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Abstract. Continuous sensing applications (e.g., mobile social agting ap-
plications) are appearing on new sensor-enabled mobilagshsuch as the Ap-
ple iPhone, Nokia and Android phones. These applicatioasgmt significant
challenges to the phone’s operations given the phone’sddntomputational
and energy resources and the need for applications to sealréime continu-
ous sensed data with back-end servers. System designersdaeal with a
trade-off between data accuracy (i.e., application figedhd energy constraints
in the design of uploading strategies between phones ariddrat servers. In
this paper, we present the design, implementation and &iaiuof several tech-
nigues to optimize the information uploading process farticmous sensing on
mobile phones. We analyze the cases of continuous and iitentrconnectivity
imposed by low-duty cycle design considerations or pooel®ss network cov-
erage in order to drive down energy consumption and extemdifgtime of the
phone. We also show how location prediction can be intedriate this forecast-
ing framework. We present the implementation and the expartal evaluation
of these uploading techniques based on measurements feodeioyment of a
continuous sensing application on 20 Nokia N95 phones ug@® Ipeople for a
period of 2 weeks. Our results show that we can make signtfer@ergy savings
while limiting the impact on the application fidelity, makjicontinuous sensing a
viable application for mobile phones. For example, we shmat it is possible to
achieve an accuracy of 80% with respect to ground-truth whtke saving 60%
of the traffic sent over-the-air.

1 Introduction

Over the last few years, we have witnessed the growth of pafsensing applications
based on inference of human behavior and their surroundsigg commercial mobile

devices with on-board sensors (e.g., accelerometeratigmpass, microphone, cam-
era). Mobile sensing applications [15, 12] are being dgyediofor new sensor-enabled
mobile phones (e.g., Apple iPhone and Nokia N95) and newirsgrapproaches are
emerging based on participatory [17] and people-centrisisg [4] paradigms, where
people carrying sensor-enabled mobile phones are ceatthétsensing process (i.e.,
they are active producers and consumers of sensed datajle®set of sensing systems
are envisioned where phones are used not only to retriegepce information about



individuals, but also to sense external environmental itimmd in real-time, such as
traffic, road conditions and air quality [16, 7]. This new si&ig area is likely to see a
significant increase over the next decade with applicatiof®th personal as well as
public sensing emerging [4].

However, the development of these platforms presents a euofimportant de-
sign challenges particularly in terms of the availabilifylimited resources, such as
computational capabilities and battery power. This isipaldrly problematic for a new
class ofcontinuous sensing applications found on mobile phones [4], which contin-
uously make inferences about people and their environmmehtammunicate sensed
data in real-time with back-end server over cellular or WiEtworks. This work is
based on measurements performed using phones exploitiR§ @&nnectivity, but the
techniques described in this paper can also be applied toase of WiFi connectiv-
ity. These resource-demanding sensing applicationsdectocial networking systems
reporting user presence information such as CenceMe [1&thasupports the infer-
ence of the current activity of the user carrying the dev&el as sitting, standing,
walking, driving, etc.) (Figure 1.a). The user’s sensingggnce is sent from the mobile
phone to social networking applications such as Facebogi§gdce and Twitter. An-
other example of continuous sensing application is theramrhapping and rendering
of human activities in virtual worlds such as Second Life][(F8gure 1.b) where activ-
ity performed by an individual in the physical world is magpe real-time into actions
displayed by an avatar in the virtual world.

The communication cost of continuous sensing applicati®isgnificant and can
quickly lead to battery depletion. In fact, it has been shawjt5] that these continuous
sensing applications using the GPRS wireless network @slyd few hours. In addi-
tion, the financial cost of continuously using the wirelesswork may also limit the
widespread deployment of these applications. Therefoeeangue that there is a need
to reduce the cost related to data transmission of using tbexssing applications on
mobile phones: we propose a number of strategies for igézitidata uploading from
mobile phones by reducing the number of transmissions. @petitant challenge when
attempting to reduce the uploading duty cycle is that appibos that require near real-
time updates of the sensed data should be able to operatengising information in
a seamless way, without significantly disrupting the agion fidelity. This presents
a trade-off between information availability and accurdmy in this case, the sensing
system should be designed to guarantee a satisfactoryxssience. In the case of the
continuous sensing applications discussed above, if floenvation about the current
state of the user is not available, a consistent state shoauttisplayed. Since most of
these applications are recreational (such as social apiplis), perfect accuracy is not
strictly necessary.

Given these challenges, we propose to analyze the streasenséd or inferred
information on mobile phones in order to upload new data dnhecessary (e.g., if
the state of the user has been different from that of the leackserver for a certain
period of time). Prediction mechanisms based on the pastriisf the user’s state can
be implemented on the back-end server in order to show a mgfahstate if no up-
dates have been received because of the mobile phone’sutyegtcle update strategy
(i.e., updates are sent periodically and only when necgs$sairive down energy costs
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Fig. 1. a) CenceMe screenshots showing user activities inferraddogystem. b) Avatar in Sec-
ond Life: the action performed by the avatar has to be reé@sh a consistent way also in
presence of disconnections.

associated with communicating with the back-end). In essemobile clients and the
central server can be coordinated by designing predidtatgéceive information from
the phones only if necessary.

In this paper, we present the design of the low-duty cycleaging algorithms
that consider different aspects of the accuracy/powengapsion trade-offs in support
of continuous sensing applications. We discuss the impi¢atien and experimental
evaluation of these mechanisms by means of measurementstie deployment of
CenceMe, a sensing system based on mobile phones. We oottedease of infer-
ence of human activities, but the proposed algorithms cadlirieetly applied to other
high-level information, i.e., it is possible to exploit @glding strategies represented by
means of a set of discrete states. Previous work focused ar taohniques for upload-
ing location information [10, 21]. To the best of our knowdeglthis is the first work that
targets the problem of devising intelligent uploading teghes of generic sequences
of discrete data for sensing systems based on mobile phdlesdesign techniques that
can operate in the following scenarios: i) connectivity lisays available; ii) connec-
tivity is intermittently available (because of duty cyclesign choices in order to save
energy or radio coverage); and iii) GPS information is alzé on the devices (assum-
ing at least intermittent connectivity). The contributsaf this paper are as follows:

— We discuss several techniques for intelligent uploadindistrete sensed infor-
mation when connection is available: the key idea is to aeafnd optimize the
stream of states (activities) to be uploaded in order tolreacacceptable trade-off
in terms of accuracy and energy consumption given the reguants of the sensing
systems.

— We present an uploading strategy based on prediction machaio deal with vol-
untary (i.e., duty cycling performed in order to save bajtand involuntary (i.e.,
poor cellular coverage) disconnections. More specificall discuss a server-side
prediction algorithm to reconstruct the current user dgtivased on a simple, but,
at the same time, effective Markov model [3] representimgatobability of transi-
tions between different states. A predictor is used in thelkkeand server to forecast
the current state when fresh information is not presenioBieally, updates are



sent to the back-end server if necessary. The fresh infasmat sent if and only
if the server information diverges from that currently cdéted in real-time on the
mobile phones. We show that it is possible to achieve an acgwqual to about
80% with respect to the ground-truth data extracted by meéarke classifiers
while saving 60% of traffic sent.

— Finally, we show how location information can be used tomjte the uploading
process. We observe that different user behaviors in tefiastivity transitions are
coupled to different geographical areas. Therefore, ibssfble to associate a state
transition matrix to different locations in the geograispace.

We consider the three scenarios listed above separatélyt isupossible to de-
sign systems combining the proposed techniques, sinceatfgegrthogonal in many
aspects. For example, a system might use the techniques cmasacation information
when available and exploit the others, when, for exampé&e@RS signal is not present,
because users are indoor. The proposed techniques areitdsy from the underlying
activity recognition algorithm. It is worth noting that tlaém of this work is to provide
a generic framework to evaluate the trade-offs betweenadhg frequency of sensed
data and information accuracy without considering extetnawledge such as the fact
that an activity is more probable in a certain area (e.g.cidgnn a disco club) or that
a sequence of activities is more likely than others (i.e.,doenot consider semantic
strategies). Our focus is on the energy consumption relatehta transmission over
the cellular network and not on the sensing process thatlsarba optimized, but this
is an aspect that is also orthogonal to the techniques wemirgsthis paper.

All these techniques have been implemented and evaluagestimentally using
traces collected by distributing 20 Nokia N95 phones rugiire CenceMe system to
university students and staff during 2 weeks over the sumfiteg dataset includes
GPS coordinates, raw accelerometer data and inferred oBeities. This represents
a unique dataset containing information not only about Usesitions but also user
activities.

2 Dataset Description

We now describe the dataset used for the proof-of-concegarerents in details. The
dataset was collected during the deployment of a modifiesimeiof the CenceMe ap-
plication [15] that logged all the sensed information anghklievel inferred activities
on the phone’s on-board flash memory. The data were collégt@deans of 20 Nokia
N95 phones carried by students and staff members from therobepnts of Computer
Science and Biology at Dartmouth College. The datasetdedthe following informa-
tion for each user: accelerometer raw data, high-levelities inferred by the classifier
running on the CenceMe clients, and GPS location coordin@tee dataset is available
for download from the CRAWDAD website [1]. The duration okthxperiment was 2
weeks. These data are used as ground-truth for our expagniemparticular, for the
evaluation of prediction techniques.

The accelerometer daemon that accesses the sensor hatdmaithe related clas-
sifier) has a duty cycle of 8(4 s sampling period and 4waiting time). The 4 waiting
time was introduced in the design of the system to allow ferttansmission of the data



to the remote back-end server. The GPS duty cycle chosehdogxperiment was 3
minutes. By doing so, it was possible to reach an acceptaligpmmise with respect
to the accuracy/battery consumption trade-off. In facersidiad on average enough
battery to run the application during the day and recharggtione at night.

We are aware that the results presented in this work aretetatthe specific sce-
nario of students and staff living in a geographical areampased of small cities, but, to
the best of our knowledge, there are no other publicly abbgldatasets with the same
characteristics. However, we conjecture that this datzsebe considered as represen-
tative of activity and movement patterns of individualsimitar deployment scenarios
such as campuses and communities that live in geographézs af similar size.

3 Optimizing User State Uploading

In this section, we firstly describe the problem of state aging and then we discuss
and evaluate some algorithms for scenarios characterizedrtinuous and intermit-
tent connectivity.

We model the sensing problem as follows. The inference dlgos running on the
phones generate a s&t= {sy, so, ..., s, } Of high-level states; from processing the
raw sensor data. Each user/device produces a stream of itlatalues in the sef that
have to be uploaded to the back-end. In the experimentsstiedun this work we con-
sider the following set of activitie§ = {Sitting, Standing, W alking, Running}.

We consider two cases:

— Network connectivity is always available (i.e., interraitt disconnections and trans-
mission errors are negligible and do not affect the uplogdirthe information to
the back-end servers), therefareline strategiesan be used;

— Network connectivity is intermittently available (becausf poor radio coverage,
etc.), thereforeff-line strategiesnust be used.

We note that the techniques used for the case of intermitemtectivity can be applied
to scenarios characterized by always-on connectivityesthese can be considered as
limit cases of the former.

The evaluation of the techniques presented in this work amged out considering
the overhead associated to the update of the informationa@irtie energy consumption
for a specific mobile device. At the same time, we are awaredhe possibility is to
exploit the fact that the GPRS network interface is not p@detown immediately after
data transmission, so it might be convenient to send bufsdata. However, for this
specific case of continuous sensing of discrete data, thergéon rate of new high-
level information from the on-board classifiers may not b#igently fast. Figure 2
shows the energy consumption profile related to the trarssomsof 100 bytes using
a Nokia N95 (corresponding to the upload of the informatielated to a single user
activity using XML-RPC). The figure is obtained by means & Nokia Energy Profiler
tool [20] . We observe that after the transmission of the theg@nterface is still powered
up for less than 5; this interval varies for different devices and is not standlized. A
5 s interval is not enough for collecting a sufficient amount afalfor the CenceMe
activity classifier. In general, the transmission of infation with such a degree of
granularity is not required for many applications, espcracreational ones.
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Fig. 2. Energy consumption profile related to the transmission &f iftes using a Nokia N95
over GPRS.

3.1 Online Stream Analysis Strategies

Overview We now present the techniques that can be used when netwonk ciivity

is always available based on the analysis of the data stré&eniglentify four different
on-line strategies for uploading, starting from basic torencomplex and optimized
ones:

Always upload The simplest solution is to upload the state of the user gixadly,
regardless if a change has taken place or not. This soluties dot require to store any
state on the mobile clients and back-end servers. It is the without optimization. It
provides 100% accuracy in the unrealistic case of no disections and transmission
errors.

Upload in presence of changes This strategy can be considered as an obvious opti-
mization of the previous simple solution. The new inforroatis uploaded every time a
change takes place. This technique is the best in terms diiead when 100% accuracy
has to be guaranteed.

Upload in presence of persistent changes According to this strategy, the new informa-
tion is uploaded only when a change is not isolated, i.e.,wgen/e a change from state
A to stateB with n consecutive occurrences of stdten the stream. For example, we
upload the new state only after observing a sequencg Hkeé3, B, B} in the case with
n = 3. The new information is uploaded only after th€ occurrence of stat®. This
technique involves a certain degree of information loss;esionly a percentage of the
actual state changes are uploaded. At the same time, thisit¢ee can be considered
as a way of filtering out outliers from the data stream.

\oting based uploading strategy This method is based on the evaluation of the frequency
of activities in the data stream considering non overlagpime windows. The state
with the highest frequency in the window is selected for adiog. The update is sent
only if the most frequent state in the current window is difet from the most frequent
state in the previous window. Let us consider the followirgraple. Let us assume that
we have the sequendel, A, B, A, B, A, A, B, B} with window size equal to 3 and
a threshold equal to 2. The first state to be uploadetl iEhen, no upload takes place
in the following window, since the state with the highesgiiency is stillA. Finally,
since the stat® has the highest frequency inside the window, the updateniste¢he
back-end.
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Fig. 3. Complementary cumulative distribution function indicatithe probability of having a
sequence of the same activity longer than Sample Length.

Compression algorithms [14] can improve system perforradnut we do not con-
sider them in this work, since these techniques can be eaddgd on top of the up-
loading mechanisms discussed in this paper.

Evaluation We compare the accuracy and transmission overhead of ak¢haiques
with respect to theipload in presence of changes strategy. We define accuracy as the
ratio of correctly predicted values on the server agairesgttound-truth state inferred
on the phone. The analysis performed in this section can bsidered as a general
methodology to be used in order to set the parameters of fweitims in different
practical cases. The results obtained in this analysispe@ific to the dataset collected
through the deployment of CenceMe, but the evaluation m®itself can be applied to
other deployment scenarios.

We first present a statistical description of the types ofaiets in the stream of
data. In Figure 3 we show the probability of havimgonsecutive activities of the same
type. As the plot shows, the presence of very long sequerfcameecutive activities
of the same kind is unlikely. These graphs give other intargsnformation about
the length of the sequences of consecutive values of the aativéty: for all types of
activities in our stream, we observe the length of the secpienthe same activity is
one for more than 50% of the samples. The choice of the windagth parameter is a
key aspect of the uploading strategy. Figure 3 shows the ike very low probability
of having long sequences of the same activity within the datgam. The probability
of having sequences of the same activity shorter than orléqued samples is 99%
(for all the activities except sitting for which the prob#itlyiis 90%). Thus, it is useless
to apply filters with a window length longer than 30 samplesase, in that case, the
majority of the changes in the stream would be missed.

Figures 4.a and 4.b show the accuracy of the two methods andtib of the traffic
sent with respect to the overhead associated withufiead in presence of changes



Activity Representation Accuracy for Online Strategies Sent Traffic Ratio

\)oling Slraﬁedy — \)oling Slraﬁedy —
- Persistent Change Strategy ---><-—- Persistent Change Strategy ----)<--
—— 4 PersistentChang gy g gy X
0.9 gy 038
e e S
£ 08 3 06
g E
3 o
g 0.7 é 0.4
0.6 0.2
pe—
(.. \‘\*\V
05 [ ——
5 10 15 20 25 30 5 10 15 20 25 30
Sliding Window Length (number of samples) Sliding Window Length (number of samples)
@)

Fig. 4. a) Accuracy of thevoting based and persistent change uploading strategies with respect
to the overhead associated to thgtoad in presence of changes strategy. b) Traffic ratio of the
voting based and persistent change uploading strategies with respect to the overhead assdciat
to theupload in presence of changes strategy.

strategy. In this case the number of the required consexatignges for an uploading
is equal to the window size. As expected, tlating based uploading strategy has a
better accuracy than thmersistent change strategy but it is characterized by a higher
overhead. Both of them can achieve a 90% accuracy saving 8@ata traffic. We
observe that the gap between the accuracy values relatee tad strategies increases
as the length of the window increases. Tgeesistence change strategy has a smaller
number of updates with respect to the voting based strasigge the latter at each
step always uploads the state calculated using the votiroipamésm. Thepersistence
change strategy uploads a new state only if a new state has beenvellder a certain
number of previous steps.

3.2 Off-line Strategies: Markov Chain based Prediction

Overview The strategies outlined above are based on the assumptimmthuous
availability of network connectivity. When the uploadinfyadegies described in the
previous section are used, the application on the phonéssidsponsible for choosing
which state update has to be sent and when. The back-end senat involved in the
process. When the mobile device is disconnected from tlegriat, the back-end can
just make the last known state available or publistuaimown state message.

An alternative strategy is to try to forecast the next statend) a disconnection.
A possible cause of intermittent connectivity is insuffitieadio coverage. In some
cases frequent updates have to be avoided given energyaiatsbf the devices. This
strategy can be combined with one of the mechanisms dedariltiee previous section
in presence of intermittent connectivity. In other wordslitee strategies can be used
when connectivity is present and offline strategies whem#wice cannot (should not)
connect to the network.

By definition, the predicted state is characterized by aagedegree of uncertainty,
but this can be acceptable for some classes of systems suelcrastional sensing
applications like CenceMe. We are aware that the applitgloil these techniques are
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updated as new states are generated by the classifiers apg af ¢be matrix that is periodically
sent to the back-end server when the two diverge.

not universal: examples of non viability include monitariechnologies for healthcare
and assisted living [6], for which it may be necessary to gotge perfect accuracy.

The key idea is to use a transition matrix to model the sequefithe state changes
(such as sequences of actions of user avatars) on the sklweluaing a disconnection
from the mobile client. In order to do so, we exploit a simplarkbv chain model to
describe the phenomenon under observation, i.e., thettcarssbetween the states that
can be sensed by the system. The matrix stores the propaibiliansition between the
different states. These probabilities are estimated bysoragg the frequency of transi-
tions. The calculation of this matrix takes place on the @soinstead of uploading a
single state as before, the phone uploads the state toansittrix that is used by the
back-end to predict and publish the next state during a disection. Two matrices are
stored on the mobile phones, one that is updated as new atatgenerated by the clas-
sifiers and a copy of the matrix that was sent to the back-eweéis&Vhen the system is
bootstrapped, the first matrix is uploaded directly to theesesince no comparison is
possible. A new matrix is sent to the back-end if and onlyéf timatrix currently calcu-
lated on the phones diverges from what is currently used®génver. The comparison
is based on a difference threshold. The mechanism is showigure 5. We note that
for applications such as visualization of human activitnegirtual worlds (e.g., Second
Life), this information can be used to drive the sequencextibns of the avatars also
during periods of disconnection in order to provide a batsar experience.

More formally, we model the system as a stochastic pra&€ss(with¢t = 0, 1,2, ...
instants of time) that takes a finite number of possible \&atlefined by the set of states
S. For a Markov chain, the conditional distribution of anyuté stateX (¢ + 1) given
the past stateX (0), X (1), X(2), ..., X (t—1) and the current stat¥ (¢) is independent
from the values of the past states and depends only on therretsite [3]. We define
a matrix of transitiongVI where each element of the matrix; ; represents the prob-
ability of transitions between a stat@nd a statg. Each matrix is built locally on the
phone considering the entire set of samples collected imtainentervall,,;cuiation -
We argue that this matri¥d is in general a function of the geographical location and
the time of the day, more formallyI = M(z,y,¢) where(z,y) indicates the geo-
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Fig. 6. Accuracy of the Markov chain model with different metridssesholds and sample times.

graphical position andis the instant of time or a time interval (such as mornings or
particular day of the week, such as Mondays). In the nexi@eete will discuss how
different matrices can be associated to various locatiottsa geographical area where
users move, if GPS receivers are available.

Periodically, with an interval equal t6,.;.u1ati0n S, @ decision step takes place: a
new matrix is uploaded if the matrix on the server divergesfthat currently stored
on the phones. Therefore, the key problem is to measure ffezetice between the
matrix M., CUrrently available on the back-end server and that cuyrestimated
on the phone that we indicate witf,,.,... In order to evaluate this error we calculate
the distance between the two matridese, e andMppone. More specifically, a new
matrix is uploaded to the back-end if and only if

Lm (Mphonea Mserver) Z th (1)

whereth is a pre-defined threshold ard. is a chosen distance function. In fact, by
considering a matrix as a vector, we can calculate the distbatween two subsequent
vectors using standard vector distances [9]. A basic chsitieuse the Euclidean dis-
tance between two matrices defined as follows:

S|
L2 (Mphonea Ajserve’r) = Z (mphoneiyj - mse'r‘vemyj )2 (2)
i,jES

We also consider other two distances, the so-called Maarhalistancel.; and the
weighted distancé,,. In our case, thé,; distance is defined as follows:

S|

Ll(Mphonea ]\/[ser'uer) = § ‘mphoneiwj - mservemyj (3)
i,jES



Sent Traffic Vs Sample Interval (Distance L2) Activity Prediction Accuracy Vs Prediction Interval
700 T T 1 T — T
0.0 —— 5mins —+—
1.0 -eoxees 10 mins ==~
15 wowe

0.9

600

500

0.8 %%

400

300

xx""x/

Sent traffic [%]
Accuracy [%)]

0.7

200

0.6

100 f:
p

Fi

0.5

‘.
m;
=3

S

[¢] 1000 2000 3000 4000 5000 6000 7000
Sample Interval [s] Prediction Interval [s]

@)

Fig. 7. a) Traffic sent versus sample interval for different thrédsion the Markov model. b)
Accuracy of the Markov upload model in case of disconnectibthe mobile device from the
back-end.

The L, metric provides an approximation of the Euclidean distdndst is less expen-
sive to compute. We use the following formula for the caltiolaof L., distance:

IS|
L2w(Mphone7 Mser"ue'r‘) = ( Z (wd(mphoneiwj - mse'r‘ver'i,j )2) +
1,j€S,i=j
s
z (w'nd(mphoneid - mserveriyj )2))

1.€S i#]

W=

4)

Using this distance, we can assign higher importance to éribeotwo classes of
transitions described by the matriX: self-transitions from one state to itself (self-
transitions) and those from a state to a different one. Thbatility of self-transitions
are represented by the elements of the diagonal.

Evaluation In this section, we present the results of the evaluatioh@Markov chain
strategy varying both the values of the distance threstaidssample intervals. As for
all strategies, we are interested in studying its accuradyoaerhead.

Figure 6 shows the accuracy of the Markov model dependindgyewalues of the
sample interval and threshold. The plots refer to the L, and L,,, distances. All
the metrics show a decrease in accuracy depending on the @bthe sample interval
Teaiculation- AS €xpected, the accuracy strongly depends on the valudedhteshold
used for the uploading decision. More specifically, we obsénat when the value of
the threshold is lower than 1 the accuracy of the predictioeschot change. Instead,
with a threshold higher than 1, the accuracy decreases bedess transition matrices
are sent to the back-end. At the same time, we observe thaplopding the matrix
more frequently (i.e., by using a lower threshold), it is gibke to achieve a better
accuracy. Small sample intervals do not provide a stagibyizalid number of samples
and, therefore, the quality of the prediction is rather gndhese cases. We plot results
with thresholds up to 3, since we note that the measured acgdoes not change with
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Fig. 8. a) Correlation between prediction accuracy and entropyevébr each user using dif-
ferent thresholds using the Markov model. b) Cross-evalnatf off-line and on-line models:
correlation between accuracy and sent traffic.

a threshold greater than 2.5, a value that represents thenmaxdistance measured
between two consecutive matrices for all users in the empani.

In general, we observe that tie distance method provides the best solution in this
case since it is less influenced by the choice of the paramesifor the other strate-
gies, we measure the difference of overhead (in percentete)espect to the upload
in presence of changes strategy. Figure 7.a shows the pageeor traffic sent by this
method with respect to the basic one. We would like to undetthat for this method,
every time the application transmits some data, insteactiofling a single state, it
sendseard(S) x card(S) probability values. For low values of the sample interval th
amount of traffic is up to seven times higher than the basibatefThis value decreases
rapidly for higher sample intervals. Another parameteectfhg the traffic overhead is
the distance threshold. As expected, for higher valuesadttiteshold, less matrices are
sent and the amount of transmitted data decreases. As thie Bligure 7.a shows, the
Markov model presents the same traffic load of the baselindemehen a matrix is
sent every 800, 400 and 50espectively for thresholds equal to 0.0, 1.0 and 1.5.

For this strategy, it is fundamental to measure the accurhtlye method in case
of disconnection of mobile devices from the back-end. Fégub shows the decreasing
accuracy of the Markov predictor as time goes on. We analypecgses in which a
matrix is uploaded respectively every 5 or 10 minutes (the liwes in Figure 7.b).
We build a transition matrix considering 5 and 10 minute gilton intervals, then we
assume that a disconnection takes place: no more matricéeagloaded and we keep
predicting the next activity samples with the same matrixhis case we observe about
a 10% accuracy reduction.

The results presented above are derived by consideringgatgd data for all users.
We now present a possible method to tie the accuracy of thiBgpian of the activities
of a single user to a quantitative measure. We observe that also irglyituser pre-
dictability is strongly dependent on the degree of user bieh&ariability: the higher
the variability of activity transitions, the less predictathe user is.
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Fig. 9. Transition probability matrix used in the local model andmple of a user path.

A standard measure of state variability in user data straartte entropy of the
sequence; we use the standard definition provided by Shd@aann Figure 8.a we
show the relation between entropy and the prediction acgw@scribed in the previous
sections. Each point in the plot corresponds to a user iedbin the experiment; we
report the values related to the cases with thresholds ¢égueand 1. For the first set
of points, it is possible to observe a sort of linear distiiny, while the other set forms
a cloud-like distribution. This means that the correlati@tween accuracy and entropy
is strictly dependent on the choice of the parameters usash®the offline strategy.
The accuracy decreases as the threshold increases angl diiviscily reflected on the
negative correlation between entropy and accuracy.

The state entropy can provide a measurement of the predliigtalb a certain user
and this information might be displayed together with theeéasted state when the
Markov based model is used. These results also provideistist@tcharacterization of
the dataset and can be exploited to interpret and compaferpemnce results in this
paper with user patterns in deployments related to diftesecial scenarios.

3.3 Comparison between On-line and Off-line Strategies

Finally, we compare the results of the on-line and off-litrategies described above.
This comparison is performed only for completeness, sineé&to strategies are target-
ing two different scenarios, characterized by differepetyof connectivity (continuous
and intermittent) and/or energy requirements (i.e., bafiewer constraints are deemed
less or more important than accuracy).

Figure 8.b shows the correlation between accuracy and eadrising the two dif-
ferent classes of strategies, by increasing window sizehiéoonline strategies and dif-
ferent sample intervals for the Markov model based ones.ofhkne strategies show
the best performance: in terms of accuracy,ubieng based strategy provides the best
results (93% accuracy); theersistent change uploading strategy instead has the best
performances in terms of overhead, i.e., it saves up to 98fafaffic.

As expected, the Markov model based approach cannot prbeitker accuracy than
online strategies. However, we would like to point out the Markov based strategy
can offer an interesting trade-off between accuracy ancheaal also when connectivity
is available. For example, usinga metric with a threshold equal to 1, it is possible to
achieve an accuracy equal to almost 80% by saving 60% ofctisfit.



4 Location-based State Uploading

We now show how location information can also be used to dpérthe uploading
process in case of devices equipped with GPS receivers. @hilka is to associate a
state transition matrix to each location. This can be carsidlas a sort of augmentation
of the Markov chain based mechanism presented in the presieetion. It can be used
when connectivity is potentially intermittent or contirueouploads are not possible
given battery constraints. More specifically, we exploivadevel Markov model: we
firstly use a transition matrix associated to each locatioth@® space to predict future
movements. Then we use the matrix associated to the foeecaskt location for the
prediction of the future activity. The matrices are builtdnllecting data for a certain
interval of time (that can be considered as a sort of traipegod of the model). Then
these matrices are used for forecasting on the server if teoata transmitted by the
mobile clients.

Markov models have already been successfully used as a dfasiger location
prediction techniques [2, 23, 11]. A key problem is the dé&bniof the locations in the
geographical space. In order to apply a Markov model fortloogorediction we need
to transform the continuous domain of a geographical regitmna discrete set of areas.
Then, a way of estimating the probability of transitionsvitn these areas has to be
devised. We use a grid based model for subdividing the gebdpral areas in discrete
locations, obtaining a grid of squared tiles (or cells). Bfarmally, we divide the space
in m x n squared tileg’, , with side sizeyridsize. We then consider the probability of
transitions between tiles by assuming two movement modisdifferent constraints
in terms of possible transitions, i.el@al one and aylobal one.

Local Movement Model We start considering a simple movement model that takes
into consideration only transitions to locations that dose to the current one. Accord-
ing to this model, a user in a tilg, , can only jump to a tile which is adjacent to that
she is currently located (considering an analogy to the g#roleess, the user can move
as a king on a chessboard). For every tile of the matrix weidensa vector/ = {Jy,
Ines Inw, Js, Jse, Jsw, Jr, Js, Jor } containing the probabilities of jumping from
the current tile to one of the tiles in the neighborhood (tbemeast tile, the north tile,
and so on) as illustrated in Figure 9. The matrix also inciutie probability of staying
in the current tile o). We do not simply take into account jumps to tiles that are
further on the grid.

The local movement model is a simple way of representing tbeements of the
users, however, it is not sufficiently accurate becausess dot take into account possi-
ble jumps between two non adjacent tiles. This type of junguste caused by various
physical factors, such as the speed of users with respedbt@ sampling rate (e.g., a
movement in a car), the absence of GPS signal and/or the ilatality of the GPRS
coverage. In these cases, some transitions might not bedexto

The two key parameters affecting this model are GPS sendgrogale and size
of tiles. As the duty cycle of the GPS sensor increases, thlegnility of a transition
between two adjacent tiles decreases. A valug-ddsize smaller or equal to the max-
imum distance that a user can cover increases the prolyadiiljumps between two
non adjacent tiles. One of the advantages of the local medelated to the memory
that is needed to implement it. In fact, for each tile of thesamwe need to store only a
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Fig. 10.The global model and a possible path described by a userabroell of the ared x M
(on the right), aV x M matrix of transition probabilities is recorded.

3 x 3 matrix (or a 9-cell vector containing the probabilities oifrjping to the adjacent
tiles) for a total space complexity equaldd x N x 3 x 3 whereM and N are the
dimensions of the geographical area of interest. If we dmrghe nine cells contain-
ing the transition probabilities as constant values, tleEsgomplexity of the model is
approximatelyO(M N).

Global Movement Model We also consider a movement model that allows jumps
between non adjacent tiles (global movements). In othedsydhe global movement
model is able to register all user movements over the grith jumps toward adjacent
tiles and tiles that are far away are allowed and recordedluatrated in Figure 10.
However, this model requires an array of silex N representing a matrix containing
all the transitions toward all the other possible geogregiocations for each tile. The
drawback of using this model is the increased space contpléxifact, for each tile of
the geographical area it is necessary to stak¢ a N probability matrix where every
cell T; ; contains the probability of jumping from the current tilesioy other tile of the
geographical area. The space complexity of the model besOH{(eV M )?).

Evaluation We use the first week as training period (i.e., the matrix i# s@ce
after the first week) and we measure the accuracy of the pimdiconsidering the
dataset corresponding to the second week. We train the nooditle entire week in
order to have sufficient statistics. In a real system, anagifgg mechanism based on
distances as that presented in the previous section canedefaisdeciding if a new
matrix has to be sent or not to the back-end server. The di@iuaf these mechanisms
is not possible for us since we have only a two-week dataset.

The main challenge in using the grid model is the definitiod te placement of
the grid structure. A key parameter of the model is the siziefiles composing the
superimposed grid. In fact, by using a grid, a logical plazg.( the library, the gym,
etc.) might be split into two or more tiles and two unrelatétps might be unified in
the same tile. Even if we keep the same grid size, by chanbmgftset of the grid we
have very different subdivisions of the area. Accuracyatarns are around to 10%
with different grid positioning. In Figure 11 we show the acacy of the prediction as
a function of the grid size. We plot the results for the loaad ¢he global models with
different strategies for the choice of the first activity ttimused as first state of the
prediction model when the transition between two tiles efghid takes place (i.e., the
starting state of the activity transition matrix assodiateeach tile). More specifically,
we use the most popular activity in that tile and a randomlgcted activity using a
frequency distribution of the activities in that locatiofhese results are obtained by
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Fig. 11. Activity accuracy prediction as a function of differentd@jsizes.

averaging 10 runs with different offsets from the origin bétgrid. The offsets are
equal to%gridsize with £ = 1...10. We note that this choice does not affect the
performance of the algorithm as expected, given the prigsasf Markov chains about
independence from the initial state as time passes [3]. Wethat the accuracy of the
prediction decreases for all the methods as the grid sizeases. In fact, with a larger
granularity of the tile, locations characterized by diffietr activities are joined together
(for example the library and the street leading to it). Thealgrediction model is not
able to capture the movements of the users. These resulédsaraffected by higher
errors with small grid size for the location prediction doeathigher number of tiles
with insufficient statistics. The local model is particljaaffected by this problem,
since many transitions to neighboring cells are not reahrde

5 Related Work

This paper proposes a set of intelligent uploading tectesdar (near) real-time con-
tinuous sensing systems based on mobile phones. The gxisleted work focuses
mainly on movement prediction and the use of informationualloe current location
to infer human activities (such as cooking is very probahla ikitchen). The prob-
lem of optimizing the uploading process has not been exglpetalso because mobile
sensing systems based on smart phones, like MyExperiehcedBceMe [15], Neri-
cell [16] and BeTelGeuse [12], are very recent. Recentlypd\et al. have proposed a
framework called EEMSS [25] for optimizing the duty cycldglte sensors for mobile
sensing applications. The aim is orthogonal to ours anddhgisns can coexist, since
EEMSS is focused on the sensing aspect whereas the goakafidink is to optimize
the uploading process.

With respect to the problem of forecasting user movement$2], the authors
present a model of user location prediction from GPS datample first-order Markov
model to predict the transitions between significant plasesed. Also in this work
temporal aspects are not taken into consideration. Morethee model is not able to
forecast transitions to geographical areas that are naidered significant. In [13] the
significant places are extracted by means of a discrimieaghational Markov network;
then, a generative dynamic Bayesian network is used to teansportation routines.



Another system for the prediction of future network conivigt based on a second-
order Markov model is BreadCrumbs [19]. This system is ableredict only the next
user location and not the time of the transitions and thevatef time during which
users reside in that specific location. An extension of [2tjwd the study of handoff
mechanisms in a campus environment using Markov modelggepted in [23].

GPS information has also been used in vehicular systemsasiah Predestina-
tion [11]. The authors of this work use aggregated locatiamta together with additional
information about the geography of certain areas in orderadke accurate prediction of
movements of vehicles; we have presented instead a techthigtirelies only on local
predictions of single users also in presence of interntittennectivity. Techniques for
approximating the positions of moving objects also consmdeenergy requirements
have also been studied in [10] and [5]. Other related workde@s done in the area of
databases in particular about the so-calipdroximation replication techniques [21].
The key difference with respect to this body of work is redate the fact that our goal
is also to provide an estimation of the current state usiag#st history.

6 Concluding Remarks

In this paper we have presented a series of techniques fomiajrtg the uploading
process of discrete data for continuous sensing applitatio mobile phones. We have
considered two cases, namely a scenario where connedsiaiiyays available and one
where it is intermittently present or the number of trangmiss has to be limited given
the system design requirements in order to extend the pdifietime of the devices.
Finally, we have shown how location information can be eitptbto optimize the up-
loading process. We have demonstrated that our techniqarede used to improve
the performance of continuous mobile sensing applicatignanalyzing the trade-off
between transmission overhead and accuracy.
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