquare dataset the performance gap between the
frequency-based strategies and the trajectory-based one is clearly reduced.

apply our identification strategies as described above. Note that,
after the test check-ins are removed, the less active users can have
as little as 1 check-in in the training set. Thus, we perform the ex-
haustive search using only those users with more than 5 check-ins
in their training set, which in our experimental setting amount for
more than 97% of the users. We find that the best classification
accuracy is achieved for small values of ↵. In fact, ↵ represents
the prior probability of a user to visit any location in the dataset,
independently from his/her check-in history and, therefore, choos-

ing a high value of ↵ would smooth the distribution too much, thus
rendering the user harder to classify.

5.2 Experimental Results
Figure 3 shows the effect of applying the social smoothing to the

frequency-based strategies. Here we show the average classifica-
tion accuracy in the city of San Francisco as the value of µ varies.
The impact of the social smoothing seems to be rather limited in
Foursquare and Brightkite, while in Gowalla the best accuracy is
achieved for µ = 0, i.e., when no social smoothing is applied. As

Experimental Results

• We measure the identification complexity (accuracy) for 4
different attack models

Trajectory more efficient with few points

−10 −8 −6 −4 −2 0

0.7

0.72

0.74

0.76

0.78

0.8

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(a) Brightkite

−10 −8 −6 −4 −2 0
0.7

0.75

0.8

0.85

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(b) Gowalla

−10 −8 −6 −4 −2 0

0.25

0.3

0.35

0.4

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(c) Foursquare

Figure 3: The effect of the social smoothing on the average classification accuracy for the users in San Francisco.

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 4: The average classification accuracy in the city of San Francisco on the three datasets for increasing size of Csample(u). In the
Foursquare dataset, the trajectory-based strategy is the best performing one when the number of sampled check-ins is small. Overall, the
hybrid model is the best performing one: it consistently outperforms all the other methods in the Brightkite and Gowalla datasets.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 5: The average score in the city of San Francisco on the three datasets for increasing size of Csample(u). In terms of average
score, the hybrid model consistently outperforms all the other strategies. Also, in the Foursquare dataset the performance gap between the
frequency-based strategies and the trajectory-based one is clearly reduced.

apply our identification strategies as described above. Note that,
after the test check-ins are removed, the less active users can have
as little as 1 check-in in the training set. Thus, we perform the ex-
haustive search using only those users with more than 5 check-ins
in their training set, which in our experimental setting amount for
more than 97% of the users. We find that the best classification
accuracy is achieved for small values of ↵. In fact, ↵ represents
the prior probability of a user to visit any location in the dataset,
independently from his/her check-in history and, therefore, choos-

ing a high value of ↵ would smooth the distribution too much, thus
rendering the user harder to classify.

5.2 Experimental Results
Figure 3 shows the effect of applying the social smoothing to the

frequency-based strategies. Here we show the average classifica-
tion accuracy in the city of San Francisco as the value of µ varies.
The impact of the social smoothing seems to be rather limited in
Foursquare and Brightkite, while in Gowalla the best accuracy is
achieved for µ = 0, i.e., when no social smoothing is applied. As

Experimental Results

• We measure the identification complexity (accuracy) for 4
different attack models

…but not always

−10 −8 −6 −4 −2 0

0.7

0.72

0.74

0.76

0.78

0.8

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(a) Brightkite

−10 −8 −6 −4 −2 0
0.7

0.75

0.8

0.85

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(b) Gowalla

−10 −8 −6 −4 −2 0

0.25

0.3

0.35

0.4

Log2(µ)

Av
g.

 A
cc

ur
ac

y

Check−ins=5
Check−ins=10

(c) Foursquare

Figure 3: The effect of the social smoothing on the average classification accuracy for the users in San Francisco.

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Sampled Check−ins

Av
g.

 A
cc

ur
ac

y

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 4: The average classification accuracy in the city of San Francisco on the three datasets for increasing size of Csample(u). In the
Foursquare dataset, the trajectory-based strategy is the best performing one when the number of sampled check-ins is small. Overall, the
hybrid model is the best performing one: it consistently outperforms all the other methods in the Brightkite and Gowalla datasets.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(a) Brightkite

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(b) Gowalla

2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sampled Check−ins

Av
g.

 S
co

re

multinomial
time−dependent
trajectory
hybrid

(c) Foursquare

Figure 5: The average score in the city of San Francisco on the three datasets for increasing size of Csample(u). In terms of average
score, the hybrid model consistently outperforms all the other strategies. Also, in the Foursquare dataset the performance gap between the
frequency-based strategies and the trajectory-based one is clearly reduced.

apply our identification strategies as described above. Note that,
after the test check-ins are removed, the less active users can have
as little as 1 check-in in the training set. Thus, we perform the ex-
haustive search using only those users with more than 5 check-ins
in their training set, which in our experimental setting amount for
more than 97% of the users. We find that the best classification
accuracy is achieved for small values of ↵. In fact, ↵ represents
the prior probability of a user to visit any location in the dataset,
independently from his/her check-in history and, therefore, choos-

ing a high value of ↵ would smooth the distribution too much, thus
rendering the user harder to classify.

5.2 Experimental Results
Figure 3 shows the effect of applying the social smoothing to the

frequency-based strategies. Here we show the average classifica-
tion accuracy in the city of San Francisco as the value of µ varies.
The impact of the social smoothing seems to be rather limited in
Foursquare and Brightkite, while in Gowalla the best accuracy is
achieved for µ = 0, i.e., when no social smoothing is applied. As

Location Semantics

• So, location data should be treated with care to protect
users� privacy, but:

– Are some locations more discriminative than others?
– What are the types of venues that an attacker has to monitor to

maximise the probability of success?
– When should a user decide whether to make his/her check-in to a

location public or not?

Location Semantics

• We assume that the attacker has access only to a
number of check-ins in locations in specific categories

– e.g., restaurants.

• 20,785 users and 1,391,765 check-ins over 134,989
venues in 17 Core Based Statistical Area (CBSA)

– CBSA are urban regions according to the US Office of
Management and Budget (OMB)

Dataset

• Venues in the �Travel� category, which are generally
characterised by a high user to venues ratio, correspond
to a relatively low identification complexity

Categories of Places and Identification

• Venues in the �Travel� category, which are generally
characterised by a high user to venues ratio, correspond
to a relatively low identification complexity

Categories of Places and Identification

Least discriminative

• Venues in the �Travel� category, which are generally
characterised by a high user to venues ratio, correspond
to a relatively low identification complexity

Categories of Places and Identification

Most discriminative

• Venues in the �Travel� category, which are generally
characterised by a high user to venues ratio, correspond
to a relatively low identification complexity

Categories of Places and Identification

Highly discriminative if enough points are available

Influence of User�s Entropy

• High (low) entropy users
check-in frequently in
many (few) venues

• No correlation between a
user�s entropy and the
complexity of identifying
him/her

• Collective behaviour
rather than individual
behaviour determines the
identification complexity
of the individual

Figure 7: Heat map showing the relation between users en-
tropy and identification accuracy, where the user entropy is
the Shannon entropy of the histogram of the user’s check-
ins. Here a brighter color indicates a higher concentration of
points. Note that the average accuracy is computed per user,
and it corresponds to the proportion of successful attacks
against a user’s identity.

creasingly isolated venues in our dataset. We observe a sig-
nificant difference between the identification accuracy over
the most/least isolated venues. In other words, our results
show that more accessible venues are less discriminative. In-
tuitively, venues located in high density areas allow to easily
access a large number of alternative venues. This in turn re-
sults in a higher venue entropy, and thus an increased iden-
tification complexity. Finally, note that the difference in ac-
curacy does not follow from a difference in the number of
users, as Fig. 6(b) shows.

Users’ Entropy and Identification Task
As a last experiment, we investigate how the entropy of
the distribution of a user’s check-ins influences the abil-
ity to identify him/her. Intuitively, we expect high entropy
users, i.e., users that check-in frequently at a large number
of venues, to be less identifiable than users with low en-
tropy, i.e., users that check-in frequently at a few venues.
Fig. 7 shows a heatmap of the users distribution, where
for each users we compute his/her identification accuracy,
i.e., the proportion of successful identity attack that targeted
him/her, as well as his/her entropy. Surprisingly, we find that
there is no correlation between these two quantities, suggest-
ing that it is the collective behaviour rather than individual
behaviour that determines the identification complexity of
the individual.

Discussion and Future Work
In this paper we have investigated the interaction between
venues characteristics and users’ privacy in LBSNs. We have
analyzed over 1 million Foursquare check-ins from 17 urban
regions in the US. Our experimental analysis has shown that

different classes of venues are characterized by different lev-
els of user identity discriminative power. We found that the
identification complexity is strongly correlated with the ratio
of users to venues, and that venues in the “Residence” and
“Travel” category are respectively the most and least dis-
criminative across most of the urban regions. Interestingly,
we found that venue categories that are not commonly as-
sociated with a high identity privacy risk can still be highly
discriminative. For example, we found that we can correctly
identify 80% of the users visiting venues in the “Shop” cate-
gory. Our results also showed that the popularity of a venue
and its spatial isolation are positively and negatively corre-
lated with their discriminative power, respectively. For ex-
ample, by considering only check-ins at the 10% most pop-
ular venues rather than the 10% least popular venues, we
observed a drop in the classification accuracy from 80% to
62%. Finally, we found that there is no correlation between
the entropy of a user’s check-in frequency and the ability
to successfully identify him/her. This in turn suggests that
the collective behaviour of the population rather than the in-
dividual behaviour has to be taken into account in order to
estimate the risk of being identified from location data.

We believe that our findings raise important privacy con-
cerns, but, at the same time, they shed light on potential ways
to address these issues. For example, our results are a re-
minder for LBSN users that check-ins at highly discrimina-
tive venues, such as spatially isolated or niche ones, should
receive a particular attention by users in terms of public
disclosure. Our analysis also suggests that it is not how a
user distributes his/her check-ins over the venues, i.e., fre-
quently visiting a limited number of venues rather than dis-
tributing his/her check-ins over a larger set, that determines
how difficult it is to identify him/her. Rather, it is the type
of venues that a user visits that matters. As far as the release
of anonymized location datasets is concerned, our findings
can be used as an indicator of which subsets of the data
should potentially be selected when applying obfuscation
and anonymization methods. Finally, designers of LBSNs
may wish to consider the discriminatory power of categories
when implementing their privacy policies.

Future work should investigate the similarities and dif-
ferences between users’ identifiability across different cities
and countries. More specifically, we aim to study to what ex-
tent the urban environment plays a part in shaping the users
check-in patterns and thus their identity privacy. Our results
indicate that there is some diversity in the identifiability of
users in the cities studied. The reasons for this heterogene-
ity should be investigated further, through consideration of
a wider variety of cities and countries, as well as LBSNs
platforms.

Acknowledgement

This work was supported through the “The Uncertainty of
Identity: Linking Spatiotemporal Information Between Vir-
tual and Real Worlds” Project (EP/ J005266/1), funded by
the EPSRC, and the “LASAGNE” Project, Contract No.
318132 (STREP), funded by the European Commission.

Open Questions

• To what extent the urban environment plays a part in
shaping the users check-in patterns and thus their
identity privacy?

• Attack model that considers sequences of check-ins
• What can we do to ensure identity privacy?

– On the k-Anonymization of Time-varying and Multi-layer Social
Graphs (AAAI ICWSM 2015)

– Stronger privacy models? (Stochastic k-automorphism
anonymity)

Anonymisation of Time-varying Graphs

Time!

Mon!

Tue!

Wed!

Thu!

Fri!

Sat!

Sun!

Big Mobile Data Mining: Good or Evil?

• Is Big Data Mining good or evil?
• Big opportunities but also potential issues especially

related to privacy
– Differential privacy of big mobile data
– Informed consent

• Many interesting applications:
– Healthcare
– Transportation
– Development
– …
[Mirco Musolesi. Big Mobile Data Mining: Good or Evil? In
IEEE Internet Computing. January-February 2014.]

• L. Rossi and M. Musolesi, It's the Way you Check-in: Identifying Users in
Location-Based Social Networks, In Proceedings of the 2nd ACM Conference
on Online Social Networks (ACM COSN’14). Dublin, Ireland. September 2014.
• L. Rossi, M. J. Williams, C. Stich and M. Musolesi, Privacy and the City: User
Identification and Location Semantics in Location-Based Social Networks, In
Proceedings of the 9th AAAI International Conference on Weblogs and Social
Media (ICWSM’15). Oxford, United Kingdom. May 2015
• L. Rossi, M. Musolesi and A. Torsello, On the k-Anonymization of Time-
varying and Multi-layer Social Graphs, Proceedings of the 9th AAAI
International Conference on Weblogs and Social Media (ICWSM’15). Oxford,
United Kingdom. May 2015
• L. Rossi and M. Musolesi, Spatio-temporal Techniques for User Identification
by means of GPS Mobility. In EPJ Data Science. Volume 4. Issue 11. August
2015.

Questions?

Mirco Musolesi

Intelligent Social Systems Lab
Department of Geography
University College London

W: http://www.ucl.ac.uk/~ucfamus
E: m.musolesi@ucl.ac.uk
T: @mircomusolesi

