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Abstract
The concept of rationality is central to the field of artificial intelligence (AI). Whether we 
are seeking to simulate human reasoning, or trying to achieve bounded optimality, our 
goal is generally to make artificial agents as rational as possible. Despite the centrality of 
the concept within AI, there is no unified definition of what constitutes a rational agent. 
This article provides a survey of rationality and irrationality in AI, and sets out the open 
questions in this area. We consider how the understanding of rationality in other fields has 
influenced its conception within AI, in particular work in economics, philosophy and psy-
chology. Focusing on the behaviour of artificial agents, we examine irrational behaviours 
that can prove to be optimal in certain scenarios. Some methods have been developed 
to deal with irrational agents, both in terms of identification and interaction, however 
work in this area remains limited. Methods that have up to now been developed for other 
purposes, namely adversarial scenarios, may be adapted to suit interactions with artificial 
agents. We further discuss the interplay between human and artificial agents, and the role 
that rationality plays within this interaction; many questions remain in this area, relating 
to potentially irrational behaviour of both humans and artificial agents.
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1  Introduction

The way machines ‘think’ and how close this can come to human reasoning has long been 
a topic of debate within artificial intelligence (AI) research. From Turing’s proposal of a 
simple game to identify a machine that could think (Turing 1950), to the 1956 Dartmouth 
Summer Research Project Proposal that sought to demonstrate that any aspect of learning 
or intelligence can be simulated by machines (McCarthy et al. 2006), the problem of under-
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standing how far AI can push the boundaries of intelligence is inevitably intertwined with 
how machines reason. As such, the concept of rationality is central to the field of AI (Besold 
2013), whether we are referring to the rationality of artificial agents or of humans. Crucially, 
the goal is seldom to make an agent as rational as possible—some degree of irrationality is 
often desired, both in interactions amongst machines but also with humans. A more human-
like artificial agent may at times elicit more trust (Waytz et  al. 2014), whereas in other 
scenarios simulating the fallibility of human reasoning can result in an artificial agent that 
appears untrustworthy. Despite the centrality of rationality to the field, there are still many 
open questions to be addressed.

Given the advent of large language models (LLMs) (Brown et al. 2020), as well as their 
increasing pervasiveness in our daily lives and their potential for societal impact (Eloundou 
et al. 2023; Kasneci et al. 2023; Li et al. 2023), this problem has become even more funda-
mental. Generative AI (GenAI) systems raise new questions when it comes to rationality, 
particularly because the content they generate is of a form that humans ascribe meaning to. 
Models like LLMs have been shown to appear irrational (Binz and Schulz 2023; Macmil-
lan-Scott and Musolesi 2024; Hagendorff et al. 2023), and this is not because these models 
are incorrectly achieving their set goals, but because we are evaluating them by metrics 
that differ from their training goals. While LLMs are not the only type of relevant artificial 
agent, they have highlighted how quickly AI can become integrated in our decision-making. 
If artificial agents are to be used in a decision-making capacity, whether this be medicine, 
diplomacy, or in our day-to-day, we must be sure that their output satisfies some clearly 
defined criteria and that we align the objective functions with these criteria. When it comes 
to human–AI interaction, if we do attempt to design more ‘human-like’ machines, can we 
accept that they may at times mimic our own irrationality? These questions are crucial if we 
are to mitigate accidents: unintended but potentially harmful consequences of AI, a concern 
that is key within AI safety (Amodei et al. 2016; Hendrycks et al. 2022).

Conversely, are there ways to leverage irrational behaviour (both of humans and 
machines) in order to build more rational artificial agents? What are the best methods to 
identify and interact with irrational agents? As we develop increasingly complex and capa-
ble artificial agents, and as these become more integrated in everyday activities, an impor-
tant question arises as to how the concept of rationality fits into their design. This may refer 
to assessing the rationality of the agent itself, but also to approaching interactions with other 
agents that may act in seemingly irrational ways, whether this is another artificial agent or 
a human.

A number of differing definitions of rationality have been proposed within the field of 
AI, meaning that it is often unclear what is meant by a rational agent (van der Hoek and 
Wooldridge 2003). Often, definitions have been adapted from our understanding of ratio-
nality in humans that has been developed in disciplines like economics, philosophy and 
psychology, rather than establishing a distinct definition of machine rationality. The notion 
of rationality plays a different role in different fields, and it is important to understand what 
conception is most suitable in each context (Besold and Uckelman 2018). Knauff and Spohn 
(2021a) provide a comprehensive overview of the history and current understanding of 
rationality in philosophy, cognitive psychology and other disciplines, highlighting the vary-
ing notions that persist and advocating for more integrated interdisciplinary approaches. 
We cannot determine what it means to act or reason irrationally if we do not have a clear 
definition of rationality. However, these concepts are two sides of the same coin: we cannot 
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define one without the other, and we will see that in certain scenarios, acting ‘irrationally’ 
can in fact be the most rational approach.

Certain types of artificial agents already employ ‘irrational’ behaviours in order to maxi-
mise reward, such as random actions taken as part of exploration in reinforcement learning 
(Ladosz et al. 2022), or profit non-maximising strategies that attempt to reduce potential 
loss (Ganzfried 2023). As we will see, there are cases where irrational behaviour can lead 
to optimal outcomes. Crucial in determining when each type of behaviour is most suitable 
is understanding the environment that an agent is operating in, as well as potential agents 
one may interact with.

However, it is often not an easy task to identify what type of agents one is interacting 
with, or to establish their level of rationality. A number of opponent modelling methods 
have emerged that attempt to make predictions about an opponent, including their goals and 
actions (Albrecht and Stone 2018). For existing techniques, including policy reconstruction 
(Ganzfried and Sandholm 2011; Chakraborty and Stone 2014; Silver et al. 2016; Mealing 
and Shapiro 2017) or classification (Abdul-Rahman and Hailes 2000; Schadd et al. 2007; 
Iglesias et al. 2010), restrictive assumptions often need to be made that require some knowl-
edge about the agent that is being modelled. Further developments in the identification of 
irrational agents will require domain-specific research, where employing combinations of 
existing methods presents a promising avenue for study.

Similarly, once we have established that we are interacting with an irrational agent, what 
is the best strategy to follow? Current research has centred on interactions in adversarial 
domains (Bowling and Veloso 2002; Foerster et al. 2018; Letcher et al. 2019; Kim et al. 
2021; Lu et al. 2022), or with human opponents (Uprety and Song 2018; McElfresh et al. 
2021; Chan et al. 2021; Azaria 2022). It remains unclear how methods for adversarial envi-
ronments can be adapted to employ in scenarios which may involve irrational agents. In par-
ticular, these methods may not be ideal when we want to achieve a cooperative outcome or 
are looking to obtain coordination between agents—one promising avenue of research that 
could be adapted to ensure cooperation are opponent shaping methods (Foerster et al. 2018; 
Letcher et al. 2019; Kim et al. 2021; Lu et al. 2022). Strategies must be adapted to the type 
of opponent, whether this be a human or artificial agent, therefore combining these methods 
with identification and classification techniques will likely be most effective.

While machines may be formulated to act as rationally as possible, humans have been 
shown to act and reason in irrational ways (Kahneman and Tversky 1982). We therefore 
need to design machines that are able to handle such scenarios and that do not assume 
perfect rationality of other agents. This is particularly important because we will see that 
perfect rationality is seldom the aim; instead, alternatives such as bounded rationality or 
bounded optimality are more realistic and often more desirable (Russell 1997), so artificial 
agents are more likely to encounter boundedly rational opponents.

In designing agents that achieve the optimal outcome, it may appear counter-intuitive 
to consider incorporating human cognitive biases. Nevertheless, we will explore how heu-
ristics may be incorporated into decision-making in artificial agents to make them more 
efficient and improve their performance (Gulati et al. 2022). As well as achieving greater 
capabilities, the use of cognitive biases inspired by human reasoning can increase the 
explainability of AI processes (Newell et al. 1958; Simsek 2020). However, building ‘irra-
tional’ machines raises questions as to how human–AI interactions may be impacted. While 
the incorporation of human physical attributes has been shown to have a positive impact on 
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human perception of artificial agents (Pizzi et al. 2020), questions remain as to whether the 
same effect is observed when concerning cognitive attributes, or even whether this is desir-
able in certain scenarios.

The aim of this article is to provide a comprehensive survey of rationality and irratio-
nality within AI, as well as to set out the open questions in this area. Section 2 introduces 
the varying definitions of rationality in different disciplines: the section begins by setting 
out how it is understood in AI and how this may be assessed, then surveys the definition 
of rationality in three disciplines that have most heavily influenced the conception within 
AI: economics, philosophy, and psychology. As we will see, the interdisciplinary nature of 
AI means that developments in computer science have been heavily influenced by notions 
of rationality in other fields. A comparison of all four disciplines is presented in Table 1. 
Section 3 details rationally irrational behaviours, defined as behaviours that violate typical 
assumptions of rationality, but that can be shown to be rational under certain conditions (see 
Table 2). This section also includes a discussion of perceived irrationality in GenAI. Sec-
tion 4 then surveys existing methods for identifying and interacting with irrational agents; 
literature included in this section is summarised in Tables 3 and 4. Section 5 focuses on the 
interplay between humans and AI: both how human irrationality can be incorporated into 
AI design in a beneficial way, as well as how the rationality of machines can have an impact 
on human–AI interactions. Section 6 explores the new challenges brought about by GenAI, 
including tensions between what we train models to maximise for and how we evaluate their 
output. Finally, Sect. 7 presents a number of open questions that remain to be addressed 
in this area—these constitute both fundamental theoretical questions, as well as potential 
avenues for research from a methodological standpoint.

Table 1  Rationality and irrationality in different disciplines
AI Economics Philosophy Psychology

How is rational-
ity determined?

Optimal outcome Utility 
maximisation

Logical reasoning Contested (Ratio-
nality wars)

How does ratio-
nality relate to 
preferences?

Rationality requires 
consistent preferences

Rationality re-
quires consistent 
preferences

Rational preferences 
are arrived at through 
justified reasoning

Rationality 
requires consistent 
preferences

What is meant 
by bounded 
rationality?

Limited computation/
time

Finite recursion Human computational 
limitations, limits 
on knowledge and 
attention

Human computa-
tional limitations, 
limits on knowl-
edge and attention

What is consid-
ered irrational?

Taking an action that 
does not maximise 
expected utility

Taking an ac-
tion that does 
not maximise 
expected util-
ity, inconsistent 
preferences

Unjustified, inconsis-
tent beliefs or actions

Human cognitive 
biases and heu-
ristics (although 
contested)

Rational 
Reasoning

Correct inference Consistent 
preferences

Justified beliefs (epis-
temic rationality)

Adherence to rules 
of probability and 
logic

Rational 
Behaviour

Rational agent—acts 
so as to achieve best 
expected outcome

Taking action 
that maximises 
expected utility

Justified actions / 
desires (practical 
rationality)

Acting accord-
ing to rational 
reasoning

1 3

  352   Page 4 of 39



(Ir)rationality in AI: state of the art, research challenges and open…

2  Defining & assessing rationality

2.1  Rationality in AI

2.1.1  Defining rationality

The concept of a rational agent has become an integral part of the AI discourse, although 
its precise meaning varies significantly between uses (van der Hoek and Wooldridge 2003). 
Whether considering an application in computer vision, LLMs, or reinforcement learning, 
the goal is invariably to arrive at a model that produces rational decisions (Wooldridge 
2000). However, what is rational can be interpreted a number of ways (Wheeler 2020): for 
instance, it could mean making a decision closest to what a human would make, or achiev-
ing the optimal outcome, or even achieving a good outcome in the quickest time possible. 
Gershman et al. (2015, p. 273) define computational rationality as “identifying decisions 

Table 2  Types of irrationality that may result in optimal outcomes
Type of irrationality When is it optimal? Literature
Bounded rationality Limited resources Simon (1957, 1982)

Russell (1997)
Lee (2021)
Simsek (2020)
Wen et al. (2020)
Gigerenzer (2001)
Hüllermeier et al. (2021)

Random behaviour RL exploration Mixed Nash Equilibria Shirado and Christakis (2017)
Icard (2021)
Ladosz et al. (2022)
Still and Precup (2012)
Fernàndez and Veloso (2006)
Mnih et al. (2015)
Polvara et al. (2018)
Yu et al. (2020)
Kobayashi and Hashimoto (2007)

Profit non-maximising Irrational opponents Adversarial scenarios Thomson (1979)
Li and Faisal (2023)
Ren et al. (2020)
Ganzfried (2023)
Goto et al. (2012)

Human irrationality Human–AI interaction Armstrong and Mindermann (2018)
Chan et al. (2021)
Chen et al. (2020, 2021)
Ghosal et al. (2023)
McElfresh et al. (2021)
Skalse and Abate (2023)
Stella and Bauso (2023)
Uprety and Song (2018)
Evans et al. (2015b, 2015a)
Caliskan et al. (2017)
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with highest expected utility, while taking into consideration the costs of computation.” 
Within the field of AI, several differing approaches exist to the understanding of a rational 
agent. As we will see, developments within computer science have integrated conceptions 
of a rational agent from various fields (Zilberstein 2011).

Whereas AI was first intended to replicate human intelligence (Brooks 1991), it can be 
argued that pursuing this goal will not produce models that act in the most rational way 
(Wooldridge 2000), therefore we first need to establish what the goal of AI is. A useful cat-
egorisation distinguishes the goal of artificial agents across two dimensions: reasoning vs. 
behaviour, and human vs. rational (Russell and Norvig 2022). The latter distinction exem-

Table 3  Identifying irrational artificial agents summary table
Topic Literature
Opponent modelling surveys Fürnkranz (2001)

Van Den Herik et al. (2005)
Olorunleke and McCalla (2005)
Albrecht and Stone (2018)
Nashed and Zilberstein (2022)

Fictitious play Brown (1951)
Inferring reward function considering irrationality Armstrong and Mindermann (2018)

Chan et al. (2021)
Rational verification Abate et al. (2021)

Hammond et al. (2021)
Gutierrez et al. (2021)

Goal/plan recognition Ramírez and Geffner (2011)
Tian et al. (2016)
Vered and Kaminka (2017)
Masters and Sardina (2021)

Policy reconstruction Ganzfried and Sandholm (2011)
Chakraborty and Stone (2014)
Silver et al. (2016)
Mealing and Shapiro (2017)

Recursive reasoning van der Hoek and Wooldridge (2002)
Sonu and Doshi (2015)
de Weerd et al. (2017)
Wen et al. (2020)

Type-based reasoning He et al. (2016)
Albrecht and Stone (2017)

Multi-agent reinforcement learning Zhang et al. (2021)
Assessing rationality in LLMs Binz and Schulz (2023)

Hagendorff et al. (2023)
Macmillan-Scott and Musolesi (2024)

Safe exploration survey Avrahami-Zilberbrand and Kaminka (2014)
Safe exploration Masters and Sardina (2021)

Tambe and Rosenbloom (1995)
Mao and Gratch (2004)
Sukthankar and Sycara (2005)
Gan et al. (2019)
Pawlick et al. (2019)

1 3

  352   Page 6 of 39



(Ir)rationality in AI: state of the art, research challenges and open…

plifies that often the ‘ideal’ reasoning or behaviour is not the one that most resembles human 
processes. In this definition, rational thinking is defined in line with the laws of thought 
approach, based in philosophy (Boole 1854; Leech 2015). This approach is grounded within 
the discipline of logic, however problems with defining a rational reasoning process often 
arise when it comes to the application, whether it be with expressing a problem formally 
or exhausting computational resources. On the other hand, an agent that exhibits rational 
behaviour is one that acts so as to achieve the best outcome (or expected outcome); this 
result may be obtained by, but is not restricted to, correct inference (in line with rational 
reasoning). The distinction between rational reasoning and behaviour in AI is closely linked 
to the categorisation of theoretical (or epistemic) and practical rationality that is often used 
to study human rationality (Wedgwood 2021). As we will see below, the study of epistemic 
rationality is more grounded within philosophy, whereas it is psychology that is most con-
cerned with rational actions (Knauff and Spohn 2021b).

It is often easier to implement and assess the rational behaviour aspect, as opposed to 
rational reasoning, as we can more easily observe behaviour. Knauff and Spohn (2021b) 
frame this distinction using Marr’s (1982) levels of analysis, where his computational and 
algorithmic levels are referred to as output-oriented and process-oriented respectively. We 
are also often more concerned with output-oriented, computational mechanisms being ratio-
nal rather than processes; that is to say, the focus is generally placed on evaluating the 
results of reasoning rather than the reasoning itself. Depending on the model architecture, 
pitfalls in behaviour may appear in different ways—an important one being the introduction 
of bias. The distinction between statistical learning and symbolic AI allows us to separate 
models that incorporate human biases through the data input, as opposed to those where 

Table 4  Interacting with irrational artificial agents summary table
Problem/question Algorithm/method Literature
Behaviour of intelligent machines and their 
interaction with humans

– Rahwan et al. (2019)

Minimisation of loss Minimax Osborne (2004)
Minimax extension for robust multi-agent RL M3DDPG Li et al. (2019)
Consider return distribution rather than expected 
return

Distributional RL Bellemare et al. (2023)

Interaction with potentially irrational opponent Safe equilibrium Ganzfried (2023)
Accounting for errors in rational decision-making Trembling hand perfect 

equilibrium
Selten (1975)

Optimisation of minimax Alpha-beta pruning search Knuth and Moore 
(1975)

Variable learning rate, ensuring convergence WoLF Bowling and Veloso 
(2002)

Opponent shaping LOLA Foerster et al. (2018)
SOS Letcher et al. (2019)
Meta-MAPG Kim et al. (2021)
M-FOS Lu et al. (2022)

Modelling (irrational) human behaviour – Uprety and Song (2018)
McElfresh et al. (2021)
Kwon et al. (2020)
Chan et al. (2021)
Azaria (2022)
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an expression of ‘irrationality’ will come from the model architecture itself (Maruyama 
2020)—both are subject to the incorporation of human bias, the variation arises in how 
the bias may be introduced. The former, statistical learning, can be defined as following a 
bottom-up approach. In this case, models generally learn from human data and inputs, and 
therefore the biases that appear are those that were introduced by the human input (Shin 
and Shin 2023). Numerous examples exist of cases where the introduction of such biases 
has led to problematic results, most notably in computer vision (Buolamwini and Gebru 
2018; Cook et  al. 2019; Wilson et  al. 2019; Noiret et  al. 2021; Papakyriakopoulos and 
Mboya 2023) and natural language processing (NLP) (Bolukbasi et al. 2016; Rozado 2020; 
Dawkins 2021; Hovy and Prabhumoye 2021; Stanczak and Augenstein 2021). On the other 
hand, biases in symbolic AI can be said to come from a more top-down approach. Given that 
these types of models or agents are generally designed to follow rules of logic and formal 
rationality, they do not generally exhibit the same biases as statistical learning (Maruyama 
2020)—however, ‘irrational’ behaviour will present itself in different ways. In this case, it 
is the rules that underlie the model that are subject to human bias and may lead to irrational 
reasoning. There are increasingly examples of hybrid approaches that leverage a combina-
tion of the two, particularly advances in neuro-symbolic AI (Besold et al. 2022).

Some of the discussion within statistical learning centres around removing the pres-
ence of human biases, or mitigating their presence within models and results. However, 
some have argued that there exist cases where the use of heuristics similar to those used 
in human reasoning may make decision-making processes easier to explain (Newell et al. 
1958; Simsek 2020). For instance, the use of tallying has been shown to be effective in 
many contexts, and to generalise to unseen problems (Dawes and Corrigan 1974; Einhorn 
and Hogarth 1975; Dawes 1979). Similarly, the use of heuristics in Tetris can make AI more 
explainable (Simsek et al. 2016). Simsek (2020) argues that in linear environments, there 
are three conditions under which heuristics can yield accurate decisions: simple dominance 
(Hogarth and Karelaia 2006), cumulative dominance (Kirkwood and Sarin 1985; Baucells 
et al. 2008), and noncompensatoriness (Martignon and Hoffrage 2002; Katsikopoulos and 
Martignon 2006; Simsek 2013). Developments in AI may not only render computational 
processes more explainable, but they may also reproduce processes in the human brain in 
such a way as to develop our understanding of how such processes occur. Until now, this 
research has predominantly focused on the use of deep neural networks (Cichy et al. 2016; 
Kubilius et al. 2016; Jozwik et al. 2017; O’Connell and Chun 2018; Bertolero and Bassett 
2020), which have become in some cases a sort of ‘model organism’ (Scholte 2018; Fire-
stone 2020). Through the development of the General Problem Solver (GPS), Newell and 
Simon (1961) presented a similar idea of using this program to aid in the construction of 
theories of human thinking.

The debate surrounding how we define rationality within AI also lends itself to the ques-
tion of what we are trying to achieve. Russell (1997, 2016) identifies four types of goals: 
perfect rationality, calculative rationality, bounded rationality, and bounded optimality. Rus-
sell and Norvig (2022) define them as follows: perfect rationality occurs when an agent 
maximises expected utility with every action it takes—in most environments, this is not 
a realistic goal; calculative rationality describes the case when an agent would eventually 
return what would have been the utility-maximising choice, but it may return it too late; 
bounded rationality, as proposed by Simon (1957, 1982), follows the goal of satisficing 
that will be discussed below; and bounded optimality is more concerned with the decision-
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making process rather than the output–it refers to a case where agents take decisions as 
rationally as possible given their available computational resources, achieving an expected 
utility at least as high as any other agent with access to the same resources. While perfect 
rationality appears the ultimate goal and is theoretically possible, such as in the case of the 
Universal Turing Machine (UTM), the Halting Problem means we cannot know whether, 
when or how UTM will stop computing (Lee 2021).

There exist additional intrinsic limitations in accordance to Gödel’s Incompleteness 
Theorems that relate to the Halting Problem; authors like Lucas (1961) and Penrose (1989) 
have highlighted the consequences of the Gödel’s theorem as a limiting factor for machine 
rationality. Given that as a consequence of Gödel’s theorem there must always be a set of 
propositions that can neither be proven nor disproven, or a fact about the world that can-
not be demonstrated as true, there will always exist problems that cannot be solved by 
machines. Therefore, it can be argued that striving for perfect rationality is a futile goal. In 
fact, the unsolvability of the Halting Problem has previously been used to prove Gödel’s 
Incompleteness Theorem (Calude 2021; Tourlakis 2022).

Nevertheless, much of the debate in the field of AI centres around achieving perfect 
rationality. However, as we have seen there are constraints that, in many environments, 
make this an unrealistic goal. Instead of perfect rationality, Simon (1957, 1982) introduced 
the aforementioned notion of bounded rationality to explain how humans make decisions 
under uncertainty; he argued that individuals satisfice rather than maximise: due to limits 
of cognitive ability or computation, time constraints, or incomplete knowledge, humans 
choose the first result that satisfies a chosen ‘aspiration level’ rather than obtaining the opti-
mal solution (Gigerenzer 2020; Schwarz et al. 2022). Further models of bounded rationality 
have emerged in the literature since (Rubinstein 1998; Gigerenzer and Selten 2002). Sur-
prisingly, the concept of bounded rationality has largely remained separate from the field of 
AI (Simsek 2020; Lee 2021).

Arguably then, bounded optimality appears to offer the best framework: as opposed to 
calculative rationality, we can be sure of attaining a solution at the desired time, and we 
guarantee that this solution will have at least as high a utility as that achieved by a bound-
edly rational agent (Horvitz 1988; Russell 1997). Out of the four types of goals identified by 
Russell (1997, 2016), this comes closest to the above definition of computational rationality 
given by Gershman et al. (2015). There may even be cases where bounded optimality cannot 
be achieved, therefore Russell et al. (1993) define a weaker property, asymptotic bounded 
optimality, as a more robust and tractable alternative. Zilberstein (2011), who instead clas-
sifies bounded optimality as one amongst other approaches to bounded rationality, con-
curs that it is difficult to achieve in practice. Instead, he proposes metareasoning as a more 
promising approach—more specifically, optimal metareasoning. Inspired by a component 
of human decision-making, metareasoning can be defined as a way of allocating resources: 
it is a “mechanism to make certain runtime decisions by reasoning about the problem solv-
ing—or object-level—reasoning process” (Zilberstein 2011, p. 29).

It is clear that there is no comprehensive definition of rationality that serves every pur-
pose. Although perfect rationality appears to be a sensible aim, we have seen there are many 
limitations to achieving this in practice (namely the Halting Problem). A similar issue arises 
with bounded optimality, which is often difficult to attain. Bounded rationality is a more 
realistic goal, although in implementing this we must accept that we will not always achieve 
the optimal outcome.
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2.1.2  Assessing rationality

When assessing whether an agent has attained the level of rationality we are seeking, a 
crucial question lies in how we measure its performance. Taking inspiration from develop-
mental and comparative psychology, the performance vs. competence debate can be applied 
to artificial agents (Firestone 2020; Lampinen 2023). The debate highlights the distinction 
between competence, defined as a system’s internal knowledge and capabilities, and per-
formance, which relates to demonstrations of this knowledge. A species-fair comparison 
between humans and machines requires ensuring that tests account for both human and 
machine constraints, and implement task alignment. If tasks are not defined with this notion 
in mind, poor performance may be taken as a sign of low competence, when in fact it arises 
from tests that are not well suited to the constraints of either the human or machine being 
evaluated.

The type of test we require to assess an agent’s rationality also depends on what aspect 
we are interested in. Returning to the distinction between reasoning and behaviour, our 
method of assessment will vary for each of these. Often, the characteristic of interest is 
rational behaviour, as we are interested in the result. To assess whether behaviour is rational, 
we can apply the rational agent approach: an agent that acts so as to achieve the best out-
come, or best expected outcome under uncertainty, would be deemed a rational agent. This 
is in contrast to a test for rational thinking, which would ascertain whether the agent reasons 
in accordance with the laws of thought. Recent work has also questioned classical defini-
tions of rationality when it comes to conditional logic (Eichhorn et al. 2018), defining a set 
of non-monotonic inference patterns and assessing them based on the plausibility semantics 
of Ordinal Conditional Functions (OCF) (Spohn 1988). In so doing, the authors define a 
new way of evaluating what may be deemed rational according to plausible reasoning stan-
dards, with a requirement of consistency, applicable to both human reasoning and artificial 
agents. While here we are concerned with rational reasoning and behaviour, other types of 
assessment would be necessary to determine whether an agent is behaving or reasoning in a 
human way; the Turing test (Turing 1950) is seen as an example of this type of assessment, 
even though it has been criticised for its inherent limitations (Hernandez-Orallo 2000).

Assessing the rationality of GenAI systems poses a new set of challenges. Even more 
clarity about what and how we are evaluating is needed, as these systems encompass often 
conflicting types of rationality. Taking LLMs as an example, these models are trained with 
the goal of predicting the most likely next token. A model may exhibit high performance in 
this sense, but produce an output that appears irrational to a human interpreter. Because the 
output of LLMs are in a form that humans ascribe meaning to (language), we evaluate their 
responses as we would human speech. Therefore, there is a tension between the goal of the 
model (next-token prediction) and the way we evaluate its output under a human lens. We 
refer to this problem as the GenAI Evaluation Paradox. There is therefore a need to align 
the goals considered in training and evaluation methodologies. When evaluating LLMs, 
we often look at the correctness of the responses or the coherence of reasoning, but this is 
not what LLMs have been trained to maximise. As we will see below, alignment and safety 
fine-tuning is generally at odds with the model’s attempt to minimise next-token prediction 
loss. This argument also holds for other types of outputs produced by GenAI systems, like 
images or audio. The question of GenAI and its implications of rationality will be further 
explored in Sects. 3.5 and 6.
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2.2  Rationality in other disciplines

2.2.1  Economics

The concept of rationality is a central assumption in certain areas of economics. In its defi-
nition, particularly within normative decision theory, rationality has become analogous to 
consistency (Hammond 1997; Schilirò 2012)—as such, close parallels can be drawn to the 
definition of rationality in philosophy, as will be seen below. A rational action or decision is 
therefore one that maximises utility, or expected utility where there is incomplete informa-
tion. While in other disciplines the focus generally lies within rational behaviour or reason-
ing, within economics, it is extended to questions of preferences, beliefs, expectations and 
knowledge (Hammond 1997). For instance, the consistency of ordinal preferences is often 
emphasised, where what matters is the order of these preferences (see Hicks and Allen 
(1934)).

Economic theory establishes a quantifiable way of assessing rationality based on mea-
sures of utility. However, real values of utility can seldom be measured in an objective way. 
As a response to this problem, Samuelson (1938) developed the theory of revealed prefer-
ence, focusing on observed demand behaviour to infer underlying preferences. Ultimately, 
looking at demand behaviour to develop an understanding of the underlying preferences can 
be assimilated to the reasoning vs. behaviour distinction that was discussed above: where 
we cannot assess the rationality of reasoning, as we do not observe this process, we can 
instead evaluate the rationality of observed actions. The theory of revealed preference was 
later developed, building on Samuelson’s work, to further establish how to infer preferences 
from demand functions (Houthakker 1950; Arrow 1959; Uzawa 1960; Afriat 1967).

Although it can be argued that economic theory ultimately seeks to study and predict 
human behaviour (Sugden 1991), its concept of rationality is, unlike human behaviour, per-
fect, logical and deductive (Arthur 1994). Gintis (2000) highlights this notion, arguing that 
following the traditional economics definition of rationality renders humans ‘hopelessly 
irrational.’ The disconnect between the theoretical and empirical evidence of behaviour 
(Tsetsos et al. 2016), grounded in the fact that humans cannot reason beyond given levels 
of complexity, is addressed by the aforementioned concept of bounded rationality. Thaler, 
who collaborated with and built on the work of Kahneman and Tversky [see for example 
Thaler (1980), Tversky and Thaler (1990), Kahneman et al. (1991)], incorporated findings 
from psychology into our understanding of economics. The field of behavioural economics 
was pioneered by Thaler, and there is now extensive research within economics surrounding 
cognitive biases and heuristics (Slovic et al. 2002; Grandori 2010; Zindel et al. 2014; Enke 
et al. 2023).

So far we have considered expected utility theory as a descriptive or predictive theory 
that sets out to either explain how humans make decisions or predict the choices they will 
make. However, another perspective offers a normative view of expected utility theory 
(Cave 2005), seeing it instead as a way of studying how humans should rather than do make 
decisions (Briggs 2023). From this perspective, the irrationality of observed behaviour in 
our decision-making does not contradict the theory; rather, expected utility theory may be 
more in line with the aforementioned perfect rationality approach. If we consider applica-
tions of expected utility theory to machine learning, in particular reinforcement learning, 
the interpretation as a normative theory becomes apparent (Parkes and Wellman 2015): 
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expected utility is used to decide what action an agent should take next, and in this way find 
an optimal policy to follow [see for example Charpentier et al. (2020)]. Learning algorithms 
have further incorporated data from human psychological experiments to model choice 
behaviour and human decision-making (Brian Arthur 1993).

2.2.2  Philosophy

When defining rationality within artificial agents, Aristotle’s ‘laws of thought’ approach has 
been employed as a way of defining and assessing rational thinking in machines (Russell 
and Norvig 2022). For the ancient Greek philosophers, however, rationality was a uniquely 
human trait that sets us apart from other animals (Nozick 1993). The conception of ratio-
nality within philosophy can similarly be attributed to Aristotle, whose classification of the 
virtues led to the distinction between epistemic (or theoretical) rationality and practical 
rationality (Rysiew 2008; Okasha 2016; Wedgwood 2021). This categorisation of the two 
types of rationality, relating to beliefs and decisions respectively, is closely linked to the 
separation between reasoning and behaviour discussed above. As understood in the epis-
temic sense, rationality can often be equated to beliefs that are justified, and is closely 
linked to truth (Rysiew 2008); crucially, rational belief must be supported by reasons and 
be generated through a reliable process (Nozick 1993). Conversely, practical rationality 
concerns actions and desires (Battaly and Slote 2015), and is generally more the concern 
of psychological study. Foley (1987) points to issues with this distinction, and argues that 
inconsistent beliefs may still be rational from an epistemic standpoint.

The current debate within epistemology is centred between internalist and externalist 
perspectives. The former’s origins are sometimes traced back to Hume (Meeker 2001), 
although some have argued that this attributed view points to an inconsistency in his moral 
theory (Brown 1988; Coleman 1992). In the internalist view, reason lies at the core of ratio-
nal belief, and is as such internal to the person. A belief may be false, however if there is 
justification for this belief, it is not necessarily irrational to maintain said belief (Audi 2002). 
In contrast, externalists ascertain that rational thinking and the justification of a belief is not 
only a result of internal processes, but is also affected by external factors (Farkas 2003).

Other definitions of rationality within philosophy centre on reasoning with a logical 
grounding. Stein (1996) developed a Standard Picture of rationality, where the emphasis 
is on reasoning according to principles based on logic, probability theory and so forth. In 
trying to model how the mind works, Sloman (1993) used computers as a way to repre-
sent our own rationality, equating the mind to a control system. A similar framework to the 
Standard Picture is the ‘classical’ conception discussed by Chase et al. (1998), who argue 
for the ecological rationality of heuristics used by humans and organisms more generally. 
Evnine (2001) sets out a theory of the Universality of Logic, which contends that rational 
creatures must possess certain logical abilities. A more Kantian perspective has been sug-
gested, defending the logic-oriented conception of human rationality, claiming that rational 
animals are intrinsically logical animals (Hanna 2006).

However, similar to economics, the concept of rationality within philosophy has also 
been impacted by empirical studies in psychology. The debate around cognitive biases 
and limits in human reasoning have given rise to questions surrounding how rationality is 
defined (Rysiew 2008): if humans do not follow the formal norms of rationality, does this 
render them irrational, or do we need to redefine our conception of rationality? Some see 
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rationality as an evolutionary adaptation, and in this conception, humans cannot be deemed 
irrational (Dennett 1981; O’Brien 1993). In this line of argument, an explanation can be 
found for any ‘irrationalities’ displayed by humans. Others argue that our definition of ratio-
nality should be based on human intuition (Cohen 1981), and that any mistakes are due to 
performance rather than competence errors. If we are to define rationality in accordance to 
the way humans reason, how would this then impact the conception of machine rational-
ity? It may be that we need a definition of rationality exclusive to humans, and another for 
machines.

Others emphasise the distinction between normative and descriptive rationality, mirror-
ing the discussion within economics. In this view, philosophy would be more concerned 
with normative rationality, whereas psychology centres on descriptive rationality (Knauff 
and Spohn 2021b). The two are intrinsically linked, as, for instance, rational action will 
typically depend on coherent beliefs. For this reason, Knauff and Spohn (2021b) argue for a 
more integrated study of normative and descriptive approaches, advocating for an interdis-
ciplinary research agenda.

2.2.3  Psychology

With regards to defining rationality in psychology, much of the focus in the literature has 
been on understanding how humans make decisions, placing the emphasis on practical and 
descriptive rationality. Significant study in psychology has been on human cognitive biases 
and limitations in human reasoning, and whether this deems humans irrational, or whether 
we need to redefine what rationality means in relation to human behaviour. This debate has 
formed two major camps, denoted by Sturm (2012) as the ‘heuristics and biases’ approach 
versus the ‘bounded rationality’ approach, and has been referred to as the ‘rationality wars’ 
in the psychology of human reasoning (Samuels et al. 2002). The ‘heuristics and biases’ lit-
erature, where the most defining work was carried out by Tversky and Kahneman, contends 
that humans often do not reason according to rules of logic and probability [see for exam-
ple Wason (1968), Tversky and Kahneman (1971, 1986), Kahneman and Tversky (1982), 
Kahneman et al. (1991); for collections of such works, see Nisbett and Ross (1980), Gilov-
ich et al. (2002)]. While research in this area often emphasised the irrationality in human 
reasoning, others have proposed a novel way to evaluate rational reasoning in conditional 
logic, arguing that even though some inference patterns displayed by human reasoners are 
not valid according to classical logic, they are nevertheless plausible and should thus be 
considered rational (Eichhorn et al. 2018). The authors emphasise consistency in reasoning 
as necessary for rationality, rather than classical logic.

In contrast to the ‘heuristics and biases’ literature, the ‘bounded rationality’ scholarship 
argues that human beings are not irrational in the way they reason and make decisions—the 
way humans reason is rational given computational limitations, as well as limits in knowl-
edge and attention (Gigerenzer 1993; Gigerenzer and Goldstein 1996). Lewis et al. (2014) 
develop a framework of computational rationality that looks at bounds on decision-making 
mechanisms within the brain and attempts to unify explanations of behaviour and mecha-
nisms within psychology, tying in with the utility maximisation approach from economics. 
Whereas some have argued that the two perspectives can be reconciled, as it is a question of 
how much and when we follow certain norms (Samuels et al. 2002), others do maintain that 
the arguments are substantively different, although not wholly incompatible (Sturm 2012).
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In their work on heuristics, Kahneman and Tversky (1982) identified a number of cogni-
tive biases present in human reasoning that contradict the laws of thought and logic, such 
as the Linda Problem (conjunction fallacy) (Tversky and Kahneman 1983) or the Gam-
bler’s Fallacy (Tversky and Kahneman 1971). The results have been replicated empirically 
numerous times, showing under what conditions humans appear to violate these norms, 
as well as the conditions that reduce the presence of these biases (Nisbett and Borgida 
1975; Clotfelter and Cook 1993; Donovan and Epstein 1997; Tentori et al. 2004; Barron 
and Leider 2010) [in recent years, similar experiments have been done with LLMs instead 
of humans (Macmillan-Scott and Musolesi 2024; Binz and Schulz 2023; Hagendorff et al. 
2023)]. Although these biases seem to illustrate irrationality within human reasoning, some 
argue that these heuristics and biases are often useful when applied to the right domains—
generally domains similar to ones in which they emerged—and can be remarkably effective 
(Kahneman and Tversky 1982; Gigerenzer and Goldstein 1996).

Given the existence of these heuristics that appear to show that human reasoning often 
contradicts formal norms of rationality, recent studies in psychology and neuroscience have 
argued that there exist two types of reasoning processes within human cognition. System-1 
is associated with fast, automatic, and largely unconscious processes, and is thought to be a 
product of evolution; in contrast, System-2 is slower, rule-based, and subject to deliberate 
conscious control, it is more plastic and is shaped both by culture and education (Evans and 
Over 1996; Sloman 1996; Stanovich 1999; Rysiew 2008). The identification of these two 
processes has led to a discussion around how we define rationality within human reasoning, 
and the potential of splitting our understanding of rationality in such a way that it mirrors 
the two cognitive systems (Evans and Over 1996; Sloman 1996; Stanovich 1999; Saunders 
and Over 2009). The debate had expanded into the AI literature; Bengio (2019) assimilates 
current deep learning capabilities to System-1, and discusses how recent developments are 
paving the way for deep learning architectures with capabilities that include System-2 tasks, 
which require conscious reasoning.

Considering the differing conceptions of what rationality means within psychology, it 
is unsurprising that there is no unified test for rational thinking. One important distinction 
that is often made is that between rationality and intelligence (Sutherland 1992). On one 
hand, within the field of AI, Russell (1997) sets out potential definitions of intelligence as 
the types of rationality or optimality covered above, in so doing establishing machine intel-
ligence as rationality. Similarly, Gershman et al. (2015) discuss a computational rationality 
framework as a way to study intelligence (both in brains and machines), again equating the 
two notions. On the other hand, within psychology there is a clear distinction. Stanovich 
et al. (2011) see rationality as a much broader notion than intelligence that encompasses 
more cognitive skills, particularly if we define intelligence by what is measured in com-
monly used intelligence tests. They see rationality as a superordinate concept to intelligence 
given that it encompasses “both the reflective mind and the algorithmic mind” (Stanovich 
et al. 2011, p. 814). In the same way that we have developed a way to measure intelligence 
through the use of the IQ test, Stanovich (2016) proposes an assessment of rational thinking 
called the Comprehensive Assessment of Rational Thinking (CART). Other types of assess-
ment are used empirically for particular aspects of rationality, such as the use of dominance 
tests to study choice behaviour (Tervonen et al. 2018). Dominance tests are often used in 
discrete choice experiments (DCEs) (Ryan and Bate 2001; McIntosh and Ryan 2002), and 
have therefore been used predominantly within economics—as such, the definition of ratio-
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nality in this type of assessment must be in line with axioms of rational choice, including 
completeness, transitivity, and monotonicity (Mas-Colell et al. 1995).

A similar debate around how to define rationality exists in neuroscience, where more 
emphasis has been placed on pathology and how this relates to rational reasoning. A crucial 
question concerns whether pathology indicates an impairment on rationality, or whether 
mental illness does not necessarily signify irrationality. While some psychopathology 
patients may exhibit irrational behaviour, many hold the view that irrationality is not suf-
ficient or necessary for mental illness (Bortolotti 2013; Cardella 2020): insanity and irratio-
nality are not intrinsically linked. If we take the goal of the brain as minimising surprise or 
uncertainty (Friston 2010), both healthy and diseased brains can be considered rational in 
so long as they pursue this goal (Fiorillo 2017). Conversely, research has shown that lesions 
to the orbitofrontal cortex may hinder the anticipation of negative emotional consequences 
(Kirman et al. 2010). Accounting for these consequences can lead to better informed deci-
sion-making and choice behaviour, therefore some pathologies may indeed affect rational 
reasoning. Perhaps counterintuitively, emotions influence and can be considered essential to 
rational thinking (Martins 2010). Therefore, it is neither pathology nor emotions that cause 
the biases in judgement that are observed in our decision-making.

Table 1 presents a comparative analysis of rationality and irrationality across the domains 
of AI, economics, philosophy, and psychology.

3  Rational irrationality

Having established that theories and definitions of rationality vary significantly across and 
within disciplines, it is a challenge to then establish what constitutes an irrational agent. 
Agents may deviate from rational reasoning or behaviour in different ways, and may be con-
sidered rational or not depending on the definition we are working off. As we have seen, it 
may be that we need to develop differing definitions for rationality in humans and machines, 
or that we need to reevaluate our understanding of rationality altogether. Eichhorn et al. 
(2018) demonstrate that some human inferences labelled as irrational can in fact reflect 
rational strategies when judged within a conditional plausibility framework rather than by 
means of classical logic. In this section, we will be adhering to the aforementioned notion 
of perfect rationality (Russell 1997); that is to say, we define a rational agent as one that 
invariably takes actions that maximise its expected utility, given the available information.

In this section, we will discuss types of irrationality—these are deviations from perfect 
rationality in different ways. However, as we will see below, the term ‘irrational’ must be 
taken with caution. Each type of irrationality that we discuss below can in fact constitute 
the optimal behaviour or reasoning in the right scenario. For example, we discuss bounded 
rationality in this section: bounded rationality is generally considered as rational behaviour, 
however we include it here as it deviates from perfect rationality. In fact, Gigerenzer (2001) 
distinguished between nonrational theories of decision-making and theories of irrational 
decision-making; this distinction emphasises that non-rational theories may not necessarily 
lead to suboptimal outcomes in the real world. The categorisation included here is not an 
exhaustive list, but presents the cases most studied in the literature and are all behaviours 
that commonly occur in practice. The cases presented here illustrate the notion that irratio-
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nal behaviour can sometimes emerge as preferable or even optimal, and are summarised in 
Table 2.

The cases where irrational behaviour can, in some scenarios, be optimal are distinguished 
from perceived irrationality. Perceived irrationality is particularly relevant when it comes to 
GenAI, and as such is briefly discussed below. We return to a fuller consideration of GenAI 
in Sect. 6. Whereas as an agent may be perceived to be irrational when for instance their 
goals are unknown, irrational behaviour is denoted as that where no matter the goal, the 
behaviour is suboptimal (Masters and Sardina 2021). This may arise particularly in situa-
tions involving limited information—agents may not be aware of other agents’ utility func-
tions, and may have different reward structures in such a way that behaviour appears to be 
irrational but could in fact be optimal for another agent. In game theoretical frameworks, an 
agent may appear irrational when their model of the game differs from our own (Ganzfried 
2023). Behaviour being perceived as irrational has been studied in the domain of human–
computer interaction, where perceived irrationality may arise from the discrepancy between 
an individual’s expectations and their perception of a smart system’s actions (Abadie et al. 
2019). As we will see in more detail in Sect. 5.2, the question of how rational a system 
should be when interacting with humans remains an open question.

3.1  Bounded rationality

Bounded rationality is one of the most interesting characterisations of possible types of 
rationality. Proposed by Herbert Simon, bounded rationality seeks to explain how humans 
make decisions under uncertainty, and puts forward the idea of satisficing rather than maxi-
mising (Simon 1957, 1982). As mentioned above, the principle behind satisficing is that due 
to given constraints, humans choose the first result that satisfies a chosen ‘aspiration level’ 
rather than obtaining the optimal solution (Gigerenzer 2020; Schwarz et al. 2022). Although 
it was developed to better understand human decision-making, bounded rationality can also 
be applied to artificial agents and their behaviour under uncertainty or computational con-
straints (Russell 1997).

However, until now, research on artificial agents has not greatly overlapped with the 
study of bounded rationality (Simsek 2020; Lee 2021), therefore open questions remain on 
the behaviour and interaction of agents with limited computation. The constraints that exist 
in human reasoning differ from those of artificial agents, as does the threshold for what 
can be deemed as a satisficing solution. With regards to artificial agents, Wen et al. (2020) 
study this problem in the context of recursive reasoning in multi-agent interactions. They 
introduce the Generalized Recursive Reasoning (GR2) framework to model the dynamics in 
interactions of agents with differing levels of rationality—in this case, the levels of rational-
ity are interpreted as levels of recursive reasoning. The motivation for this research is that, 
in interactions with irrational (non-optimal) agents, the effectiveness of existing MARL 
models significantly decreases (Shoham et al. 2003). In their model, an agent with a given 
level of recursive reasoning takes the best response to all possible lower-level agents. In 
this sense, the boundedly rational agent is taking the best response to other agents whose 
rationality is bounded to a higher degree, meaning that each agent is determining the best 
response when interacting with agents that have a lower level of recursive reasoning and 
therefore whose rationality is more bounded. While this generates valuable results, ques-
tions remain surrounding the behaviour of agents when interacting with opponents whose 
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rationality is less bounded—in this example, looking at environments with agents operating 
at higher levels of recursion.

3.2  Random behaviour

Random behaviour is behaviour that appears to have no rationale or clear motivation, and as 
such is interpreted as irrational due to the lack of an identifiable goal. It can be distinguished 
from other types of irrationality that, although suboptimal, still adhere to a recognisable 
strategy. However, random actions are often crucial to the behaviour of artificial agents, 
particularly in situations of bounded rationality or limited resources. When interacting with 
human participants, artificial agents that incorporate some degree of randomness have also 
been shown to improve collective performance (Shirado and Christakis 2017). Icard (2021) 
highlights two compelling rationales for randomisation: costly computation, where estab-
lishing the best course of action requires resources, and finite memory. He concludes that 
while there may be Bayesian justifications against randomising behaviour, there will argu-
ably always be cases where a satisficing solution, following Simon’s definition, requires 
some randomising.

Within the field of reinforcement learning, random exploration has emerged as the most 
common technique for exploration (Ladosz et al. 2022)—in particular, ε-greedy explora-
tion, which maintains a balance between exploration and exploitation (e.g., Kaelbling et al. 
1996; Bloembergen et al. 2015). Whereas exploration employs random behaviour to look 
for potentially higher rewards, exploitation sticks to known high rewards. Therefore, ran-
dom behaviour does not necessarily equate to irrational behaviour—where there is a longer-
term motivation, taking random actions may in fact allow an agent to arrive at the optimal 
strategy (Still and Precup 2012). The existence of this long-term motivation can constitute 
the determinant of whether this behaviour can be attributed rationality: random behaviour 
can in fact lead to optimal decision-making in the long run.

Within research on reinforcement learning, and particularly deep reinforcement learning, 
there is evidence of the advantages of random exploration (Fernàndez and Veloso 2006; 
Mnih et al. 2015; Polvara et al. 2018; Yu et al. 2020). However, there are also downsides 
to this type of behaviour, namely its inefficiency as it often revisits the same states. Ladosz 
et al. (2022) consider three approaches to address this inefficiency: reduced states/actions 
for exploration methods, exploration parameters methods, and network parameter noise 
methods. Each of these presents its own improvements and disadvantages; for instance, 
exploration parameter methods are particularly useful in achieving a good balance between 
exploration and exploitation, but does not fully solve the question of inefficient exploration 
of previously seen states. Nevertheless, these methods based on random exploration exem-
plify that such a behaviour is not inherently irrational.

Similarly, randomisation holds an important role within stochastic games. In game the-
ory, the Nash Equilibrium is often used to signify the optimal strategy given available infor-
mation. While these solutions are sometimes constituted by pure strategy Nash Equilibria, 
often there also exists a mixed solution (Daskalakis et al. 2009; Bloembergen et al. 2015). 
Mixed solutions in game theory involve randomisation over a set of strategies with a given 
probability distribution (Leyton-Brown and Shoham 2008). Therefore, in such cases, ran-
domness exists as part of the ‘ideal’ rational behaviour (Icard 2021). As with reinforcement 
learning, it is then the use of randomness with a broader motivation that renders this type of 
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behaviour ultimately rational in these scenarios. The motivation behind random actions may 
not always be known to other agents in the interaction, and as such behaviour that appears 
random may only be perceived irrationality or may be deceptive.

3.3  Profit non-maximising

Revisiting the definition of a perfectly rational agent as one that takes actions to maxi-
mise utility at every instance, an agent that, given the same information, does not take 
these actions seems to provide a clear indication of an irrational agent. There are situations 
where agents may follow a strategy in which the action with highest known utility is not 
chosen. One such case is the maximin strategy (Thomson 1979): taking the most unfavour-
able action that could be taken by the opponent, the maximin strategy determines how to 
maximise one’s own utility in response to this action. Essentially, instead of maximising 
utility, this strategy seeks to minimise loss. Increasing attention has also been placed on 
the distributional reinforcement learning framework (Bellemare et al. 2023), which takes 
into account the full distribution of the reward or return and attempts to minimise loss in 
this way. Some approaches have also combined the minimax algorithm and distributional 
learning in order to improve performance (Ren et al. 2020; Li and Faisal 2023). While this 
behaviour appears irrational, cases have been studied where playing ‘rationally’ (according 
to Nash Equilibria) can be shown to result in suboptimal outcomes. Notably, when play-
ing against irrational agents, or agents that are following strategies from a different Nash 
Equilibrium, employing the ‘optimal’ strategy may result in lower payoff (Ganzfried 2023). 
Employing a loss-minimising strategy may also be advantageous in adversarial settings; 
however, purely conflicting-interest scenarios are rare in the real world, instead we are gen-
erally operating in mixed-motive or common-interest environments (Dafoe et al. 2020).

Departing from the maximin strategy, Ganzfried (2023) proposes a safe equilibrium that 
balances between the maximin and Nash Equilibrium strategies by calculating the prob-
ability that the opponent is acting rationally. It is interesting to note that Ganzfried does 
not study this type of behaviour as a type of irrational behaviour, but as a strategy to use in 
interactions with potentially irrational agents (this will be discussed in more depth in the 
following sections). Other types of profit non-maximising behaviour can in a similar way 
be viewed as a strategy to minimise loss when faced with a potentially irrational opponent 
rather than as an irrational behaviour in itself.

In contrast, Goto et al. (2012) present a similar method, however they do denote this 
behaviour as partially irrational. In their approach, artificial learning agents take decisions 
with low utility with a specified probability—their rationale for these ‘irrational’ actions 
is to give the agent a possibility to escape from suboptimal Nash Equilibria. The approach 
they present can be closely assimilated to exploration within reinforcement learning, and 
similarly is shown to sometimes arrive at a more optimal solution than a strategy following 
perfect rationality would. Their model also exemplifies how game theoretic concepts can be 
integrated into learning algorithms to produce agents that learn to make decisions in multi-
agent settings.
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3.4  Human irrationality in artificial agents

Among the types of irrationality we consider, artificial agents that contain or model human 
irrationality have received most attention (e.g., Armstrong and Mindermann 2018; Uprety 
and Song 2018; Chen et al. 2020, 2021; Chan et al. 2021; McElfresh et al. 2021; Stella and 
Bauso 2023; Skalse and Abate 2023; Ghosal et  al. 2023). Two categories can be identi-
fied among agents of this class: the first are agents where human irrationality or cognitive 
biases have been intentionally incorporated, and the second is ones where human biases 
arise unintentionally, generally due to the data inputs—this distinction will be discussed in 
more depth in Sect. 5. The former has been shown to be a useful way to understand human 
mechanisms and learn how to improve interactions between humans and artificial agents 
(Uprety and Song 2018).

Whereas reinforcement learning was inspired by the way humans and other animals 
learn and make decisions under uncertainty (Littman 2015), inverse reinforcement learning 
(IRL) methods have been used to try and infer a reward function from observed behav-
iour. Skalse and Abate (2023) look at the most common IRL methods, namely optimality 
(Ng and Russell 2000), Boltzmann rationality (Ramachandran and Amir 2007), and causal 
entropy maximisation (Ziebart 2010), and test how robust these models are to misspecifica-
tion. They find the most robust to be the Boltzmann-rational model, an important finding 
given that IRL models of human behaviour will always be misspecified to some degree. 
Boltzmann rationality (Luce 1959; Ziebart et al. 2010) is defined as that which “predicts 
that a human will act out a trajectory with probability proportional to the exponentiated 
return they receive for the trajectory” (Laidlaw and Dragan 2022, p. 1). However, others 
have argued that IRL models that assume noisy rationality, including Boltzmann rationality, 
are not suitable as the way humans deviate from rational behaviour is not merely noisy, but 
is instead systematic (Evans et al. 2015a, b). Armstrong and Mindermann (2018) find noisy 
rationality to be too strong of an assumption as it fails to account for bias, whereas a weaker 
simplicity assumption is also insufficient, and suggest more work is needed between the two 
extremes. Chan et al. (2021) similarly find that models of human behaviour as noisy-rational 
rather than systematically irrational perform significantly worse than those incorporating 
cognitive biases; in this case, Boltzmann rationality is used to model a noisy-rational agent, 
which is compared to systematic deviations from the Bellman equation to model irrational-
ity. They further show that correctly modelling an agent’s irrationality can lead to higher 
performance than inference from rational ones.

Others have shown that when artificial agents adopt cognitive biases observed in humans, 
there are cases where the performance of the agents can be improved, particularly when 
interacting with humans. Chen et al. (2020) demonstrate that introducing option compari-
son when making decisions under uncertainty can outperform calculation-based methods 
in highly noisy environments. While option comparison is often regarded as an irrational 
behaviour, they show that this heuristic is attained by a learning agent that is maximising 
cumulative reward. In the realm of language learning, models that acquire human biases 
can also be useful in better understanding existing prejudices and stereotypes (Caliskan 
et al. 2017).
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3.5  Perceived irrationality in GenAI

GenAI systems present a slightly different case compared to the types of irrationality out-
lined above. Instead of having a case where irrational behaviour can in fact be optimal, 
we have multiple ways of assessing the rationality of a system. There is a tension between 
the generative rationality and rationality that we perceive or ascribe to the system. Taking 
the example of LLMs, generative rationality is achieved by minimising loss in next-token 
prediction, whereas we interpret the output using a more human lens. As we have seen, 
because the output of GenAI systems such as LLMs is in a form that humans ascribe mean-
ing to, we therefore evaluate the output not in terms of how well it achieved the goal set 
in the model’s architecture; instead, we often evaluate these models using tasks designed 
to evaluate human reasoning (Binz and Schulz 2023; Macmillan-Scott and Musolesi 2024; 
Hagendorff et al. 2023). We may look for characteristics like coherence or accuracy in LLM 
outputs. If, instead of language, the model simply produced the embeddings as output, we 
would likely evaluate them as (boundedly) rational. Therefore, these models often appear 
irrational not because they are incorrectly minimising loss, but because there is a rationality 
entanglement: overlapping types of rationality that are sometimes at odds. In fact, these hal-
lucinations, contradictions, or other observed behaviours may be rational under the model’s 
objective function.

The issue of rationality entanglement arises due to our way of interpreting the model’s 
output. We could refer to this as interpreted or perceived irrationality rather than actual irra-
tionality, as we are in a sense evaluating these models incorrectly. The issue of interpreted 
irrationality can also be seen in other multi-agent settings that do not involve GenAI, where 
behaviour is merely interpreted as irrational, even though an agent is correctly maximising 
expected utility. This interpretation may arise for a variety of reasons, such as an incorrect 
assumption about the opponent’s reward function, or noisy information about an opponent’s 
actions.

The behaviour that we interpret as irrational in GenAI systems therefore arises because 
we are not evaluating how well the model achieves the goal it was designed to attain. There 
is a misalignment in the objectives rather than a failure in reasoning. Using a traditional def-
inition, an LLM would display rational reasoning by predicting the most likely next token, 
but instead we want it to produce true and consistent texts. As we will further explore below, 
additional layers like alignment and safety fine-tuning often in fact reduce the rationality of 
a model in the sense of loss minimisation. These additional training layers generally attempt 
to ensure that these models produce outputs that conform more closely to human expecta-
tions of rationality, even if this is at the expense of the rationality of the model in a more 
traditional sense. Are we then training GenAI models to behave as rational agents, or merely 
to behave in ways that appear normatively rational to humans?

4  Dealing with irrational artificial agents

4.1  Identifying irrational artificial agents

We have seen that different types of seemingly irrational agents may in fact be pursuing the 
optimal policy when operating in the right environment. However, this creates complica-
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tions for agents modelling other agents, as the typical assumption of other agents’ rationality 
may lead to a suboptimal outcome. Albrecht and Stone (2018) note that accurate modelling 
of other agents is particularly important in the absence of coordination and communication 
protocols. The first step is therefore to identify whether an agent is rational or not, and if 
faced with an an irrational agent, how to identify the type of irrational behaviour.

Methods for identification of agent rationality fall under the category of opponent mod-
elling [for surveys, see Fürnkranz (2001), Van Den  Herik et  al. (2005), Olorunleke and 
McCalla (2005), Albrecht and Stone (2018), Nashed and Zilberstein (2022)], an early exam-
ple of which is fictitious play (Brown 1951). These techniques often need to make assump-
tions not only about the modelled agent itself, but also about the environment—in particular 
relating to the observability of other agents’ action (Albrecht and Stone 2018). Building an 
accurate model of observability of the environment is especially relevant when interact-
ing with potentially irrational agents, as we have seen that modelling irrational behaviour 
as simply noisy can lead to much worse performance (Armstrong and Mindermann 2018; 
Chan et al. 2021). The work on rational verification is also relevant here, particularly in 
its application to multi-agent systems (Abate et al. 2021; Hammond et al. 2021). Rational 
verification checks whether given temporal logic properties will hold in a system, assum-
ing that all agents within this system will act rationally and so choose strategies that form a 
game-theoretic equilibrium (Gutierrez et al. 2021). In building these methods, a distinction 
must also be made between irrationality and unreliability—whereas in the former, observed 
behaviours cannot be ignored, the latter relates to noisy observations that did not in fact 
happen and as such should not be used in modelling an agent’s intent or reward function 
(Masters and Sardina 2021).

Several opponent modelling techniques exist in the literature, including goal/plan rec-
ognition (Ramírez and Geffner 2011; Tian et al. 2016; Vered and Kaminka 2017; Masters 
and Sardina 2021), policy reconstruction (Ganzfried and Sandholm 2011; Chakraborty and 
Stone 2014; Silver et al. 2016; Mealing and Shapiro 2017), recursive reasoning (van der 
Hoek and Wooldridge 2002; Sonu and Doshi 2015; de Weerd et al. 2017; Wen et al. 2020) 
and type-based reasoning (He et al. 2016; Albrecht and Stone 2017)—for a comprehensive 
survey of these methodologies, see (Albrecht and Stone 2018). Some of these methods 
directly assume rationality of a certain type: recursive reasoning techniques, such as Wen et 
al.’s (2020) discussed above, assume the agent being modelled is boundedly rational, and 
reasons with a given level of recursion. Classification instead attempts to correctly predict 
a label or category for the opponent (Albrecht and Stone 2018)—although in this case the 
way the modelled agent deviates from perfect rationality is not assumed from the outset, the 
observed behaviour is classified within existing models. In contrast, some goal recognition 
techniques have been proposed that calculate a rationality measure based on the agent’s 
action history, and use this to inform the formula used to model the agent (Masters and 
Sardina 2021).

Work on agent modelling techniques has seen many recent developments (Zhang et al. 
2021). However, numerous open problems and questions remain, in particular regarding the 
rationality of agents in an interaction. Knowing in what scenarios we expect to encounter 
different types of irrational agents would allow for more efficient and targeted techniques. 
A reinforcement learning agent is likely to exhibit random behaviour as part of explora-
tion, and it would be a mistake to interpret this as irrational; in contrast, when interacting 
with a human agent, observed random behaviour may be a more accurate signal of irratio-
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nality. Similarly, the type of agent that is interpreting the behaviour is important: LLMs 
have been shown to display behaviour that appears irrational to humans (Macmillan-Scott 
and Musolesi 2024), but its output is correct according to the specifications of the model, 
and therefore is rational from a technical perspective. Therefore, developments in this area 
require domain-specific research. Other open questions pertain to the possible combina-
tions of opponent modelling techniques, as well as safe probing and exploration techniques 
(Albrecht and Stone 2018).

Safe exploration is of particular importance as agents that appear irrational may in fact 
be rational but deceptive agents. It may be very difficult to distinguish between the two, and 
particularly costly if the opponent turns out to be deceptive. Existing methods for dealing 
with deceptive agents remain largely domain-specific (Masters and Sardina 2021); some 
have looked at ways to reveal an agent’s true intent (Tambe and Rosenbloom 1995), others 
have focused on disambiguation of goals (Mao and Gratch 2004; Sukthankar and Sycara 
2005), or have focused on Stackelberg security games where there is a potential for the 
attacker to be untruthful (Gan et  al. 2019)—for a survey, see Avrahami-Zilberbrand and 
Kaminka (2014). A clear application of safe exploration is to problems in cyber-security, 
where deception plays a central role (Pawlick et al. 2019), as in this area a priority may be 
mitigating the potential harmful effects of a deceptive agent.

4.2  Interacting with irrational artificial agents

Having established that an interaction is with an irrational agent, the question then arises 
of determining the best strategy to maximise payoff in such a scenario. Research in this 
area has centred on two aspects: interacting with irrational agents in adversarial scenarios, 
and interactions with irrational human agents. How the presence of an irrational agent may 
hinder cooperation/coordination and the best strategies to achieve cooperation with such 
an agent has received less attention, and is an important avenue of research. Applications 
pertain not only to scenarios that involve artificial agents, but also within human–machine 
interactions. As we have seen, humans often reason and act in ways that deviate from perfect 
rationality, therefore machines must be able to account for this. Not only should machines 
be able to account for irrational human decision-making; we also need to gain a better 
understanding of how interactions with humans may alter the behaviour of machines (Rah-
wan et al. 2019). It may be the case that techniques used in adversarial scenarios can be 
adapted to non-adversarial interactions, such that we interpret an irrational agent as a type 
of opponent.

In adversarial interactions, techniques have emerged to minimise an agent’s own loss, 
as well as techniques that attempt to shape the behaviour of the opponent(s). A notable 
example of the former approach is the minimax algorithm (discussed above), which estab-
lishes the best strategy to minimise loss (Osborne 2004). Others have built on this idea, and 
developed further algorithms to adapt the minimax theorem to situations involving learn-
ing agents (Li et  al. 2019). Distributional reinforcement learning has also emerged as a 
technique that considers not only the optimal action, but instead takes into account the full 
distribution of the potential return (Bellemare et al. 2023). Whereas these approaches focus 
on minimising loss, Ganzfried’s (2023) approach discussed above balances between the 
maximin algorithm and Nash Equilibrium strategies, resulting in a ‘safe equilibrium.’ The 
trembling hand perfect equilibrium (Selten 1975) similarly attempts to account for some 
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degree of uncertainty, although for very small values of ε, where ε is the probability of an 
agent ‘making a mistake’ and not following the optimal strategy. A more efficient version 
of the minimax approach is given by the alpha-beta pruning search algorithm, which elimi-
nates provably irrelevant subtrees to arrive at the same optimal move as minimax (Knuth 
and Moore 1975). Bowling and Veloso (2002) propose an algorithm that builds on their Win 
or Learn Fast (WoLF) principle: whereas the safe equilibrium approach adapts to a measure 
of the opponent’s rationality (Ganzfried 2023), the WoLF principle reacts to their perceived 
position in relation to other agents by increasing learning rate when losing, and erring on 
the side of caution when winning. They note that previous multi-agent learning algorithms 
offered either convergence or rationality, whereas the WoLF principle achieves both proper-
ties. These varying approaches propose ways to adapt to the opponent’s behaviour in such a 
way as to maximise reward in highly uncertain scenarios.

Another recent line of research is that of opponent shaping techniques. These techniques 
attempt to leverage the learning of opponents to one’s advantage. Examples of these meth-
ods include the Learning with Opponent-Learning Awareness (LOLA) algorithm (Foerster 
et al. 2018), the Stable Opponent Shaping (SOS) algorithm (Letcher et al. 2019), or the Meta 
Multi-Agent Policy Gradient (Meta-MAPG) theorem (Kim et al. 2021). Lu et al. (2022) 
argue that these previous methods are myopic, asymmetric and require the use of higher-
order derivatives; they instead propose Model-Free Opponent Shaping (M-FOS), which 
formulates the problem as a meta-game and does not require a model of the opponent’s 
underlying learning algorithm. However, the application of these models remains relatively 
limited, focusing on social dilemma settings like the Iterated Prisoner’s Dilemma. Further 
research is needed into the wider application of these methods, and the potential to combine 
them with loss-minimising techniques.

Aside from approaches intended for adversarial scenarios, methods have emerged that 
address the interaction of artificial agents with irrational humans. As mentioned in the previ-
ous section, some of these methods first attempt to model the biases and irrational behaviour 
exhibited by human agents (Uprety and Song 2018; McElfresh et al. 2021), in particular as 
attempting to model human behaviour as noisy-rational has been shown to lead to lower per-
formance (Kwon et al. 2020; Chan et al. 2021). Azaria (2022) highlights that existing mod-
els generally assume that interactions between artificial and human agents can be modelled 
as purely zero-sum or fully cooperative, as such ignoring the human’s goals and potential 
for adaptation to the behaviour of the artificial agent. Future work can build on techniques 
covered in the previous section for identifying and modelling systematic irrational behav-
iour in human agents, and develop methods that optimise the interaction between artificial 
and human agents in scenarios that are closer to the real world.

5  Human and AI irrationality

5.1  Incorporating human irrationality into AI

Although we have seen that humans often do not act fully rationally, and human reasoning 
exhibits many cognitive biases, there are cases where we may want to incorporate aspects 
of human reasoning into artificial agents. Initially it may appear counterintuitive—if we 
have established that these biases often violate the laws of logic or probability, why would 
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we want machines to do the same? In answering this question, it is useful to reflect on 
why these biases appear in human reasoning. As we have seen, psychologists argue that in 
certain domains, heuristics and biases found in human reasoning can be remarkably effec-
tive (Kahneman and Tversky 1982; Gigerenzer and Goldstein 1996; Gigerenzer and Brigh-
ton 2009). For instance, sometimes we fail to consider all available information, opting 
instead for quicker decision-making—in many situations, this may be a desirable strategy 
for humans to adopt (Sutherland 1992). Similarly, we may sometimes want an artificial 
agent to prioritise a quicker decision as opposed to a more ‘rational’ one, in a sense follow-
ing Simon’s (1957) idea of satisficing, and Russell’s (1997, 2016) argument that in many 
cases bounded rationality is a more desirable goal than perfect rationality. It is also impor-
tant to note that this is nothing new, humans have long inspired the development of AI, 
with notable examples including neural networks (Gurney 2018) and reinforcement learn-
ing (Littman 2015).

A distinction must be made between artificial agents that inadvertently incorporate human 
biases (primarily due to the data they have been trained on), and agents that intentionally 
incorporate some of these biases and heuristics. There are many examples of the former in 
statistical learning, such as in computer vision (O’Neil 2016; Buolamwini and Gebru 2018; 
Cook et al. 2019; Wilson et al. 2019; Noiret et al. 2021; Papakyriakopoulos and Mboya 
2023) and NLP (Bolukbasi et al. 2016; Rozado 2020; Dawkins 2021; Hovy and Prabhu-
moye 2021; Stanczak and Augenstein 2021), where the data used to train models contained 
biases and has resulted in negative or harmful consequences. Risks arise when machines 
that learn from human data miscategorise human irrationalities as human values and opti-
mise for these irrationalities (Gorman and Armstrong 2022). With the advent of LLMs, we 
are now seeing agents that not only inadvertently incorporate human biases, but also mimic 
limitations in human reasoning and exhibit the same cognitive biases (Bubeck et al. 2023; 
Macmillan-Scott and Musolesi 2024; Binz and Schulz 2023; Hagendorff et al. 2023).

However, in this section we focus on the second case—on those instances in which it 
may be beneficial to purposefully integrate heuristics into the way artificial agents make 
decisions. Often, the benefits of incorporating heuristics arise in cases where there are time 
constraints, limited computational resources, or partial information (Simsek 2020). Giger-
enzer (2001) presents an illustrative example of a robot attempting to catch a ball: following 
a rational approach, the robot would need information on all the possible trajectories the 
ball might follow, as well as ways to measure it’s velocity and angle, among other factors. 
However, professional athletes use the simple heuristic of keeping their eyes on the ball as 
they run towards it. Using this heuristic, a robot would only need to know the angle of gaze 
to achieve a high performance—a much simpler, ‘less rational’ method that achieves the 
same result.

Gulati et al. (2022) propose a taxonomy of cognitive biases present in human decision-
making that may be valuable in the development of AI systems. While they highlight that 
this is particularly important for the future of human–machine collaboration, we argue that 
the benefits of research in this area will also be present in interactions between artificial 
agents, as well as in single agent settings. One example of this are the symmetry and mutual 
exclusion biases, which have been incorporated into a Naïve Bayes classifier (Taniguchi 
et al. 2017) and neural networks (Taniguchi et al. 2019; Manome et al. 2021). The authors 
show that these methods can be used to produce models that learn from small and biased 
datasets, and that their models outperform more traditional machine learning methods. Oth-
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ers have also demonstrated how decision heuristics can outperform more complex statistical 
methods when there is limited data and training examples (Brighton 2006; Katsikopoulos 
2011; Simsek and Buckmann 2015; Buckmann and Şimsek 2017). Similarly, within natu-
ral language, this type of approach can remove the need for a human trainer and lead to 
agents that learn from their own mistakes and correct this in planning sequences (Shinn 
et al. 2023). The effective use of human cognitive biases is also evident under uncertainty: 
Chen et al. (2020) show that an agent that integrates calculative and comparative decision-
making outperforms an agent that merely calculates the optimal choice.

The benefits of incorporating cognitive biases into artificial agents do not only relate to 
improving the capabilities of boundedly rational agents. The use of heuristics can also be 
used to enhance the explainability of AI processes (Newell et al. 1958; Simsek 2020), as 
well as to design agents that are more robust to interactions with non-rational or boundedly 
rational agents (Wen et al. 2020). Examples of the latter can be found in the study of popula-
tion dynamics (Yang et al. 2018) and video game design (Hunicke 2005; Peng et al. 2017). 
Much of the research in this area is recent, so questions remain as to the potential benefits 
that can arise from incorporating heuristics derived from human decision-making into arti-
ficial agents; the application to boundedly rational agents is clearer, but it has been shown 
that the impact of such heuristics can extend beyond bounded rationality. Notably, research 
has shown that behaviours that are often thought to be irrational in humans can emerge in 
artificial agents from a learning process that seeks to maximise cumulative reward (Howes 
et al. 2016; Chen et al. 2020).

5.2  Human–AI interaction with irrational machines

Artificial agents are becoming more and more integrated into our lives, and the frequency of 
human–AI interactions is quickly rising (Amershi et al. 2019). Therefore, it is important to 
understand how the rationality of these artificial agents impact the interaction. At the same 
time, it is worth noting that this relationship is bidirectional: the behaviour of machines 
and humans will each impact the other, and it is this co-behaviour that required a deep 
understanding (Rahwan et al. 2019). Small errors in the algorithm or data may have large 
unpredictable effects on society, and could even have the potential to alter the social fabric 
(Rahwan et al. 2019). As underlined by the field of AI safety, flaws in the design of AI sys-
tems may result in emergent behaviours that are potentially harmful and may pose a risk to 
society (Amodei et al. 2016; Hendrycks et al. 2022).

Although the goal is often to create agents that are as close to perfectly rational as pos-
sible, humans may feel more comfortable in interactions with agents that are slightly irra-
tional or unpredictable. This is particularly relevant with the widespread use of LLMs like 
ChatGPT. On the other hand, artificial agents that are less rational may be perceived as 
untrustworthy or incompetent. The discrepancy between an individual’s expectations and 
their perception of a smart system’s actions can lead to the human perceiving the system 
as irrational (Abadie et al. 2019). The threshold for losing trust in algorithms appears to be 
much lower than for humans—a phenomenon referred to as algorithmic aversion (Dietvorst 
et al. 2015). Studies have looked at humans’ perception of machines as an aid to decision-
making (Binns et al. 2018), and the use of machines has been shown in cases to amplify 
human biases (Glickman and Sharot 2022).
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Some have argued that human–machine collaboration may require AI systems that rep-
licate human cognitive biases (Gulati et al. 2022). However, it has also been shown that we 
do not necessarily perceive and evaluate machines in the same way as humans and other 
components of our environment (Hidalgo 2021). Therefore, some of the biases that have 
been studied in human interaction may not be present in human–AI interaction, such as the 
social desirability bias (Gulati et al. 2022). Studies have looked at how the incorporation 
of human physical attributes affect the dynamics of the interaction: Pizzi et al. (2020) show 
how anthropomorphic agents can have a positive impact on the human’s perception of the 
artificial agent, increasing satisfaction and acceptance; a similar effect is found for increas-
ing trust in agents with more anthropomorphic features (Waytz et al. 2014). Whether this 
is also the case with cognitive attributes is currently not well understood (Shanahan 2024). 
Another important aspect is human’s perception of machine morality; Benn and Grastien 
(2021) propose an approach of conveying ethical understanding in human–robot interac-
tions, highlighting that what matters is not only the morality of an agent, but also the appear-
ance of ethical understanding indicated by its behaviour.

6  The GenAI evaluation paradox

GenAI is unique in that it generates content in a format that humans ascribe meaning to. 
This characteristic of generative models leads to the GenAI Evaluation Paradox. There is a 
tension between what models are being trained to maximise and what they are being evalu-
ated on Goldstein (2024). This issue can be viewed as a different kind of performance vs. 
competence distinction (Firestone 2020). As LLMs are the most commonly used types of 
GenAI systems, we can take these as an example, although the same argument applies to 
other GenAI systems that produce different types of output like visual or audio output (or 
combinations of modalities). At their core, LLMs aim to achieve predictive or generative 
rationality: this can be measured by looking at how good the models are at predicting the 
most likely next token. Another way to assess LLMs is in accordance to their epistemic 
rationality: the definitions of rational reasoning in philosophy and psychology discussed 
above that is used to evaluate human reasoning. For instance, Jiang et  al. (2025) deter-
mine four necessary axioms for a rational agent: information grounding, logical consistency, 
invariance from irrelevant information, and orderability of preference. They clearly state 
that these axioms have been derived from work in cognitive psychology, so are similar to 
principles we would use to evaluate rational reasoning in humans.

The evaluation of LLM outputs through epistemic rationality leads to anthropomorphi-
sation of LLMs and often results in researchers concluding that these models reason in 
irrational ways, such as by displaying human biases or outputting hallucinations. There is a 
misalignment between what we are training the models to maximise: generative rationality, 
and the behaviour we in actuality want these models to exhibit: epistemic rationality. There 
may then be a need to reevaluate how we are setting the training goals of GenAI systems 
to ensure that these are more in line with what we want to assess them on, whether this be 
accuracy, morality, or another metric.

The behaviour exhibited by LLMs that is interpreted as irrational sometimes mirrors 
biases in human reasoning, whereas other times it emerges in other ways. Numerous studies 
have applied cognitive psychology tools to evaluate whether LLMs replicate human cog-
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nitive biases and heuristics (Binz and Schulz 2023; Macmillan-Scott and Musolesi 2024; 
Hagendorff et al. 2023), treating these models like participants in a psychology experiment 
and evaluating their outputs as you would for humans. The presence of this mimetic irratio-
nality in LLM reasoning arises from the data they are trained on, which contains our own 
biases. However, sometimes LLMs display emergent irrational reasoning that is not present 
in the training data. For instance, they may hallucinate facts, contradict themselves, or give 
incorrect explanations. The presence of such emergent behaviour can sometimes be a prod-
uct of additional training mechanisms such as Reinforcement Learning from Human Feed-
back (RLHF). RLHF has been shown to induce sycophantic behaviour in LLMs (Sharma 
et al. 2024), even to the point of displaying manipulative and deceptive tendencies in order 
to maximise feedback from users (Williams et al. 2025). Again, this is an example where the 
model is performing rationally according to its goals, but not according to what we consider 
rational or desirable. Aside from RLHF, other types of alignment and safety fine-tuning can 
similarly be at odds with the model’s initial objective function. These methods often alter 
the model’s weights, and some even modify the objective function itself (e.g., RLHF or 
contrastive learning). These efforts generally aim to constrain the output of GenAI systems 
within ethical and social norms. There is also a tension between the different types of safety 
fine-tuning; for instance, some types of fine-tuning may attempt to improve truthfulness, 
whereas RLHF can counteract this by reinforcing more sycophantic tendencies, which leads 
to LLMs lying in order to obtain positive feedback (Williams et al. 2025).

It is not enough to merely reevaluate how we define the model’s objectives or evaluation 
metrics. Depending on the application and scenario that a GenAI system is being used in, 
we will want to maximise or curtail certain behaviours. Therefore, working to develop more 
specialised systems that are better suited to particular applications may mean we are better 
able to define what we are trying to achieve. We have already discussed that there is no uni-
fied conception of rationality within computer science, and that different types of rationality 
are better suited to certain applications. Rapid advancements in GenAI compel us to answer 
these questions with more urgency. In critical decision-making scenarios we will want to 
maximise properties like truthfulness and accuracy, whereas in more creative applications 
we may want to maximise originality. It is worth noting that virtually none of the applica-
tions that LLMs are currently applied to, if any, seek to maximise solely the performance 
of next-token prediction. Nonetheless, all of its current applications require the next-token 
prediction to work at least at a satisfactory level, leading us back to Simon’s idea of satisfic-
ing and bounded rationality (Simon 1957, 1982).

GenAI presents a difficult balancing act between overlapping and sometimes conflict-
ing objectives that lead to a rationality entanglement: we need to find the right equilibrium 
between generative performance of next-token prediction, alignment to human preferences, 
epistemic coherence, and task specialisation. Disentangling the tension between these aims 
is crucial to inform model architectures and evaluations.

7  Open questions

Below we define a set of open questions in a number of areas of rationality in AI. The list is 
not exhaustive but sets out a series of promising research directions or areas that have much 
to be explored.
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7.1  Defining rationality in AI

1.	 Is a general, unified definition of rationality in AI achievable?
2.	 How should rationality be defined for GenAI systems?
3.	 Should we distinguish between definitions and assessments of rationality for symbolic 

AI and statistical learning?

 As we have seen, different disciplines define rationality in very different ways. The under-
standing of rationality within AI has been influenced by some of these, particularly by work 
within economics, philosophy, and psychology. As artificial agents become more complex 
and capable, in particular considering the emerging capabilities of foundation models, it is 
important to determine whether we can or should establish a unifying definition of what 
constitutes a rational agent. A general framework could provide common ground for evalu-
ating reasoning and decision-making across systems, but may be too general to prove use-
ful. It will likely not suffice to adapt a definition from human rationality; we need to develop 
a definition of machine rationality distinct to that of humans. Even a distinct definition for 
AI agents that is set apart from human rationality will likely need to be further categorised. 
For example, GenAI systems may need to be evaluated in light of the GenAI Evaluation 
Paradox. Additionally, distinctions between symbolic AI and statistical learning approaches 
may warrant separate classification frameworks.

7.2  Training and evaluation

4.	 (a)	� What novel training or evaluation methodologies can be developed that account    
for the GenAI Evaluation Paradox? 	

(b)	 Should we develop benchmarks or testing suites that integrate multi-dimensional 
rationality, particularly for GenAI?

5.	 How can we realign the training objectives of GenAI systems with human-evaluated 
outputs?

6.	 Should we evaluate rational processes as well as rational output?

In order to avoid the apparent failures in competence being judged because of poor perfor-
mance (Firestone 2020), we need to ensure that we are training AI agents with objectives 
that are aligned to what they will be evaluated on. This issue is particularly pertinent for 
GenAI, where there is often a misalignment between training and evaluation. We are gener-
ally interested in output characteristics like accuracy or lack of harmful content, whereas, at 
their core, GenAI systems are not trained to maximise for these objectives. The rationality 
entanglement present in GenAI systems raises the question of whether we can account for 
rationality in multiple dimensions. Similarly, we generally focus on measuring only outputs, 
whereas looking at the rationality of reasoning and decision-making processes could pro-
vide novel insights.
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7.3  Conflicts and trade-offs

7.	 What are the computational and ethical trade-offs between pursuing perfect vs. bounded 
rationality in AI?

8.	 What are the safety implications of building systems that deviate from perfect rationality?
9.	 Can a single system maximise multiple types of rationality at once, or will there inevi-

tably be a trade-off?

When setting our objectives in the design of AI agents, there are a number of conflicts and 
trade-offs that must be considered. Perfect rationality has been shown to be an unrealistic 
goal (Russell 1997, 2016; Lee 2021); in choosing to aim instead for goals like bounded 
rationality, we need to understand what the implications of this choice are. Systems that 
deviate from perfect rationality may introduce unpredictability. Also, as we saw with 
GenAI, depending on how we evaluate a system, there may be more than one type of ratio-
nality that can be contained and assessed within one system. In such a case, we will likely 
need to prioritise which type of rationality we are most interested in.

7.4  Understanding irrationality in AI

10.	 Can we develop a generalisable framework to categorise types of irrationality in artifi-
cial agents?

11.	 In what scenarios can the incorporation of irrational behaviour improve capabilities 
relating to issues like trust, performance or cooperation?

12.	 Can the modelling of irrationality in AI provide insights into human reasoning and 
decision-making?

13.	 How can we distinguish between actual irrationality and deceptive behaviour in artifi-
cial agents, especially in adversarial settings?

We need to deepen our understanding not only of rationality, but also of the various forms 
that irrationality can take. We have seen that irrational behaviour does not necessarily lead 
to sub-optimal outcomes. A more general and comprehensive categorisation of different 
types of irrationality would be beneficial in clearly establishing when these types of behav-
iours can be useful and improve capabilities of AI systems or help us to investigate charac-
teristics of human behaviour. A distinction must also be made between irrational behaviour 
and behaviour that is perceived to be irrational, but may in fact be deceptive. For instance, 
LLMs outputting inaccurate information may be a symptom of manipulative or deceptive 
behaviour (Williams et al. 2025).

7.5  Human–AI interaction

14.	 Can we integrate human heuristics into AI reasoning to improve interpretability?
15.	 Should AI aim to correct human irrationality or adapt to it in collaborative contexts?
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16.	 How should AI systems balance exploration and exploitation in environments where 
human preferences are uncertain or evolving?

Heuristics and biases in human reasoning may at times lead us to incorrect conclusion, but 
they are useful in making decisions under uncertainty. Similar mechanisms can potentially 
be integrated into the decision-making of AI systems, and these may even improve inter-
pretability (Newell et al. 1958; Simsek 2020; Simsek et al. 2016).

Increasingly, AI agents will need to interact with humans, and there are many open ques-
tions around how to approach this. In some cases, like safety-critical scenarios, it may be 
beneficial to try to correct human irrationality, whereas in others the AI system may need 
to adapt to this behaviour. When artificial agents encounter human irrationality, we need to 
decide what the interaction should look like. In particular, learning from human behaviour 
may be more complex than learning from artificial agents due to our changing preferences 
and reward functions (Carroll et al. 2024).

7.6  Multi-agent and collective rationality

17.	 What combinations of opponent modelling techniques yield the most robust results in 
environments with irrational agents?

18.	 Can we study collective rationality in AI systems in the same way that we do individual 
rationality?

Multi-agent settings with potentially irrational agents require robust opponent modelling 
techniques. It remains to be seen what methods can be adapted from adversarial scenarios, 
and what additional methods can be developed for these setting.

In this paper, although we have discussed multi-agent scenarios, the focus has been on 
individual rationality. Much of the literature, not just in computer science, has focused on 
individual rationality (Knauff and Spohn 2021b). We will likely need to take a different 
approach to better understand collective rationality, distinguishing between types of agents, 
as well as between scenarios involving only artificial agents and those including humans. 
Collective or social rationality adds additional dimensions, like group dynamics, communi-
cation and shared goals.

8  Conclusion

Rationality and irrationality play an important role within AI. Designing the ‘rational agent’ 
has been the objective and the focus of research and practice in the field for many years. 
However, achieving this requires a common understanding of what it means to be rational. 
As we have seen, definitions of rationality within economics, philosophy, and psychology 
have informed our understanding of the concept within AI. We may aim for different types 
of rationality, as certain types will be more suitable in some contexts. Crucially, a distinc-
tion must be made between how we define rationality in humans and machines. This article 
provides a survey of the existing literature and methods in this area. Having established 
that particular irrational behaviour may in fact be optimal under certain conditions, it is 
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clear that the issue is complex. When it comes to GenAI, additional questions and tensions 
arise regarding how we train and evaluate these models. From a methodological perspec-
tive, techniques have emerged for the identification and interaction with irrational agents. 
However, these remain scarce—further research is needed in this area, both looking at how 
existing opponent modelling or shaping methods may be adapted to account for irrational-
ity, as well as how they may be combined to better suit the problem at hand. The question 
of interacting with irrational agents is crucial not only among machines, but also because 
humans often act in irrational ways. Human–AI interaction is a key aspect of today’s AI sys-
tems, namely with the case of systems based on LLMs and their widespread use. Cognitive 
biases may in some instances be leveraged to improve the performance of artificial agents, 
whereas in human–AI interaction the design of machines will need to account for the irratio-
nal behaviour of humans. At the same time, further understanding is needed around how the 
rationality of an artificial agent impacts the dynamics of human–AI interaction—there may 
be cases where it is beneficial for the artificial agent to appear not fully rational, whereas in 
other cases this can deem the agent untrustworthy. This article lays out open questions relat-
ing to rationality within AI. As we strive to create more capable agents that are increasingly 
integrated in everyday lives, these questions will need to be addressed.
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