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Abstract. Continuous sensing applications (e.g., mobile social networking ap-
plications) are appearing on new sensor-enabled mobile phones such as the Ap-
ple iPhone, Nokia and Android phones. These applications present significant
challenges to the phone’s operations given the phone’s limited computational
and energy resources and the need for applications to share real-time continu-
ous sensed data with back-end servers. System designers have to deal with a
trade-off between data accuracy (i.e., application fidelity) and energy constraints
in the design of uploading strategies between phones and back-end servers. In
this paper, we present the design, implementation and evaluation of several tech-
niques to optimize the information uploading process for continuous sensing on
mobile phones. We analyze the cases of continuous and intermittent connectivity
imposed by low-duty cycle design considerations or poor wireless network cov-
erage in order to drive down energy consumption and extend the lifetime of the
phone. We also show how location prediction can be integrated into this forecast-
ing framework. We present the implementation and the experimental evaluation
of these uploading techniques based on measurements from the deployment of a
continuous sensing application on 20 Nokia N95 phones used by 20 people for a
period of 2 weeks. Our results show that we can make significant energy savings
while limiting the impact on the application fidelity, making continuous sensing a
viable application for mobile phones. For example, we show that it is possible to
achieve an accuracy of 80% with respect to ground-truth datawhile saving 60%
of the traffic sent over-the-air.

1 Introduction

Over the last few years, we have witnessed the growth of personal sensing applications
based on inference of human behavior and their surroundingsusing commercial mobile
devices with on-board sensors (e.g., accelerometer, digital compass, microphone, cam-
era). Mobile sensing applications [15, 12] are being developed for new sensor-enabled
mobile phones (e.g., Apple iPhone and Nokia N95) and new sensing approaches are
emerging based on participatory [17] and people-centric sensing [4] paradigms, where
people carrying sensor-enabled mobile phones are central to the sensing process (i.e.,
they are active producers and consumers of sensed data). A wide set of sensing systems
are envisioned where phones are used not only to retrieve presence information about



individuals, but also to sense external environmental conditions in real-time, such as
traffic, road conditions and air quality [16, 7]. This new sensing area is likely to see a
significant increase over the next decade with applicationsin both personal as well as
public sensing emerging [4].

However, the development of these platforms presents a number of important de-
sign challenges particularly in terms of the availability of limited resources, such as
computational capabilities and battery power. This is particularly problematic for a new
class ofcontinuous sensing applications found on mobile phones [4], which contin-
uously make inferences about people and their environment and communicate sensed
data in real-time with back-end server over cellular or WiFinetworks. This work is
based on measurements performed using phones exploiting GPRS connectivity, but the
techniques described in this paper can also be applied to thecase of WiFi connectiv-
ity. These resource-demanding sensing applications include social networking systems
reporting user presence information such as CenceMe [15], which supports the infer-
ence of the current activity of the user carrying the device (such as sitting, standing,
walking, driving, etc.) (Figure 1.a). The user’s sensing presence is sent from the mobile
phone to social networking applications such as Facebook, MySpace and Twitter. An-
other example of continuous sensing application is the on-line mapping and rendering
of human activities in virtual worlds such as Second Life [18] (Figure 1.b) where activ-
ity performed by an individual in the physical world is mapped in real-time into actions
displayed by an avatar in the virtual world.

The communication cost of continuous sensing applicationsis significant and can
quickly lead to battery depletion. In fact, it has been shownin [15] that these continuous
sensing applications using the GPRS wireless network only last a few hours. In addi-
tion, the financial cost of continuously using the wireless network may also limit the
widespread deployment of these applications. Therefore, we argue that there is a need
to reduce the cost related to data transmission of using these sensing applications on
mobile phones: we propose a number of strategies for intelligent data uploading from
mobile phones by reducing the number of transmissions. One important challenge when
attempting to reduce the uploading duty cycle is that applications that require near real-
time updates of the sensed data should be able to operate withmissing information in
a seamless way, without significantly disrupting the application fidelity. This presents
a trade-off between information availability and accuracy, but in this case, the sensing
system should be designed to guarantee a satisfactory user experience. In the case of the
continuous sensing applications discussed above, if the information about the current
state of the user is not available, a consistent state shouldbe displayed. Since most of
these applications are recreational (such as social applications), perfect accuracy is not
strictly necessary.

Given these challenges, we propose to analyze the streams ofsensed or inferred
information on mobile phones in order to upload new data onlyif necessary (e.g., if
the state of the user has been different from that of the back-end server for a certain
period of time). Prediction mechanisms based on the past history of the user’s state can
be implemented on the back-end server in order to show a meaningful state if no up-
dates have been received because of the mobile phone’s low-duty cycle update strategy
(i.e., updates are sent periodically and only when necessary to drive down energy costs



(a) (b)

Fig. 1. a) CenceMe screenshots showing user activities inferred bythe system. b) Avatar in Sec-
ond Life: the action performed by the avatar has to be refreshed in a consistent way also in
presence of disconnections.

associated with communicating with the back-end). In essence, mobile clients and the
central server can be coordinated by designing predictors that receive information from
the phones only if necessary.

In this paper, we present the design of the low-duty cycle uploading algorithms
that consider different aspects of the accuracy/power consumption trade-offs in support
of continuous sensing applications. We discuss the implementation and experimental
evaluation of these mechanisms by means of measurements from the deployment of
CenceMe, a sensing system based on mobile phones. We consider the case of infer-
ence of human activities, but the proposed algorithms can bedirectly applied to other
high-level information, i.e., it is possible to exploit uploading strategies represented by
means of a set of discrete states. Previous work focused on smart techniques for upload-
ing location information [10, 21]. To the best of our knowledge, this is the first work that
targets the problem of devising intelligent uploading techniques of generic sequences
of discrete data for sensing systems based on mobile phones.We design techniques that
can operate in the following scenarios: i) connectivity is always available; ii) connec-
tivity is intermittently available (because of duty cycle design choices in order to save
energy or radio coverage); and iii) GPS information is available on the devices (assum-
ing at least intermittent connectivity). The contributions of this paper are as follows:

– We discuss several techniques for intelligent uploading ofdiscrete sensed infor-
mation when connection is available: the key idea is to analyze and optimize the
stream of states (activities) to be uploaded in order to reach an acceptable trade-off
in terms of accuracy and energy consumption given the requirements of the sensing
systems.

– We present an uploading strategy based on prediction mechanisms to deal with vol-
untary (i.e., duty cycling performed in order to save battery) and involuntary (i.e.,
poor cellular coverage) disconnections. More specifically, we discuss a server-side
prediction algorithm to reconstruct the current user activity based on a simple, but,
at the same time, effective Markov model [3] representing the probability of transi-
tions between different states. A predictor is used in the back-end server to forecast
the current state when fresh information is not present. Periodically, updates are



sent to the back-end server if necessary. The fresh information is sent if and only
if the server information diverges from that currently calculated in real-time on the
mobile phones. We show that it is possible to achieve an accuracy equal to about
80% with respect to the ground-truth data extracted by meansof the classifiers
while saving 60% of traffic sent.

– Finally, we show how location information can be used to optimize the uploading
process. We observe that different user behaviors in terms of activity transitions are
coupled to different geographical areas. Therefore, it is possible to associate a state
transition matrix to different locations in the geographical space.

We consider the three scenarios listed above separately, but it is possible to de-
sign systems combining the proposed techniques, since theyare orthogonal in many
aspects. For example, a system might use the techniques based on location information
when available and exploit the others, when, for example, the GPS signal is not present,
because users are indoor. The proposed techniques are independent from the underlying
activity recognition algorithm. It is worth noting that theaim of this work is to provide
a generic framework to evaluate the trade-offs between uploading frequency of sensed
data and information accuracy without considering external knowledge such as the fact
that an activity is more probable in a certain area (e.g., dancing in a disco club) or that
a sequence of activities is more likely than others (i.e., wedo not consider semantic
strategies). Our focus is on the energy consumption relatedto data transmission over
the cellular network and not on the sensing process that can also be optimized, but this
is an aspect that is also orthogonal to the techniques we present in this paper.

All these techniques have been implemented and evaluated experimentally using
traces collected by distributing 20 Nokia N95 phones running the CenceMe system to
university students and staff during 2 weeks over the summer. The dataset includes
GPS coordinates, raw accelerometer data and inferred user activities. This represents
a unique dataset containing information not only about userlocations but also user
activities.

2 Dataset Description

We now describe the dataset used for the proof-of-concept experiments in details. The
dataset was collected during the deployment of a modified version of the CenceMe ap-
plication [15] that logged all the sensed information and high-level inferred activities
on the phone’s on-board flash memory. The data were collectedby means of 20 Nokia
N95 phones carried by students and staff members from the departments of Computer
Science and Biology at Dartmouth College. The dataset includes the following informa-
tion for each user: accelerometer raw data, high-level activities inferred by the classifier
running on the CenceMe clients, and GPS location coordinates. The dataset is available
for download from the CRAWDAD website [1]. The duration of the experiment was 2
weeks. These data are used as ground-truth for our experiments, in particular, for the
evaluation of prediction techniques.

The accelerometer daemon that accesses the sensor hardware(and the related clas-
sifier) has a duty cycle of 8s (4 s sampling period and 4s waiting time). The 4s waiting
time was introduced in the design of the system to allow for the transmission of the data



to the remote back-end server. The GPS duty cycle chosen for the experiment was 3
minutes. By doing so, it was possible to reach an acceptable compromise with respect
to the accuracy/battery consumption trade-off. In fact, users had on average enough
battery to run the application during the day and recharge the phone at night.

We are aware that the results presented in this work are related to the specific sce-
nario of students and staff living in a geographical area composed of small cities, but, to
the best of our knowledge, there are no other publicly available datasets with the same
characteristics. However, we conjecture that this datasetcan be considered as represen-
tative of activity and movement patterns of individuals in similar deployment scenarios
such as campuses and communities that live in geographical areas of similar size.

3 Optimizing User State Uploading

In this section, we firstly describe the problem of state uploading and then we discuss
and evaluate some algorithms for scenarios characterized by continuous and intermit-
tent connectivity.

We model the sensing problem as follows. The inference algorithms running on the
phones generate a setS = {s1, s2, ..., sn} of high-level statessi from processing the
raw sensor data. Each user/device produces a stream of data with values in the setS that
have to be uploaded to the back-end. In the experiments discussed in this work we con-
sider the following set of activitiesS = {Sitting, Standing, Walking, Running}.

We consider two cases:

– Network connectivity is always available (i.e., intermittent disconnections and trans-
mission errors are negligible and do not affect the uploading of the information to
the back-end servers), thereforeon-line strategiescan be used;

– Network connectivity is intermittently available (because of poor radio coverage,
etc.), thereforeoff-line strategiesmust be used.

We note that the techniques used for the case of intermittentconnectivity can be applied
to scenarios characterized by always-on connectivity since these can be considered as
limit cases of the former.

The evaluation of the techniques presented in this work are carried out considering
the overhead associated to the update of the information andnot the energy consumption
for a specific mobile device. At the same time, we are aware that one possibility is to
exploit the fact that the GPRS network interface is not powered down immediately after
data transmission, so it might be convenient to send bursts of data. However, for this
specific case of continuous sensing of discrete data, the generation rate of new high-
level information from the on-board classifiers may not be sufficiently fast. Figure 2
shows the energy consumption profile related to the transmission of 100 bytes using
a Nokia N95 (corresponding to the upload of the information related to a single user
activity using XML-RPC). The figure is obtained by means of the Nokia Energy Profiler
tool [20] . We observe that after the transmission of the datathe interface is still powered
up for less than 5s; this interval varies for different devices and is not standardized. A
5 s interval is not enough for collecting a sufficient amount of data for the CenceMe
activity classifier. In general, the transmission of information with such a degree of
granularity is not required for many applications, especially recreational ones.
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Fig. 2. Energy consumption profile related to the transmission of 100 bytes using a Nokia N95
over GPRS.

3.1 Online Stream Analysis Strategies

Overview We now present the techniques that can be used when network connectivity
is always available based on the analysis of the data streams. We identify four different
on-line strategies for uploading, starting from basic to more complex and optimized
ones:
Always upload The simplest solution is to upload the state of the user periodically,
regardless if a change has taken place or not. This solution does not require to store any
state on the mobile clients and back-end servers. It is the case without optimization. It
provides 100% accuracy in the unrealistic case of no disconnections and transmission
errors.
Upload in presence of changes This strategy can be considered as an obvious opti-
mization of the previous simple solution. The new information is uploaded every time a
change takes place. This technique is the best in terms of overhead when 100% accuracy
has to be guaranteed.
Upload in presence of persistent changes According to this strategy, the new informa-
tion is uploaded only when a change is not isolated, i.e., we observe a change from state
A to stateB with n consecutive occurrences of stateB in the stream. For example, we
upload the new state only after observing a sequence like{A, B, B, B} in the case with
n = 3. The new information is uploaded only after thenth occurrence of stateB. This
technique involves a certain degree of information loss, since only a percentage of the
actual state changes are uploaded. At the same time, this technique can be considered
as a way of filtering out outliers from the data stream.
Voting based uploading strategy This method is based on the evaluation of the frequency
of activities in the data stream considering non overlapping time windows. The state
with the highest frequency in the window is selected for uploading. The update is sent
only if the most frequent state in the current window is different from the most frequent
state in the previous window. Let us consider the following example. Let us assume that
we have the sequence{A, A, B, A, B, A, A, B, B} with window size equal to 3 and
a threshold equal to 2. The first state to be uploaded isA. Then, no upload takes place
in the following window, since the state with the highest frequency is stillA. Finally,
since the stateB has the highest frequency inside the window, the update is sent to the
back-end.
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Fig. 3. Complementary cumulative distribution function indicating the probability of having a
sequence of the same activity longer than Sample Length.

Compression algorithms [14] can improve system performance but we do not con-
sider them in this work, since these techniques can be easilyadded on top of the up-
loading mechanisms discussed in this paper.

Evaluation We compare the accuracy and transmission overhead of all thetechniques
with respect to theupload in presence of changes strategy. We define accuracy as the
ratio of correctly predicted values on the server against the ground-truth state inferred
on the phone. The analysis performed in this section can be considered as a general
methodology to be used in order to set the parameters of the algorithms in different
practical cases. The results obtained in this analysis are specific to the dataset collected
through the deployment of CenceMe, but the evaluation process itself can be applied to
other deployment scenarios.

We first present a statistical description of the types of activities in the stream of
data. In Figure 3 we show the probability of havingn consecutive activities of the same
type. As the plot shows, the presence of very long sequences of consecutive activities
of the same kind is unlikely. These graphs give other interesting information about
the length of the sequences of consecutive values of the sameactivity: for all types of
activities in our stream, we observe the length of the sequence of the same activity is
one for more than 50% of the samples. The choice of the window length parameter is a
key aspect of the uploading strategy. Figure 3 shows that there is a very low probability
of having long sequences of the same activity within the datastream. The probability
of having sequences of the same activity shorter than or equal to 30 samples is 99%
(for all the activities except sitting for which the probability is 90%). Thus, it is useless
to apply filters with a window length longer than 30 samples because, in that case, the
majority of the changes in the stream would be missed.

Figures 4.a and 4.b show the accuracy of the two methods and the ratio of the traffic
sent with respect to the overhead associated with theupload in presence of changes
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Fig. 4. a) Accuracy of thevoting based andpersistent change uploading strategies with respect
to the overhead associated to theupload in presence of changes strategy. b) Traffic ratio of the
voting based andpersistent change uploading strategies with respect to the overhead associated
to theupload in presence of changes strategy.

strategy. In this case the number of the required consecutive changes for an uploading
is equal to the window size. As expected, thevoting based uploading strategy has a
better accuracy than thepersistent change strategy but it is characterized by a higher
overhead. Both of them can achieve a 90% accuracy saving 80% of data traffic. We
observe that the gap between the accuracy values related to the two strategies increases
as the length of the window increases. Thepersistence change strategy has a smaller
number of updates with respect to the voting based strategy,since the latter at each
step always uploads the state calculated using the voting mechanism. Thepersistence
change strategy uploads a new state only if a new state has been observed for a certain
number of previous steps.

3.2 Off-line Strategies: Markov Chain based Prediction

Overview The strategies outlined above are based on the assumption ofcontinuous
availability of network connectivity. When the uploading strategies described in the
previous section are used, the application on the phone sideis responsible for choosing
which state update has to be sent and when. The back-end server is not involved in the
process. When the mobile device is disconnected from the Internet, the back-end can
just make the last known state available or publish anunknown state message.

An alternative strategy is to try to forecast the next state during a disconnection.
A possible cause of intermittent connectivity is insufficient radio coverage. In some
cases frequent updates have to be avoided given energy constraints of the devices. This
strategy can be combined with one of the mechanisms described in the previous section
in presence of intermittent connectivity. In other words, online strategies can be used
when connectivity is present and offline strategies when thedevice cannot (should not)
connect to the network.

By definition, the predicted state is characterized by a certain degree of uncertainty,
but this can be acceptable for some classes of systems such asrecreational sensing
applications like CenceMe. We are aware that the applicability of these techniques are



Mphone

Run-time matrix

0.7 0.2 0.2 0.1
0.2 0.7 0.1 0.0
0.1 0.2 0.5 0.2
0.1 0.1 0.2 0.6

Mserver

Server-side matrix

0.6 0.1 0.2 0.1
0.2 0.7 0.1 0.0
0.0 0.3 0.5 0.2
0.1 0.1 0.3 0.5

Mserver

Server-side matrix

0.6 0.1 0.2 0.1
0.2 0.7 0.1 0.0
0.0 0.3 0.5 0.2
0.1 0.1 0.3 0.5

Fig. 5. Markov chain based prediction: in the mobile phones, two matrices are stored, one that is
updated as new states are generated by the classifiers and a copy of the matrix that is periodically
sent to the back-end server when the two diverge.

not universal: examples of non viability include monitoring technologies for healthcare
and assisted living [6], for which it may be necessary to guarantee perfect accuracy.

The key idea is to use a transition matrix to model the sequence of the state changes
(such as sequences of actions of user avatars) on the server also during a disconnection
from the mobile client. In order to do so, we exploit a simple Markov chain model to
describe the phenomenon under observation, i.e., the transitions between the states that
can be sensed by the system. The matrix stores the probability of transition between the
different states. These probabilities are estimated by measuring the frequency of transi-
tions. The calculation of this matrix takes place on the phones. Instead of uploading a
single state as before, the phone uploads the state transition matrix that is used by the
back-end to predict and publish the next state during a disconnection. Two matrices are
stored on the mobile phones, one that is updated as new statesare generated by the clas-
sifiers and a copy of the matrix that was sent to the back-end server. When the system is
bootstrapped, the first matrix is uploaded directly to the server since no comparison is
possible. A new matrix is sent to the back-end if and only if the matrix currently calcu-
lated on the phones diverges from what is currently used by the server. The comparison
is based on a difference threshold. The mechanism is shown inFigure 5. We note that
for applications such as visualization of human activitiesin virtual worlds (e.g., Second
Life), this information can be used to drive the sequences ofactions of the avatars also
during periods of disconnection in order to provide a betteruser experience.

More formally, we model the system as a stochastic processX(t) (with t = 0, 1, 2, ...

instants of time) that takes a finite number of possible values defined by the set of states
S. For a Markov chain, the conditional distribution of any future stateX(t + 1) given
the past statesX(0), X(1), X(2), ..., X(t−1) and the current stateX(t) is independent
from the values of the past states and depends only on the present state [3]. We define
a matrix of transitionsM where each element of the matrixmi,j represents the prob-
ability of transitions between a statei and a statej. Each matrix is built locally on the
phone considering the entire set of samples collected in a certain intervalTcalculation.
We argue that this matrixM is in general a function of the geographical location and
the time of the day, more formallyM = M(x, y, t) where(x, y) indicates the geo-
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Fig. 6.Accuracy of the Markov chain model with different metrics, thresholds and sample times.

graphical position andt is the instant of time or a time interval (such as mornings, ora
particular day of the week, such as Mondays). In the next section we will discuss how
different matrices can be associated to various locations in the geographical area where
users move, if GPS receivers are available.

Periodically, with an interval equal toTcalculation s, a decision step takes place: a
new matrix is uploaded if the matrix on the server diverges from that currently stored
on the phones. Therefore, the key problem is to measure the difference between the
matrixMserver currently available on the back-end server and that currently estimated
on the phone that we indicate withMphone. In order to evaluate this error we calculate
the distance between the two matricesMserver andMphone. More specifically, a new
matrix is uploaded to the back-end if and only if

Lx(Mphone, Mserver) ≥ th (1)

whereth is a pre-defined threshold andLx is a chosen distance function. In fact, by
considering a matrix as a vector, we can calculate the distance between two subsequent
vectors using standard vector distances [9]. A basic choiceis to use the Euclidean dis-
tance between two matrices defined as follows:

L2(Mphone, Mserver) =

√

√

√

√

|S|
∑

i,j∈S

(mphonei,j
− mserveri,j

)2 (2)

We also consider other two distances, the so-called Manhattan distanceL1 and the
weighted distanceL2w. In our case, theL1 distance is defined as follows:

L1(Mphone, Mserver) =

|S|
∑

i,j∈S

∣

∣

∣
mphonei,j

− mserveri,j

∣

∣

∣
(3)
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Fig. 7. a) Traffic sent versus sample interval for different thresholds in the Markov model. b)
Accuracy of the Markov upload model in case of disconnectionof the mobile device from the
back-end.

TheL1 metric provides an approximation of the Euclidean distancebut it is less expen-
sive to compute. We use the following formula for the calculation of L2w distance:

L2w(Mphone, Mserver) = (

|S|
X

i,j∈S,i=j

(wd(mphonei,j
− mserveri,j

)2) +

|S|
X

i,j∈S,i6=j

(wnd(mphonei,j
− mserveri,j

)2))
1

2 (4)

Using this distance, we can assign higher importance to one of the two classes of
transitions described by the matrixM : self-transitions from one state to itself (self-
transitions) and those from a state to a different one. The probability of self-transitions
are represented by the elements of the diagonal.

Evaluation In this section, we present the results of the evaluation of the Markov chain
strategy varying both the values of the distance thresholdsand sample intervals. As for
all strategies, we are interested in studying its accuracy and overhead.

Figure 6 shows the accuracy of the Markov model depending on the values of the
sample interval and threshold. The plots refer to theL1, L2 andL2w distances. All
the metrics show a decrease in accuracy depending on the value of the sample interval
Tcalculation. As expected, the accuracy strongly depends on the value of the threshold
used for the uploading decision. More specifically, we observe that when the value of
the threshold is lower than 1 the accuracy of the prediction does not change. Instead,
with a threshold higher than 1, the accuracy decreases because less transition matrices
are sent to the back-end. At the same time, we observe that by uploading the matrix
more frequently (i.e., by using a lower threshold), it is possible to achieve a better
accuracy. Small sample intervals do not provide a statistically valid number of samples
and, therefore, the quality of the prediction is rather poorin these cases. We plot results
with thresholds up to 3, since we note that the measured accuracy does not change with
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Fig. 8. a) Correlation between prediction accuracy and entropy value for each user using dif-
ferent thresholds using the Markov model. b) Cross-evaluation of off-line and on-line models:
correlation between accuracy and sent traffic.

a threshold greater than 2.5, a value that represents the maximum distance measured
between two consecutive matrices for all users in the experiment.

In general, we observe that theL1 distance method provides the best solution in this
case since it is less influenced by the choice of the parameters. As for the other strate-
gies, we measure the difference of overhead (in percentage)with respect to the upload
in presence of changes strategy. Figure 7.a shows the percentage of traffic sent by this
method with respect to the basic one. We would like to underline that for this method,
every time the application transmits some data, instead of sending a single state, it
sendscard(S) × card(S) probability values. For low values of the sample interval the
amount of traffic is up to seven times higher than the basic method. This value decreases
rapidly for higher sample intervals. Another parameter affecting the traffic overhead is
the distance threshold. As expected, for higher values of the threshold, less matrices are
sent and the amount of transmitted data decreases. As the plot in Figure 7.a shows, the
Markov model presents the same traffic load of the baseline model when a matrix is
sent every 800, 400 and 50s respectively for thresholds equal to 0.0, 1.0 and 1.5.

For this strategy, it is fundamental to measure the accuracyof the method in case
of disconnection of mobile devices from the back-end. Figure 7.b shows the decreasing
accuracy of the Markov predictor as time goes on. We analyze two cases in which a
matrix is uploaded respectively every 5 or 10 minutes (the two lines in Figure 7.b).
We build a transition matrix considering 5 and 10 minute calculation intervals, then we
assume that a disconnection takes place: no more matrices can be uploaded and we keep
predicting the next activity samples with the same matrix. In this case we observe about
a 10% accuracy reduction.

The results presented above are derived by considering aggregated data for all users.
We now present a possible method to tie the accuracy of the prediction of the activities
of a single user to a quantitative measure. We observe that also intuitively user pre-
dictability is strongly dependent on the degree of user behavior variability: the higher
the variability of activity transitions, the less predictable the user is.



Fig. 9.Transition probability matrix used in the local model and example of a user path.

A standard measure of state variability in user data streamsis the entropy of the
sequence; we use the standard definition provided by Shannon[22]. In Figure 8.a we
show the relation between entropy and the prediction accuracy described in the previous
sections. Each point in the plot corresponds to a user involved in the experiment; we
report the values related to the cases with thresholds equalto 0 and 1. For the first set
of points, it is possible to observe a sort of linear distribution, while the other set forms
a cloud-like distribution. This means that the correlationbetween accuracy and entropy
is strictly dependent on the choice of the parameters used totune the offline strategy.
The accuracy decreases as the threshold increases and this is directly reflected on the
negative correlation between entropy and accuracy.

The state entropy can provide a measurement of the predictability of a certain user
and this information might be displayed together with the forecasted state when the
Markov based model is used. These results also provide a statistical characterization of
the dataset and can be exploited to interpret and compare performance results in this
paper with user patterns in deployments related to different social scenarios.

3.3 Comparison between On-line and Off-line Strategies

Finally, we compare the results of the on-line and off-line strategies described above.
This comparison is performed only for completeness, since the two strategies are target-
ing two different scenarios, characterized by different types of connectivity (continuous
and intermittent) and/or energy requirements (i.e., battery power constraints are deemed
less or more important than accuracy).

Figure 8.b shows the correlation between accuracy and overhead using the two dif-
ferent classes of strategies, by increasing window sizes for the online strategies and dif-
ferent sample intervals for the Markov model based ones. Theon-line strategies show
the best performance: in terms of accuracy, thevoting based strategy provides the best
results (93% accuracy); thepersistent change uploading strategy instead has the best
performances in terms of overhead, i.e., it saves up to 99.9%of traffic.

As expected, the Markov model based approach cannot providebetter accuracy than
online strategies. However, we would like to point out that the Markov based strategy
can offer an interesting trade-off between accuracy and overhead also when connectivity
is available. For example, using aL2 metric with a threshold equal to 1, it is possible to
achieve an accuracy equal to almost 80% by saving 60% of traffic sent.



4 Location-based State Uploading

We now show how location information can also be used to optimize the uploading
process in case of devices equipped with GPS receivers. The key idea is to associate a
state transition matrix to each location. This can be considered as a sort of augmentation
of the Markov chain based mechanism presented in the previous section. It can be used
when connectivity is potentially intermittent or continuous uploads are not possible
given battery constraints. More specifically, we exploit a two-level Markov model: we
firstly use a transition matrix associated to each location of the space to predict future
movements. Then we use the matrix associated to the forecasted next location for the
prediction of the future activity. The matrices are built bycollecting data for a certain
interval of time (that can be considered as a sort of trainingperiod of the model). Then
these matrices are used for forecasting on the server if no data are transmitted by the
mobile clients.

Markov models have already been successfully used as a basisof user location
prediction techniques [2, 23, 11]. A key problem is the definition of the locations in the
geographical space. In order to apply a Markov model for location prediction we need
to transform the continuous domain of a geographical regioninto a discrete set of areas.
Then, a way of estimating the probability of transitions between these areas has to be
devised. We use a grid based model for subdividing the geographical areas in discrete
locations, obtaining a grid of squared tiles (or cells). More formally, we divide the space
in m×n squared tilesTp,q with side sizegridsize. We then consider the probability of
transitions between tiles by assuming two movement models with different constraints
in terms of possible transitions, i.e. alocal one and aglobal one.

Local Movement ModelWe start considering a simple movement model that takes
into consideration only transitions to locations that are close to the current one. Accord-
ing to this model, a user in a tileTp,q can only jump to a tile which is adjacent to that
she is currently located (considering an analogy to the gameof chess, the user can move
as a king on a chessboard). For every tile of the matrix we consider a vectorJ = {JN ,
JNE , JNW , JS , JSE , JSW , JE , JS , JCT } containing the probabilities of jumping from
the current tile to one of the tiles in the neighborhood (the north-east tile, the north tile,
and so on) as illustrated in Figure 9. The matrix also includes the probability of staying
in the current tile (JCT ). We do not simply take into account jumps to tiles that are
further on the grid.

The local movement model is a simple way of representing the movements of the
users, however, it is not sufficiently accurate because it does not take into account possi-
ble jumps between two non adjacent tiles. This type of jumps can be caused by various
physical factors, such as the speed of users with respect to alow sampling rate (e.g., a
movement in a car), the absence of GPS signal and/or the unavailability of the GPRS
coverage. In these cases, some transitions might not be recorded.

The two key parameters affecting this model are GPS sensor duty cycle and size
of tiles. As the duty cycle of the GPS sensor increases, the probability of a transition
between two adjacent tiles decreases. A value ofgridsize smaller or equal to the max-
imum distance that a user can cover increases the probability of jumps between two
non adjacent tiles. One of the advantages of the local model is related to the memory
that is needed to implement it. In fact, for each tile of the area, we need to store only a



Fig. 10.The global model and a possible path described by a user. For each cell of the areaN×M

(on the right), aN × M matrix of transition probabilities is recorded.

3 × 3 matrix (or a 9-cell vector containing the probabilities of jumping to the adjacent
tiles) for a total space complexity equal toM × N × 3 × 3 whereM andN are the
dimensions of the geographical area of interest. If we consider the nine cells contain-
ing the transition probabilities as constant values, the space complexity of the model is
approximatelyO(MN).

Global Movement Model We also consider a movement model that allows jumps
between non adjacent tiles (global movements). In other words, the global movement
model is able to register all user movements over the grid: both jumps toward adjacent
tiles and tiles that are far away are allowed and recorded, asillustrated in Figure 10.
However, this model requires an array of sizeM × N representing a matrix containing
all the transitions toward all the other possible geographical locations for each tile. The
drawback of using this model is the increased space complexity. In fact, for each tile of
the geographical area it is necessary to store aM × N probability matrix where every
cell Ti,j contains the probability of jumping from the current tile toany other tile of the
geographical area. The space complexity of the model becomesO((NM)2).

Evaluation We use the first week as training period (i.e., the matrix is sent once
after the first week) and we measure the accuracy of the prediction considering the
dataset corresponding to the second week. We train the modelon the entire week in
order to have sufficient statistics. In a real system, an uploading mechanism based on
distances as that presented in the previous section can be used for deciding if a new
matrix has to be sent or not to the back-end server. The evaluation of these mechanisms
is not possible for us since we have only a two-week dataset.

The main challenge in using the grid model is the definition and the placement of
the grid structure. A key parameter of the model is the size ofthe tiles composing the
superimposed grid. In fact, by using a grid, a logical place (e.g., the library, the gym,
etc.) might be split into two or more tiles and two unrelated places might be unified in
the same tile. Even if we keep the same grid size, by changing the offset of the grid we
have very different subdivisions of the area. Accuracy variations are around5 to 10%
with different grid positioning. In Figure 11 we show the accuracy of the prediction as
a function of the grid size. We plot the results for the local and the global models with
different strategies for the choice of the first activity that is used as first state of the
prediction model when the transition between two tiles of the grid takes place (i.e., the
starting state of the activity transition matrix associated to each tile). More specifically,
we use the most popular activity in that tile and a randomly selected activity using a
frequency distribution of the activities in that location.These results are obtained by
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averaging 10 runs with different offsets from the origin of the grid. The offsets are
equal to k

10
gridsize with k = 1...10. We note that this choice does not affect the

performance of the algorithm as expected, given the properties of Markov chains about
independence from the initial state as time passes [3]. We note that the accuracy of the
prediction decreases for all the methods as the grid size increases. In fact, with a larger
granularity of the tile, locations characterized by different activities are joined together
(for example the library and the street leading to it). The local prediction model is not
able to capture the movements of the users. These results arealso affected by higher
errors with small grid size for the location prediction due to a higher number of tiles
with insufficient statistics. The local model is particularly affected by this problem,
since many transitions to neighboring cells are not recorded.

5 Related Work

This paper proposes a set of intelligent uploading techniques for (near) real-time con-
tinuous sensing systems based on mobile phones. The existing related work focuses
mainly on movement prediction and the use of information about the current location
to infer human activities (such as cooking is very probable in a kitchen). The prob-
lem of optimizing the uploading process has not been explored yet also because mobile
sensing systems based on smart phones, like MyExperience [8], CenceMe [15], Neri-
cell [16] and BeTelGeuse [12], are very recent. Recently, Wang et al. have proposed a
framework called EEMSS [25] for optimizing the duty cycles of the sensors for mobile
sensing applications. The aim is orthogonal to ours and the solutions can coexist, since
EEMSS is focused on the sensing aspect whereas the goal of this work is to optimize
the uploading process.

With respect to the problem of forecasting user movements, in [2], the authors
present a model of user location prediction from GPS data. A simple first-order Markov
model to predict the transitions between significant placesis used. Also in this work
temporal aspects are not taken into consideration. Moreover, the model is not able to
forecast transitions to geographical areas that are not considered significant. In [13] the
significant places are extracted by means of a discriminative relational Markov network;
then, a generative dynamic Bayesian network is used to learntransportation routines.



Another system for the prediction of future network connectivity based on a second-
order Markov model is BreadCrumbs [19]. This system is able to predict only the next
user location and not the time of the transitions and the interval of time during which
users reside in that specific location. An extension of [24] about the study of handoff
mechanisms in a campus environment using Markov models is presented in [23].

GPS information has also been used in vehicular systems suchas in Predestina-
tion [11]. The authors of this work use aggregated location data together with additional
information about the geography of certain areas in order tomake accurate prediction of
movements of vehicles; we have presented instead a technique that relies only on local
predictions of single users also in presence of intermittent connectivity. Techniques for
approximating the positions of moving objects also considering energy requirements
have also been studied in [10] and [5]. Other related work hasbeen done in the area of
databases in particular about the so-calledapproximation replication techniques [21].
The key difference with respect to this body of work is related to the fact that our goal
is also to provide an estimation of the current state using the past history.

6 Concluding Remarks

In this paper we have presented a series of techniques for optimizing the uploading
process of discrete data for continuous sensing applications on mobile phones. We have
considered two cases, namely a scenario where connectivityis always available and one
where it is intermittently present or the number of transmissions has to be limited given
the system design requirements in order to extend the battery lifetime of the devices.
Finally, we have shown how location information can be exploited to optimize the up-
loading process. We have demonstrated that our techniques can be used to improve
the performance of continuous mobile sensing applicationsby analyzing the trade-off
between transmission overhead and accuracy.
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