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Abstract

In this paper, we introduce Partial Informa-
tion Decomposition of Features (PIDF), a new
paradigm for simultaneous data interpretabil-
ity and feature selection. Contrary to tradi-
tional methods that assign a single importance
value, our approach is based on three metrics
per feature: the mutual information shared
with the target variable, the feature’s con-
tribution to synergistic information, and the
amount of this information that is redundant.
In particular, we develop a novel procedure
based on these three metrics, which reveals
not only how features are correlated with the
target but also the additional and overlapping
information provided by considering them in
combination with other features. We exten-
sively evaluate PIDF using both synthetic and
real-world data, demonstrating its potential
applications and effectiveness, by considering
case studies from genetics and neuroscience.

1 INTRODUCTION

Data interpretability and feature selection are key ar-
eas of research in machine learning (ML). One way in
which researchers quantify the relative significance of
a model’s input attributes is by assigning each of them
a feature importance. Multiple paradigms for deriving
feature importance have been developed over the past
decades. Some of these, inspired by techniques from
economics, are based on Shapley values (Keinan et al.,
2004; Cohen et al., 2007; Apley and Zhu, 2020; Debeer
and Strobl, 2020; Catav et al., 2021; Kwon and Zou,

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

2022; Janssen et al., 2023); others instead rely on the
quantification of the correlation between the model’s
target and its features (Peng et al., 2005; Brown et al.,
2012; Gao et al., 2016; Chen et al., 2018; Schnapp and
Sabato, 2021; Covert et al., 2023). Feature importance
can be used to explain the relationships within the
underlying data and select features (Covert et al., 2020;
Weinberger et al., 2023). However, the authors Catav
et al. (2021) and Janssen et al. (2023) highlighted
inconsistencies in achieving these dual objectives si-
multaneously. To emphasize this, they considered two
perfectly correlated features. If selecting from them,
an optimal method would assign one of the two as
important, discarding the other. On the other hand,
for an exact understanding of how they reduce the un-
certainty of the target, they should be assigned equal
importance.

In this paper, we develop partial information decom-
position of features (PIDF), a novel method that si-
multaneously explains data and selects features, even
in the presence of complex interactions such as those
highlighted by Catav et al. (2021) and Janssen et al.
(2023). PIDF relies on novel definitions of synergy, re-
dundancy, and mutual information per feature1. PIDF
builds upon partial information decomposition (PID)
(Chechik et al., 2001; Williams and Beer, 2010), the
classic framework for studying variable interactions.
However, unfortunately, PID is based on the calcula-
tion of a large number of intractable quantities (Makkeh
et al., 2019), making it essentially inapplicable to real-
world datasets. Instead, we elect to use the interaction
information (II) to detect synergy and redundancy.
However, II is designed to be applied to generic sets
of variables and does not possess the ability to dif-
ferentiate between synergy and redundancy on a per-
feature basis (Williams and Beer, 2010). In response to
this, we introduce the concepts of feature-wise synergy
(FWS) and feature-wise redundancy (FWR), which are

1Code available at: https://github.com/
c-s-westphal/PIDF.
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not only able to capture these relationships but are
also computationally tractable even when describing
large datasets. PIDF isolates the FWR, FWS and
MI per feature and allows them to be presented in an
interpretable manner as illustrated in Figure 1. We
show that PIDF effectively explains the data and se-
lects optimal features. We evaluate PIDF’s versatility
and performance on various synthetic and real-world
datasets, demonstrating its robustness and efficacy.

2 RELATED WORK

Dataset interpretability. Feature importance has
been used to enhance interpretability and select fea-
tures (Fisher et al., 2019; Covert et al., 2020; Aas et al.,
2021). However, Catav et al. (2021) highlighted that
these dual perspectives do not appear universally con-
sistent. This dilemma prompted Catav et al. (2021) to
propose axioms for assigning feature importance when
the goal was solely to explain the underlying data.
Building on these principles, Janssen et al. (2023) fur-
ther refined Catav’s axioms for interpretability, while
also enhancing speed and ensuring unrelated variables
do not receive a non-zero importance rating. That
said, these axioms fail to handle complex redundancies,
consider the following two cases. First, suppose there
exist three features, two of which are indistinguishable,
one is unique, and all three reduce the uncertainty of
the target equally. According to both the ‘Invariance
under Redundant Information and Symmetry under
Duplication’ and ‘Elimination’ axioms presented in
Janssen et al. (2023) and Catav et al. (2021) all three
variables will be assigned the same importance. We
contend that to explain the underlying relationships
within data, it is essential to identify when informa-
tion is redundant and consequently more disposable.
Secondly, while these axioms of feature importance
do account for higher-order interactions, they cannot
distinguish when the interactions are synergistic and
which features are involved.

Partial information decomposition of features
for feature selection. Within the context of feature
selection, the most relevant work to ours is that pro-
duced by Wollstadt et al. (2023) as they truly develop
a framework for the PID of features. Here, they are
not using their PID adaptation to describe the rela-
tionships within data and select features. Rather, it is
used to explain why certain features were chosen over
others. Their selection method is a derivative of the
conditional likelihood maximization framework unified
by Brown et al. (2012); in which a feature is selected
if augmenting it to the set of those already chosen
maximizes the correlation with the target. At each
round of selection, they decompose the contributions
of each potential feature according to their adaptation

of the PID paradigm. Unfortunately, this method is
unable to identify fully synergistic variables (i.e, vari-
ables that considered alone are non-informative, but
combine to describe the target). Such features will
not be selected using this method, and their synergy
will remain undiscovered. Another feature selection
method built upon the theoretical foundations of PID
is developed in Westphal et al. (2024). The authors
study how entropy is transferred from the features to
the target, sequentially eliminating those with a negli-
gible contribution. This method effectively identifies
synergistic variables; however, it does not consistently
identify the smaller of two redundant feature subsets.
Consider a scenario where a subset of features conveys
the same information as a single variable. The method
proposed in Westphal et al. (2024) falls short in consis-
tently choosing the more parsimonious option, which
in this case, would be a single variable.

3 RESEARCH QUESTIONS

Following the discussion of the related work in the
previous section, we can identify three open research
questions for which we will demonstrate that PIDF
represents an effective solution (in particular, the first
two relates to interpretability and the final one to
feature selection):

• The redundant variables question (RVQ): Is it pos-
sible to distinguish two fully redundant features
from one of their non-redundant counterparts if all
three reduce the uncertainty of the target equally?

• The synergistic variables question (SVQ): Let us
consider the case where two features combine to
be fully informative regarding the target, whereas,
if taken singularly, they are completely uninfor-
mative. Is it possible to reveal these variables are
only useful in combination?

• The minimal subsets question (MSQ): Suppose
there exist multiple perfectly redundant feature
subsets, is it possible to consistently select the
smallest one?

4 PIDF AT A GLANCE

4.1 Overview

Let the input to a ML model be denoted x =
(f1, f2, ..., fN ), where fi is a feature instance. By ran-
dom sampling from the elements of our input list fi,
and from the realizations of the ground truth y, we rep-
resent not only all possible features as a set of random
variables (written as F = {F1, F2 . . . FN}), but also the
ground truth (written as Y ). Using these distributions,
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Figure 1: PIDF at a glance. The diagram on the left shows the interactions that characterize how feature Fi

interacts with the remaining features (Fj , Fk) to describe the target. The bar graph on the right shows how PIDF
can be used to represent these quantities in an interpretable manner.

PIDF aims to elucidate not only the importance of a
feature, but also the inter-feature interactions. PIDF
derives three information-theoretic quantities per fea-
ture, namely FWS, FWR, and MI. These quantities
are then used to understand how the feature of interest
(labeled Fi ∈ F) interacts with the remaining features
(labeled Fj , Fk, Fl ∈ F\Fi

) to describe the target. By
considering this fine-grained decomposition and analy-
sis, we are also able to deal with limit cases, such as
the perfectly correlated features problem highlighted
by Catav et al. (2021) and Janssen et al. (2023).

To enhance the interpretability of PIDF’s results, we
present these three quantities as shown in Figure 1.
Per feature we will have three bars, the first of which
(red), will describe the MI shared with the target. The
second (green), will quantify the FWS this feature
provides in combination with the remaining features.
These red and green bars will stack to give the maximal
conditional information (MCI). To the right-hand side
of this, we will present a purple bar that reveals the
extent to which the MCI provided by this feature is
redundant. FWS and FWR arise due to interactions;
consequently, we label these bars with the other features
with which these interactions occur. For instance, in
Figure 1, we observe that Fi interacts synergistically
with Fj and redundantly with Fl.

4.2 A Practical Example

To provide a better intuition of the proposed approach,
let us consider the following example. Suppose we are
trying to predict housing prices in Northern California,
using the following per-property data: longitude, lati-
tude, and distance to the coast. Individually, given its
geography, longitude, and latitude offer limited insight

into housing prices. However, they combine synergisti-
cally to provide an exact location — a highly informa-
tive feature. Furthermore, longitude is redundant when
compared to coastal proximity. The application of PID
to this example would require the estimation of 20 dif-
ferent terms, which is not practically possible with the
existing techniques (Williams and Beer, 2010; Makkeh
et al., 2018, 2019). On the other hand, tractable meth-
ods, such as Chechik et al. (2001); Williams and Beer
(2010); Griffith and Koch (2014); Bertschinger et al.
(2013); Griffith and Ho (2015), are unable to capture
the interactions of individual features, instead sug-
gesting that the combination of longitude, latitude,
and distance to the coast provides overall redundant
information. For this reason, we re-formulate both syn-
ergy and redundancy as FWS and FWR, respectively.
These quantities can reveal detailed interactions on a
per-feature basis, while remaining tractable. Leverag-
ing these quantities, we develop PIDF, an algorithm
whose interpretable representation of FWS, FWR, and
MI, allows for simultaneous data interpretation and
feature selection.

5 FEATURE-WISE PID

In this section, we introduce FWS and FWR more
formally. First of all, we use the definition of MI
as introduced in Shannon (1948). PID exhaustively
describes all possible feature interactions in a set of
variables (Williams and Beer, 2010). Consequently, one
may expect that FWS and FWR are derived from the
PID terms. However, as discussed in the introduction,
these values are far too numerous and their calculation
too computationally-expensive to be considered appli-
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cable to real-world datasets2. Consequently, the defini-
tions FWS and FWR extend the concept of interaction
information (II) (Williams and Beer, 2010; Chechik
et al., 2001). The II for two features is defined as fol-
lows: I(Y ;F1;F2) = I(Y ;F1, F2)−I(Y ;F1)−I(Y ;F2),
if these two features interact synergistically then
I(Y ;F1, F2) > 0, if the opposite is true, this indicates
redundancy. The simplest approach would be to use II
in its current form to calculate both the redundancy
and synergy components of our output (purple and
green bars in Figure 1). However, this approach has
considerable shortcomings as detailed in the following
section.

Measuring feature-wise synergy. When assessing
the synergistic contribution of an individual feature,
the aim is to determine how much extra information
a feature can reveal about the target by combining
with the remaining features. One method, adopted
in Wollstadt et al. (2023), rewrites the MI consid-
ering the feature set as a two-body system, where
the feature of interest interacts with those remain-
ing, such that: F = {Fi,F\Fi

}. We re-apply this
reasoning to the II and we obtain: I(Y ;Fi;F\Fi

) =
I(Y ;Fi,F\Fi

) − I(Y ;F\Fi
) − I(Y ;Fi). However, this

definition cannot describe features that interact both re-
dundantly and synergistically. To explain this, we work
through the following simple example: suppose that
Fi is completely uninformative in itself, but combines
with Fj ∈ F\Fi

via an XOR function to fully describe
Y (satisfying I(Y ;Fi, Fj) = H(Y )). Moreover, let us
suppose there also exists Fk ∈ F which is identical
to Fi (Fi ≡ Fk). In this case, the perfect redundancy
between Fi and Fk ensures that I(Y ;Fi;F\Fi

) = 0.
However, for a full understanding of the underlying
data we would like to know that the variable Fi did
provide synergistic information about Y in combina-
tion with Fj , despite it being redundant. Motivated
by this example, we define the FWS as the maximum
extra information gained by adding a feature (Fi) to
any subset of P(F). More formally, this becomes:
FWS(Y ;Fi;F\Fi

) = maxPms∈P(F\Fi
) I(Y ;Fi;Pms).

This describes the extra reduction in uncertainty of
the target caused by considering Fi collectively with
Pms, the subset of maximum synergy. Combining
FWS(Y ;Fi;F\Fi

) with I(Y ;Fi) results in the MCI
(MCI(Y ;Fi,F\Fi

) = I(Y ;Fi) + FWS(Y ;Fi;F\Fi
)),

i.e., the maximum possible reduction in uncertainty of
the target caused by the feature Fi.

Measuring feature-wise redundancy. When as-
sessing feature-wise redundancy, our goal is to quantify
to what extent the MCI (FWS(Y ;Fi;F\Fi

)+I(Y ;Fi))
is redundant. Consequently, we require a value with

2For a more detailed comparison of PIDF to PID please
refer to Appendix A.

the following properties: Firstly, it should be positive.
Secondly, it should be smaller than the MCI. Conse-
quently, we define the FWR as: FWR(Y ;Fi;F\Fi

) =
FWS(Y ;Fi;F\Fi

) − I(Y ;Fi;F\Fi
). This expression

quantifies the discrepancy between the maximum and
overall reduction in uncertainty of the target variable
Y caused by feature Fi when combined with any subset
of features and with all remaining features, respectively.
Intuitively, such a definition aligns with standard def-
initions of redundancy, that measure the difference
between the maximum and true entropy of a variable
ensemble (Paluš, 1996). Moreover, FWR satisfies the
desirable properties outlined to begin this section and
can be related to the MCI via the following theorem:

Theorem 1: The difference between the MCI
(i.e., FWS(Y ;Fi;F\Fi

) + I(Y ;Fi)) and the
FWR(Y ;Fi;F\Fi

) is the overall conditional in-
formation (OCI) contributed by Fi. More formally:
FWS(Y ;Fi;F\Fi

) + I(Y ;Fi) − FWR(Y ;Fi;F\Fi
) =

I(Y ;F\Fi
, Fi)− I(Y ;F\Fi

).

Proof. See Appendix B.1.
In Theorem 1, we have shown that the difference be-
tween the MCI, and our definition of feature-wise re-
dundancy FWR(Y ;Fi;F\Fi

), is the non-redundant in-
formation gained by adding Fi to the set F\Fi

(labeled
OCI in Figure 1). It follows that we have developed a
consistent theory of feature-wise PID.

6 PIDF

Thus far, we have introduced FWS and FWR, explain-
ing that we aim to isolate these quantities alongside MI
for data interpretability. The simplest method to do
this would be to maximize I(Y ;Fi;F\{Fi}) across all
possible subsets to find Pms for each feature Fi. How-
ever, this is computationally inefficient. To overcome
expensive subset searches, we perform the following
steps. We first introduce a measure with the ability to
evaluate pairwise synergy or redundancy. This allows
us to systematically assess whether feature Fj should
be added to Fi’s set of maximum synergy, avoiding
costly subset searches. We then discuss potential ap-
plications of this measure and highlight some flaws.
Before using these examples to motivate an assumption
about the data that bounds the values our measure can
take. Finally, we leverage these bounds for a practical
implementation of PIDF.

6.1 Interaction Information Based Measure

To begin, we introduce the following measure:

θ(Y ;Fi;Fj ;P\{Fi,Fj}) = I(Y ;Fi;P\{Fi})

− I(Y ;Fi;P\{Fi,Fj}), (1)
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where P\{Fi,Fj} ∈ P(F\{Fi,Fj}) and
P\{Fi} ∈ P(F\{Fi}). By comparing two IIs,
θ(Y ;Fi;Fj ;P\{Fi,Fj}) quantifies how feature Fj affects
Fi’s ability to reduce the uncertainty of the target.
Positive values of θ indicate that feature Fj interacts
synergistically with Fi, and should be added to the
Fi’s set of maximum synergy. Meanwhile, negative
values imply redundant information is shared between
the two features. Using θ we aim to illuminate all
synergistic interactions, enabling the calculation of
FWS and FWR.

6.2 Handling Redundant Information

We now describe how, if features in the set F\Fi
pro-

vide redundant information regarding feature Fi, it
impedes the ability to calculate FWS(Y ;Fi;F\Fi

) and
FWR(Y ;Fi;F\Fi

). To do this, we first point out that
θ(Y ;Fi;Fj ;P\{Fi,Fj}), if positive, indicates that feature
Fj can be added to Fi’s set of maximum synergy. For a
simple and intuitive example of the application of this
measure, suppose we calculate θ(Y ;Fi;Fj ;F\{Fi,Fj})∀j,
adding those with positive values to Fi’s set of maxi-
mum synergy. However, this is potentially problematic.
Suppose there exists another feature Fk that is identical
to feature Fi. Even if Fi combines synergistically with
other features, all values of θ(Y ;Fi;Fj ;F\{Fi,Fj}) will
be equal to zero. To uncover synergistic interactions,
we first need to remove redundant information from
the set of all features.

A potential solution would be to remove all features
(Fj , Fk ∈ F\Fi

) with a non-negligible MI with Fi. How-
ever, this approach suffers from the following drawback.
The MI between two features does not account for
redundant interactions beyond pairwise relationships.
For instance, multiple variables can interact synergis-
tically to provide redundant information about Fi. In
practice, this is a limit case. As a result, we assume that
other features (Fj ∈ F\Fi

) do not combine synergisti-
cally (P ∈P(F\Fi

)) to provide redundant information
about the feature of interest (Fi).

Assumption 1: Features cannot combine synergis-
tically to provide redundant information about other
features. More formally: I(Fi;P\Fj

) + I(Fi;Fj) ≥
I(Fi;P).

Under this assumption, redundancy arises solely from
pairwise MI between features, greatly simplifying the
search for redundant features. We now show that,
given this assumption, I(Fi;Fj) serves as an indicator
of whether Fj is redundant or synergistic with respect
to Fi.

Theorem 2: The upper and lower bounds of
θ(Y ;Fi;Fj ;P\{Fi,Fj}) are a function of the pair-
wise MI between Fi and Fj (I(Fi;Fj)). More for-

mally: 2H(Fi) − I(Fi;Fj) ≥ θ(Y ;Fi;Fj ;P\{Fi,Fj}) ≥
−I(Fi;Fj).

Proof. See Appendix B.2.
The above states that the lower bound of our measure
is −I(Fi;Fj). Given that if θ(Y ;Fi;Fj ;P\{Fi,Fj}) < 0
then Fj is redundant with respect to Fi, it is reasonable
to use I(Fi;Fj) as an indicator of redundancy. Mean-
while, the upper bound is also a function of −I(Fi;Fj).
This indicates the opposite, i.e., low values of I(Fi;Fj)
imply that Fj is more likely to interact synergistically
with Fi.

As introduced in Section 5, deriving FWS and FWR
requires identifying the set of maximum synergy, Pms,
which includes all features, Fj , that have a positive
value of θ(Y ;Fi;Fj ;P\Fi,Fj

). To achieve this, it is
necessary to identify and eliminate all redundant ele-
ments. Conveniently, in this section, we have shown
that I(Fi;Fj) is an indicator of redundancy. Combining
these observations forms the basis of our straightfor-
ward implementation of PIDF, where we first order the
features in descending order of I(Fi;Fj) (from most
to least redundant) and then remove those deemed
redundant according to θ(Y ;Fi;Fj ;P\Fi,Fj

)3. Via this
assumption and simple implementation, we can calcu-
late FWS and FWR without costly subset searches.
We now describe PIDF in detail.

6.3 PIDF in Practice

Description of PIDF. For all possible Fi, repeat the
following steps: firstly, calculate I(Y ;Fi) to appear as
the red bar in Figure 1. Then, rank the remaining
features Fj ∈ F\Fi

in descending order of I(Fi, Fj) as,
according to our assumption, this is an indicator of
redundancy. Thirdly, iterate through the ranked fea-
tures checking if they are truly redundant according
to θ(Y ;Fi;Fj ;F\{Fi,Fj}) (the box titled ‘PIDF Algo-
rithm’ in Figure 1 illustrates this process). If so, they
can be removed from the set F\Fi

. We continue to
remove such features until the remainder are no longer
redundant, indicating the identification of the set of
maximum synergy for the feature Fi. By completing
these steps for all Fi ∈ F we derive the FWS, FWR,
and MI for each feature as desired. For an algorithmic
definition of this process, refer to Algorithm C.1 in
Appendix C, and, for an example calculation, refer to
Appendix D.

Adapting PIDF for varying estimates. II, FWS,
and FWR can be directly derived from MI. That said,

3The reason that we still evaluate θ for all Fj , even for
those features with positive values of I(Fi;Fj), is because
a non-zero MI between two features does not completely
rule out the possibility that they interact synergistically in
the presence of other variables.
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unless restricting oneself to discreet data, exact calcula-
tions of MI are not possible. Consequently, we estimate
it using methods outlined by Belghazi et al. (2018) (we
motivate this choice in Appendix K.1). These esti-
mates can randomly fluctuate, which can lead to the
erroneous identification of redundant features during
the evaluation of line 7 in Algorithm C.1. To overcome
this, when estimating any MI, the process is repeated
five times. For feature Fj to then be considered redun-
dant with respect to the chosen feature Fi there has
to be a 95% certainty that θ(Y ;Fi;Fj ;F\{Fi,Fj}) < 0.
Otherwise, the feature is classed as non-redundant.

Interpretability of FWR. We assume that features
can provide redundant information regarding one an-
other, provided that it is not synergistic. This implies
that the total redundant information in the features
must be a linear combination of individual contribu-
tions. Consequently, we need not present redundancy
as just one bar, but rather as a stack of all the indi-
vidual contributions from all the redundant features.
Please refer to Appendix B.3 for a formal proof of this
statement. As a concrete example, consider the dia-
gram labeled as MSQ in Figure 2. For feature F0, the
FWR on the right-hand side of the MCI is not repre-
sented by a single bar, but rather as one composed by
multiple stacked redundant contributions from individ-
ual features. The possibility of discriminating between
the different redundant contributions through PIDF
allows for better overall interpretability, by highlighting
which features are the most redundant.

6.4 PIDF for Feature Selection

We now provide a procedure for feature selection based
on the output of PIDF. First of all, we select all fea-
tures with a non-redundant contribution, i.e., any fea-
tures whose MCI exceeds their FWR. We then rank
the remaining features by their MCI and check in de-
scending order if any features with which they had a
non-negligible MI have already been selected. If so,
we do not add this feature; otherwise, we proceed to
add it. As was the case for PIDF, exceeding thresholds
must be done with a minimum of 95% certainty, where
the MIs at the basis of these calculations have been
estimated using multiple random seeds. The steps of
the procedure are detailed in Algorithm 2 (Appendix
C). For a fully worked example of these steps, please
refer to Appendix D.

7 EXPERIMENTAL EVALUATION

7.1 PIDF for Data Interpretability

We first evaluate PIDF’s ability to explain data, com-
paring it to three baseline methods: UMFI (Janssen

et al., 2023), MCI (Catav et al., 2021) and PI (Breiman,
2001). For a full discussion of the hyperparameters used
for all methods please refer to Appendix E. First, we
provide a detailed explanation on how to interpret the
results of PIDF. Following this, we present the remain-
ing results, initially on synthetic data and subsequently
on real-world data.

7.1.1 Example of How to Interpret the
Results of PIDF

In this section, we discuss an example of how to in-
terpret the results of PIDF, we refer to Figure 2. In
this illustration, the top row represents the results of
PIDF. We guide the reader through the Wollstadt toy
example dataset (Wollstadt et al., 2023), as it is known
to be characterized by both redundant and synergis-
tic relationships (as shown in the graph titled WT).
Firstly, we investigate the bars associated with F0. We
observe that F0 shares a large MI with the target (red
bar). However, it is also clear that the majority of this
information is redundant with respect to F1. We know
the feature is redundant with respect to F1 looking at
the number (1) reported in F0’s purple bar (i.e., the
numbers in the bars represent the subscripts of the
remaining features involved). If we now investigate
the relationships associated with the feature F1, we
observe that this feature also provides significant infor-
mation; however, it is entirely redundant with respect
to F0. Finally, investigating F2, we see this final fea-
ture combines with F0 to provide some non-redundant
synergistic information (see the green 0 above the bar).
Consequently, using Figure 2, we have identified the
following relationships in the data:

1. F0 provides significant information; although,
some of it is redundant with respect to F1.

2. F1 provides significant information; however, all of
it is redundant with respect to F0 (this indicates
that F0 contains all the information in F1 and
some).

3. F2 combines synergistically with F0 to provide
some non-redundant information (Wollstadt et al.,
2023).

7.1.2 Synthetic Datasets

We now discuss the results obtained when applying
PIDF to synthetic datasets. The first three of these
datasets were designed to highlight how current meth-
ods fail to properly address the questions introduced
in Section 2. The following five are taken from pre-
existing works. A description of these datasets can be
found in Appendix F.
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Figure 2: Comparison of feature importance indicators using synthetic datasets.
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Figure 3: Comparison of feature importance indicators applied to the California housing dataset.

Redundant variables question (RVQ) dataset.
We now design an extremely simple dataset to demon-
strate our method’s ability to answer the RVQ, as
introduced in Section 2. The dataset is designed such
that F1 ≡ F2, meaning these two features are fully
redundant with respect to one another, as revealed by
PIDF in Figure 2. Meanwhile, using MCI one would
assume that we have three features of equal importance,
without knowledge of the redundancy.

Synergistic variables question (SVQ) dataset.
We now present the evaluation conducted to answer
the SVQ introduced in Section 2. In this dataset, the
target is formed by the synergistic combination of the
two features. This is indicated by the subscripts in
the synergy bar for features F0 and F1, as shown in
Figure 2. We observe that only PIDF reveals that F0

combines with F1 synergistically.

Multiple subsets question (MSQ) dataset. This
dataset is characterized by redundancy between the
subset {F1, F2} and the variable F0. In Figure 2, we
observe that our method again resolves the complex
relationships correctly.

TERC-1 & TERC-2. These datasets, introduced by
Westphal et al. (2024), are characterized by features
that are simultaneously both redundant and synergistic,
as illustrated in Figure 2. Moreover, through the labels
of the green and purple bars, one can understand with
which other features these interactions occur.

UMFI blood relation dataset (UBR). Janssen
et al. (2023) used the UBR dataset to demonstrate that
their method only assigns non-negligible importance
to features that are related to the target via a directed
path or causal ancestor (Pearl, 1986). Despite neither
F1 nor F2 satisfying these conditions, the methods
introduced in Catav et al. (2021) still assigned them as
important. PIDF avoids these issues and, additionally,
unlike UMFI, it reveals that the information provided
in F2 is redundant with respect to F3.

Synthetic genes dataset (SG). Our final synthetic
dataset was developed in Anastassiou (2007) to demon-
strate that two genes could interact synergistically,
while others are redundant. We observe that our
method, similarly to the PID analysis in Anastassiou
(2007), has the capability to reveal such relationships.
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Figure 4: Gene importance in the BRCA dataset.

However, we will show that our method is also scalable.

7.1.3 Real-World Datasets

California housing dataset. In this section, we use
our method to explain the well-adopted California hous-
ing dataset. In Figure 3, we observe that the longitude
and latitude combine synergistically. Alone, neither the
longitude nor the latitude have great predictive power
of housing prices. On the contrary, when considered
together, these variables reveal an exact location and
become a very useful indicator. Another interesting
feature of these results is that the ocean proximity is
only redundant with respect to the longitude, as the
coast is to the east. Other methods are unable to reveal
such relationships. For extra experiments on classic
ML datasets, please refer to Appendix H.

BRCA dataset. We now demonstrate PIDF’s abil-
ity to describe the relationships between genes in the
BRCA dataset (available here: https://portal.gdc.
cancer.gov/projects/TCGA-BRCA) (Tomczak et al.,
2015; Ashton et al., 2018). This dataset details the
RNA expression levels of many genes in patients with
and without breast cancer. Of these genes, 10 are
known chemically to cause cancer. Previously, those
using this dataset to study feature importance (Catav
et al., 2021; Janssen et al., 2023) have aimed to develop
methods that identify these 10 as the most important.
In this study, we instead focus on how these 10 genes
interact to cause breast cancer. Figure 4 reveals that
CDK6 interacts synergistically with multiple genes.
This is because CDK6 regulates gene expression levels
in the cell, which promotes or inhibits division (Neben-
fuehr et al., 2020; Goel et al., 2022). Consequently, in
a healthy cell CDK6 expression levels are correlated
with those of the genes it regulates. On the contrary,
this is not the case in cancerous cells (Malumbres and
Barbacid, 2009), where the CDK6 present becomes
overactive, leading to expression levels that exceed
what is expected. PIDF, unlike the baselines, indicates
that we require the expression levels of both CDK6
and the genes it regulates to predict cancer, which is
consistent with the overactive CDK6 hypothesis.G.
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Figure 5: Average FWR, FWS, and MI per neuron as
synaptic connections are re-established.

Neuron growth experiment. In this experiment, we
study the information-theoretic quantities that char-
acterize the spiking interactions that form within a
dissociated neural culture over 33 days. Full details
of the dataset are available in Appendix G. We now
discuss the results presented in Figure 5, where we
observe the average FWR, FWS and MI for each neu-
ron at each day over different neuron subsets. An
initial increase in redundancy is followed by a decrease.
This phenomenon aligns with the principles of Hebbian
theory (Hebb, 2005), where the initial surge in redun-
dancy is attributed to the exploratory phase of network
formation, during which connections are established
randomly. Subsequently, synaptic links that do not
exhibit synchronized firing patterns are pruned. This
adaptive reconfiguration results in not only a reduction
in the observed redundancy, but also a gradual increase
in synergy and mutual information.

7.2 PIDF for Feature Selection

In Section 6.4, we developed a simple algorithm based
on PIDF for feature selection. We now evaluate this
technique. Each synthetic dataset in Section 7.1.2,
characterized by certain relationships, has an associ-
ated set of optimal features. In this section, we verify
our method selects this optimal subset. We adopt the
methods described in Wollstadt et al. (2023), West-

https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
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Table 1: Number of true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) fea-
tures selected using each method. Red values represent
optimal performance, and confidence intervals were
omitted since negligible variations were observed.
Dataset PIDF Wollstadt TERC PI

TPFPTNFN TPFPTNFN TPFPTNFN TPFPTNFN
RVQ 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0
SVQ 2 0 0 0 0 0 0 2 2 0 0 0 2 0 0 0
MSQ 1 0 2 0 1 0 2 0 0 2 0 1 1 2 0 0
WT 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0

TERC-1 3 0 3 0 0 0 3 3 3 0 3 0 2 0 3 1
TERC-2 3 0 3 0 0 0 3 3 3 0 3 0 3 3 0 0
UMFIBR 1 0 3 0 1 0 3 0 1 0 3 0 1 3 0 0

SG 3 0 0 0 3 0 0 0 3 0 0 0 2 0 0 1

phal et al. (2024) (TERC), and Breiman (2001) (PI) as
baselines. In Table 1 we observe that PIDF selects the
optimal number of features for all the datasets investi-
gated; however, this is not the case for the baselines.
The method developed in Wollstadt et al. (2023) fails
to recognize fully synergistic variables as important
(hence, the poor results achieved on the SVQ, TERC-1,
and TERC-2 datasets). Meanwhile, TERC is not able
to address the MSQ due to its inability to rank features
based on their MCI.

8 CONCLUDING REMARKS

Summary of the Contributions. In this paper, we
have presented PIDF, a novel paradigm for simultane-
ous data interpretability and feature selection based
on per-feature synergy, redundancy and mutual infor-
mation. Through an extensive evaluation using both
synthetic and real-world data, we have demonstrated
its effectiveness in analyzing and interpreting systems
characterized by complex interactions. As part of our
future agenda, we plan to explore the potential of ap-
plying PIDF to open problems in a variety of scientific
fields.

Limitations. The main limitation of PIDF is its tem-
poral complexity, which scales as a function O(k2),
where k is the number of features. It is worth not-
ing that it is not directly comparable with the other
methods since it captures feature-wise synergistic inter-
actions, an intrinsically computationally expensive task.
Consequently, in order to scale-up to very-large feature
spaces, it is necessary to adopt hierarchical solutions
for the comparison of sets of variables in PIDF.
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A In Depth Comparison with PID

In Section 2, we motivate PIDF by comparing it to existing feature importance and selection methods. However,
we were unable to do an in-depth comparison of PIDF to pre-existing methods of calculating synergy and
redundancy. Consequently, in this section, we provide a more thorough comparison.

In Williams and Beer (2010), the authors established a framework that identifies all possible interactions among
features predicting a target, which has since been applied across multiple fields, including machine learning
(Liang et al., 2023), neuroscience (Luppi et al., 2024), complexity studies (Varley and Hoel, 2022), cellular biology
(Cang and Nie, 2020), and physics (Rosas et al., 2022). In this paper, we aim to develop a method that allows
us to understand with what other features and to what extent does each feature interact synergistically and
redundantly. One would expect PID may be the solution. However, in its current form it comes with the following
associated drawbacks: first, calculating the terms is intractable, while estimating them is subject to convergence
issues and size limitations (Makkeh et al., 2018, 2019; Pakman et al., 2021). Second, the number of terms needed
to describe the system equals the n− 1’th Dedekind number, where n is the number of features. This number
is impractically large, consider that a system with nine variables would require approximately 5× 1022 terms,
while for ten variables, the Dedekind number remains unknown. Varley and Hoel (2022) reduced the number
of investigable quantities by averaging the contribution of ‘layers’ in the PID lattice. The different layers can
be thought of as representing different levels of redundancy or synergy. Consequently, through this spectral
per-layer view one comes to understand how overall synergistic or redundant the system is. However, despite
these simplifications, the calculations remained too complex for applications involving more than a few features.
O-information (Rosas et al., 2019), II (Chechik et al., 2001), correlational importance (Nirenberg et al., 2001)
and synergistic mutual information (Griffith and Ho, 2015) can all be used to estimate the synergy or redundancy
of large sets of variables. However, they are unable to consider individual features. The calculation of such
quantities does not assist us in answering the question: does a feature interact synergistically, or redundantly, and
with what? Instead, they reveal emergent properties of sets. In this work we overcome such issues, by adopting
the feature-wise perspective introduced in Wollstadt et al. (2023). Specifically, we re-write the II as a two-body
system, containing the feature of interest, as a single variable, and the remaining features as a second variable.
Re-formulating the II in this way will allow us to develop measures of synergy and redundancy on a per-feature
basis (labeled FWS and FWR), which interact in a consistent way. Unlike its predecessors, this re-formulation
will remain computable at scales beyond what is currently possible in PID. To emphasize the differences in
practicality of these methods, we provide the following example.

Let us suppose we have four features, F0 and F1 are random binary strings, while F0 = F2, F3 = F1, and
Y = F0 + F1. To begin, let us outline the interactions in this system that should be present after we have
decomposed the information:

• F0 is redundant with respect to F2 and vice versa;

• F1 is redundant with respect to F3 and vice versa;

• F0 or F2 combines synergistically with F1 or F3 and vice versa.

This is because the knowledge of one binary string alone only reduces the possible realizations of Y by 1/3.
For instance, if f0 = 1 then y = 1 or y = 2, leading to only a 0.58 bit reduction in uncertainty. On the other
hand, having both F0 and F1 fully describes Y , leading to a 1.58 bit reduction in uncertainty. Consequently,
I(Y ;F0, F1) > I(Y ;F0) + I(Y ;F1) and our assumption is satisfied.

If we were to now attempt to decompose this information using the system developed in Williams and Beer
(2010), we would have to calculate 120 terms. Moreover, no method currently exists with the ability to estimate
these quantities. One can estimate the redundancy/synergy of the system by calculating its II. However, such
methods fail to describe any properties of individual features. The only viable option is the PIDF algorithm. As
a result, we guide the reader through the calculations for the feature F0.

As stated, I(Y ;F0) = 0.58 bits. We now move onto the calculation of the FWS. The aim here is to isolate the
subset of the existing features that maximize the synergistic contribution of F0, in accordance with the definition
of FWS. For our four features, we obtain the following:

FWS(Y ;F0;F \ F0) = max
Pms∈{{F1},{F2},{F3},{F1,F2},...}

(I(Y ;F0,Pms)− I(Y ;Pms)− I(Y ;F0)) .
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The result is that we have three subsets for which we always obtain the maximum: {F1}, {F3} and {F1, F3}.
The members of these subsets are therefore the features with which F0 combines synergistically, where the final
result is FWS(Y ;F0,F \ F0) = 0.42. Due to redundancy among the synergistic features, there are three sets of
maximum synergy, with the least cardinal sets being free of redundancy. Notably, our algorithm would only derive
one of these subsets as the set of maximum synergy, which does lead to a slight loss in information. However, this
comes with the associated speedups. Now, we calculate:

FWR(Y ;F0;F \ F0) = FWS(Y ;F0;F\F0
)− I(Y ;F0;F\F0

)

= max
Pms∈{{F1},{F2},{F3},{F1,F2},...}

(I(Y ;F0,Pms)− I(Y ;Pms)− I(Y ;F0))

− (I(Y ;F0, F1, F2, F3)− I(Y ;F0)− I(Y ;F1, F2, F3)) .

From our synergy calculations, we know this leads to:

(I(Y ;F0, F1)− I(Y ;F0)− I(Y ;F1))− (I(Y ;F0, F1, F2, F3)− I(Y ;F0)− I(Y ;F1, F2, F3)) = 0.58 + 0.42,

implying that this binary feature is fully redundant. Overall, we have again demonstrated that our method can
be used to illuminate synergistic and redundant contributions of individual features.

B Proofs

B.1 Proof of Theorem 1

Proof. We now prove Theorem 1.

MCI(Y ;Fi;F\Fi
)− FWR(Y ;Fi;F\Fi

) =

=I(Y ;Fi) + FWS(Y ;Fi;F\Fi
)− FWR(Y ;Fi;F\Fi

)

(Via our definition of MCI)
=I(Y ;Fi) + I(Y ;Fi;F\Fi

)

(Via our definition of FWR and cancelling FWS)
=I(Y ;Fi) + I(Y ;Fi,F\Fi

)− I(Y ;Fi)− I(Y ;F\Fi
)

=I(Y ;Fi,F\Fi
)− I(Y ;F\Fi

)

(2)
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B.2 Proof of Theorem 2

Proof. We begin by proving the lower bound. This proof shares the first few steps with those described in Steudel
and Ay (2015); Lau et al. (2023); Janssen et al. (2023), before we then use our assumption to complete the proof.

I(Y ;Fi,P\{Fi,Fj}, Fj)− I(Y ;P\{Fi,Fj}, Fj)

=I(Y ;Fi|P\{Fi,Fj}, Fj) + I(Y ;P\{Fi,Fj}, Fj)− I(Y ;P\{Fi,Fj}, Fj)

(via the chain rule)
=I(Fi;Y |P\{Fi,Fj}, Fj)

(via symmetry)
=I(Fi;Y,P\{Fi,Fj}, Fj)− I(Fi;P\{Fi,Fj}, Fj)

(via the chain rule)
≥I(Fi;Y,P\{Fi,Fj})− I(Fi,P\{Fi,Fj})− I(Fi, Fj)

(via the monotonicity of MI and our assumption)
≥I(Fi;Y |P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi,P\{Fi,Fj})− I(Fi, Fj)

(via the chain rule)
≥I(Y ;Fi|P\{Fi,Fj})− I(Fi, Fj)

(via symmetry)
≥I(Y ;Fi,P\{Fi,Fj})− I(Y ;P\{Fi,Fj})− I(Fi, Fj)

(via chain rule)
θ(Y ;Fi;Fj ;P\{Fi,Fj}) ≥− I(Fi, Fj)

(3)

We now provide the upper bound to complete the proof.

I(Y ;Fi,P\{Fi,Fj}, Fj)− I(Y ;P\{Fi,Fj}, Fj)

=I(Y ;Fi|P\{Fi,Fj}, Fj) + I(Y ;P\{Fi,Fj}, Fj)− I(Y ;P\{Fi,Fj}, Fj)

(via the chain rule)
=I(Fi;Y |P\{Fi,Fj}, Fj) (via symmetry)

=I(Fi;Y,P\{Fi,Fj}, Fj)− I(Fi;P\{Fi,Fj}, Fj) (via the chain rule)

≤I(Fi;Y,P\{Fi,Fj}, Fj)− I(Fi;Fj) (via the monotonicity of MI)

≤I(Fi;Y, Fj |P\{Fi,Fj}) + I(Fi;Y,P\{Fi,Fj})− I(Fi;Fj)

(via the chain rule)
≤I(Fi;Y, Fj |P\{Fi,Fj}) + I(Fi;Y |P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi;Fj)

(via the chain rule)
≤I(Fi;Y, Fj |P\{Fi,Fj}) + I(Y ;Fi|P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi;Fj)

(via symmetry)
≤I(Fi;Y, Fj |P\{Fi,Fj}) + I(Y ;Fi,P\{Fi,Fj})

− I(Y ;P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi;Fj)

(via the chain rule)
≤I(Fi;Y, Fj |P\{Fi,Fj}) + θ(Y ;Fi,P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi;Fj)

(via the chain rule)
θ(Y ;Fi;Fj ;P\{Fi,Fj}) ≤I(Fi;Y, Fj |P\{Fi,Fj}) + I(Fi;P\{Fi,Fj})− I(Fi;Fj)

≤2H(Fi)− I(Fi;Fj) (via the monotonicity of MI)

(4)
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B.3 Proof that under Assumption 1 FWR is a Linear Combination of Redundant Contributions.

In Section 6.3, we explained that, for enhanced interpretability, FWR can be decomposed into individual redundant
contributions from features. In this section, we provide formal evidence for this statement. First, we note that:

FWR(Y ;Fi;F\Fi
) = I(Y ;Fi;Pms) − I(Y ;Fi;F\Fi

)

= I
(
Y ;Fi,Pms

)
− I

(
Y ;Fi

)
− I

(
Y ;Pms

)
−
(
I
(
Y ;Fi;F\Fi

)
− I

(
Y ;Fi

)
− I

(
Y ;F\Fi

))
= I

(
Y ;Fi,Pms

)
− I

(
Y ;Pms

)
− I

(
Y ;Fi;F\Fi

)
+ I

(
Y ;F\Fi

)
.

Next, consider the upper bounds of FWR. Suppose I
(
Y ;Pms

)
= 0, while all remaining terms in the expression

above are equal to H(Y ). We obtain:

FWR(Y ;Fi;F\Fi
) ≥ I

(
Y ;Fi,Pms

)
− I

(
Y ;Fi;F\Fi

)
+ I

(
Y ;F\Fi

)
≥ H(Y )− H(Y ) + I

(
Y ;F\Fi

)
≥ I

(
Y ;F\Fi

)
.

Because Fi is fully redundant and maximally reduces the uncertainty of Y , we can further write:

FWR(Y ;Fi;F\Fi
) ≥ I

(
Fi;F\Fi

)
.

Under our assumption, we can then “un-roll” the FWR into a sum of pairwise mutual information, completing
the proof.

C Algorithms

C.1 Partial Information Decomposition of Features

The full implementation of PIDF is presented in Algorithm 1.

C.2 PIDF for Feature Selection

The algorithm for feature selection based on PIDF is presented in Algorithm 2.

D Example Calculations

In this Appendix, we perform example calculations for the RVQ dataset. We first re-introduce the form of the
data, before then explicitly calculating from lines 2-17 in Algorithm C.1 for feature F0. We only consider F0 for
space and clarity. We then calculate the results of Algorithm 2 in full. The RVQ dataset is of the following form:

F0 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F2 ≡ F1

Y = F0 + 2F1.

(5)

D.1 Partial Information Decomposition of Features Calculation

Line 2: We begin by calculating I(F0;Y ). Given that y = f0 + 2f1, where f1 and f2 can be either 0
or 1 (according to Equation 5), y can take the following values with equal chance y ∈ {0, 1, 2, 3}. It fol-
lows that H(Y ) = −

∑
y∈A(Y ) pY (y) loge(pY (y)) =

∑
y∈A(Y ) 0.25 · 1.386 = 1.386. Where A(·) is an operator

that produces all possible realizations of a random variable. Upon obtaining the value of f0, we reduce y’s
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Algorithm 1 Partial Information Decomposition of Features
Input: Sampled features F , and target Y .
Output: (I(Fi;Y ), FWS(Y ;Fi;F\Fi

), CR(Y ;Fi;F\Fi
),R\Fi

)∀Fi ∈ F .

1: for Fi in F do
2: Calculate I(Fi;Y )
3: Fsorted

\Fi
= argsortFj∈F\Fi

I(Fi;Fj)

4: Initialize FWR(Y ;Fi;F\Fj
) = 0 and R\Fi

= ∅
5: for Fj in Fsorted

\Fi
do

6: if I(Fi, Fj) > 0 then
7: R\Fi

∪ Fj

8: end if
9: Calculate θ(Y ;Fi;Fj ;Fsorted

\{Fi,Fj})

10: if θ(Y ;Fi;Fj ,Fsorted
\{Fi,Fj}) ≤ 0 then

11: FWR(Y ;Fi;Fsorted
\Fj

) = FWR(Y ;Fi;Fsorted
\Fj

)− θ(Y ;Fi;Fj ;Fsorted
\{Fi,Fj})

12: Fsorted
\Fi

= Fsorted
\{Fi,Fj}.

13: end if
14: end for
15: FWS(Y ;Fi;F\Fi

) = I(Y ;Fi,F\Fi
)− I(F\Fi

;Y )− I(Fi;Y )

16: Pms = Fsorted
\Fi

17: return I(Fi;Y ), FWS(Y ;Fi;F\Fi
), FWR(Y ;Fi;F\Fj

),Pms,R\Fi
(Fi’s redundant features)

18: end for

potential realizations by half. To explain this, let us suppose f0 = 0. In this case, it must be true that
y = 0 or 2, whereas if f0 = 1 it then must be true that y = 1 or 3. Therefore, the following holds
H(Y |F0) = −

∑
y∈A(Y ),f0∈A(F0)

pY,F0
(y|f0) loge(pY,F0

(y|f0)) =
∑

y∈A(Y ),f0∈A(F0)
0.5 · 0.693 = 0.693. Given that

I(F0;Y ) = H(Y )−H(Y |F0) it must be true that I(F0;Y ) = 1.386− 0.693 = 0.693. This result agrees with the
MI presented in Figure 2.

Lines 3-4: These lines are simple for variable F0 as F1 and F2 have been defined such that they are independent
random processes; therefore, I(F0;F1) = I(F0, F2) = 0 and the precise ordering of set Fsorted

\Fi
is unimportant. In

this case, we let Fsorted
\Fi

= {F1, F2}.

Lines 5-14: To begin we do not add F1 to the setR\Fi
as I(F0;F1) = 0. We now calculate θ(Y ;F0, F1,F{F0,F1}) =

(I(Y ;F0,F\F0
)− I(Y ;F\F0

))− (I(Y ;F0,F\{F0,F1})− I(Y ;F\{F0,F1})). To begin, we calculate I(Y ;F0,F\F0
) =

H(Y ) = 1.386, because the knowledge of variables F0,F\F0
completely describes the target Y . Meanwhile,

I(Y ;F\F0
) = 0.693, because without F0 (via a calculation identical to that completed for I(F0;Y ) above), we can

only reduce the uncertainty of Y by half. Therefore, (I(Y ;F0,F\F0
)−I(Y ;F\F0

)) = 0.693. We now investigate the
values of I(Y ;F0,F\{F0,F1}) and I(Y ;F\{F0,F1}). Let us first note that F1 ≡ F2; consequently, by removing F1 from
F , we do not diminish the set’s ability to reduce the uncertainty of Y . It follows that, I(Y ;F\F0

) = I(Y ;F\{F0,F1}),
and therefore I(Y ;F0,F\{F0,F1})− I(Y ;F\{F0,F1}) = 0.693, where θ(Y ;F0, F1,F{F0,F1}) = 0. Consequently, F1

remains in Fsorted
\F0

according to line 12.

We now repeat lines 4-14, but iterating from F1 to F2. Again, we do not add F2 to the set R\Fi
as I(F0;F2) =

0.We now move onto lines 9-14 by calculating θ(Y ;F0, F2,Fsorted
\{F0,F2}). We note that F2 ≡ F1, as a result it

must be true that θ(Y ;F0, F2,F{F0,F2}) = θ(Y ;F0, F1,F{F0,F1}) = 0. Therefore. for feature F0, we return
I(F0;Y ) = 0.693, FWS(Y ;F0;F\F0

) = 0, FWR(Y ;F0;F\F0
) = 0,R\Fi

= {}.

Above we have calculated from lines 2-17 in Algorithm C.1 for variable F0 in the RVQ dataset. By applying
the same procedure, one can obtain the following values for F1: I(F1;Y ) = 0.693, FWS(Y ;F1;F\F1

) = 0,
FWR(Y ;F1;F\F1

) = 0.693, with R\Fi
= {F2}. Similarly, for F2: I(F2;Y ) = 0.693, FWS(Y ;F2;F\F2

) = 0,
FWR(Y ;F2,F\F2

) = 0.693, and again R\Fi
= {F1}.
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Algorithm 2 PIDF for Feature Selection
Input: (FWS(Y ;Fi;F\Fi

), FWR(Y ;Fi;F\Fi
), I(Y ;Fi),R\Fi

)∀Fi ∈ F
Output: F∗ (a desirable feature set).

1: Initialize F∗ = {}.
2: for Fi in F do
3: if FWS(Y ;Fi;F\Fi

) + I(Y ;Fi) > FWR(Y ;Fi;F\Fi
) then

4: F∗ ∪ Fi

5: end if
6: end for
7: Fsorted = argsortFj∈F\F∗

FWS(Y ;Fi;F\Fi
) + I(Y ;Fi)

8: for Fi in Fsorted do
9: if F∗ −R\Fi

= F∗ then
10: F∗ ∪ Fi

11: end if
12: end for
13: return F∗

D.2 Feature Selection Calculation

We will now utilize the results obtained from the PIDF calculations in the previous section to select features.
This will be done by explicitly carrying out the calculations as per Algorithm 2.

Lines 1-6: From the results generated in the last section, it is clear thatI(F0;Y ) + FWS(Y ;F0;F\F0
) −

FWR(Y ;F0;F\F0
) = 0.693, and therefore F0 is included in the set of selected features (F∗ = {F0}). However,

this is not the case for F1 and F2. For F1 we calculate I(F1;Y )+FWS(Y ;F1;F\F1
)−FWR(Y ;F1;F\F1

) = 0.693+
0−0.693 = 0. Similarly, for F2 we get I(F2;Y )+FWS(Y ;F2;F\F2

)−FWR(Y ;F2;F\F2
) = 0.693+0−0.693 = 0.

Consequently, neither F1 or F2 are added to our set of selected features at this stage.

Lines 7-12: We begin by ordering the non-selected features by their MCI I(Fi;Y ) + FWS(Y ;Fi,F) (line 7).
However, in this case, we have I(F1;Y ) + FWS(Y ;F1;F) = 0.693 and I(F2;Y ) + FWS(Y ;F2;F) = 0.693;
therefore, the order is not meaningful. To complete the calculation, we let Fsorted = {F1, F2}, and apply line 9.
Currently, we have F∗ = {F0} and R\F1

= {F2}, therefore F∗ −R\F1
= F∗ and F1 is added to the set F∗, such

that F∗ = {F1, F2}. Now repeating this step for F2, we have F∗ = {F0, F1} and R\F2
= {F1}, it is trivial to see

that F∗ −R\F2
= {F0} ≠ F∗. As a result F2 is not added to our final set of selected features, and our final result

is F∗ = {F0, F1}.

E Hyperparameter Selection

For both the feature selection and feature interpretation experiments we used a simple grid search when deciding
hyperparameters. PIDF, TERC and the method introduced by Wollstadt et al. (2023) all rely on the calculation
of MI. As discussed in Section 6.3, we estimate MI across all methods using the 5 repetitions of the techniques
described by Belghazi et al. (2018). For clarity regarding hyperparameters, we present the details of this technique
in Algorithm 3.

E.1 Explaining Data Hyperparameters

For PIDF we selected b = 1000, N = 20, 000 as defined in Algorithm 4. Meanwhile, the learning rate of the
network in use was α = 0.0001 with an adam optimizer. Each network had one hidden layer consisting of 50
neurons. For UMFI and MCI, 100 trees were selected as optimal. Otherwise, hyperparameters were as described
in Janssen et al. (2023) and Catav et al. (2021) respectively. For PI, we also selected 100 random trees.
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Algorithm 4 MINE Belghazi et al. (2018).
Input: Training dataset (f1, y1, f2, y2...fT , yT )
Output: I(Y ;F )

1: Initialize weights θ.
2: for 1 to N do
3: Draw mini batch samples of length b from the joint distribution of the actions and the state with

all possible variables included pY,F ∼ ((y1, f1), . . . , (yb, f b)), and repeat for the marginal distribution
pY⊗F ∼ ((y1, fr), . . . , (yb, fr)) (where the superscript r indicates random sampling).

4: I(Y ;F ) = 1
b

∑b
Fθ((y

1, f1), . . . , (yb, f b))− 1
b

∑b
log eFθ((y

1,fr),...,(yb,fr))

5: θ ← ∇̃θI(Y ;F )
6: end for
7: return I(Y ;F )

E.2 Feature Selection Hyperparameters

For PIDF, TERC and the Wollstadt method we again selected b = 1000, N = 20, 000 as defined in Algorithm 4.
Meanwhile, the learning rate of the network in use was α = 0.0001. For PI, we again selected 100 random trees.

F Statistical Characterization of Synthetic Datasets

Redundant variables question dataset (RVQ). This dataset is comprised of three stochastic binary arrays,
F0, F1, F2 of length 1000, two of which are fully redundant with respect to one another. More formally, we have:

F0 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F2 ≡ F1

Y = F0 + 2 ∗ F1.

(6)

Synergistic variables question dataset (SVQ). The features are two stochastic binary arrays, F0, F1 of
length 1000, where Y = XOR(F0, F1) and F0 ̸= F1. F0 and F1 have been defined such that they combine to
provide synergistic information about the target. More formally:

F0 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

Y = XOR(F0, F1).

(7)

Multiple subsets question dataset (MSQ). The features are three stochastic binary arrays, F0, F1, F2 of
length 1000; where, Y = F0 = F1 + F2. This can be re-written:

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F2 ∼ Bernoulli(µ = 0.5, σ = 0.5)

Y = F0 = F1 + F2.

(8)

Wollstadt toy dataset (WT). The Wollstadt toy example is characterized by three features, formed by
combining normal distributions:

ϵ1 ∼ N (µ = 0, σ = 1)

ϵ2 ∼ N (µ = 0, σ = 1)

ϵ3 ∼ N (µ = 0, σ = 1)

F0 = ϵ1 + 0.1F2

F1 = 0.8ϵ1 + 0.2ϵ2 + 0.01 ∗ F2

F2 ∼ N (µ = 0, σ = 1)

Y = sin(ϵ1) + 0.1ϵ3.

(9)



Charles Westphal, Stephen Hailes, Mirco Musolesi

TERC-1. This dataset, introduced by Westphal et al. (2024), contains six features, with the following character-
istics:

F0 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F2 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F3 ≡ F0

F4 ≡ F0

F5 ≡ F0

Y =

{
0, if f1 = f2 = f2

1, otherwise

(10)

TERC-2. This dataset, introduced by Westphal et al. (2024), contains six features, with the following character-
istics:

F0 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F1 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F2 ∼ Bernoulli(µ = 0.5, σ = 0.5)

F3 ≡ F0

F4 ≡ F1

F5 ≡ F2

Y =

{
0, if f1 = f2 = f2

1, otherwise

(11)

UMFI blood relation dataset (UBR). Janssen et al. (2023) used the UBR dataset to demonstrate that their
method had favorable properties in detecting blood relationships in causal graphs. This dataset is characterized
by four features with the following characteristics.

ϵ1 ∼ U(µ = −1, σ = 1)

ϵ2 ∼ U(µ = −0.5, σ = 0.5)

ϵ3 ∼ Exp(1)
ϵ4 ∼ N (µ = 0, σ = 1)

F0 ∼ N (µ = 0, σ = 1)

F1 = 3F1 + ϵ1

F2 = ϵ4 + F0

F3 = Y + ϵ3

Y = ϵ4 + ϵ2.

(12)

Synthetic genes dataset (SG). Our final synthetic dataset was developed in Anastassiou (2007) to demonstrate
the types of relationships that could be present in genetic interactions. Formally Y is:

Y ∼ Bernoulli(µ = 0.5, σ = 0.5), (13)

where y = 1 indicates cancer. The features meanwhile can be explained via the following bullet points:

• In healthy samples, the probability that both f1 = f2 = 1 is 95%, whereas the remaining three joint states
(00, 01 and 10) are equally likely. Meanwhile, in cancerous samples, the probability that both f1 = f2 = 1 is
5%, whereas the remaining three joint states (00, 01 and10) remain equally likely.

• In healthy samples, if y = 0, then F3 ∼ Bernoulli(µ = 0.2, σ = 0.4). Meanwhile, in cancerous samples, we
have F3 ∼ Bernoulli(µ = 0.8, σ = 0.4).
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G Sampling Method for Neural Culture Data

We now provide more details regarding the firing neurons dataset, including the methods we used to sample
from it. This dataset was introduced in Wagenaar et al. (2006) and is publicly accessible online4. These datasets
comprise multiunit spiking activities recorded from each of the 60 electrodes in the multielectrode array used
to study the activations of dissociated neural cells. Specifically, the data from neural culture 2-2 were utilized.
Comprehensive details regarding the cultivation and maintenance of these cultures are documented in Wagenaar
et al. (2006). The analysis focused on recordings from eight developmental stages of the culture, measured in
days in vitro (DIV): 4, 7, 12, 16, 20, 25, 31, and 33. The recording from DIV 16 lasted for 60 minutes, while
the recordings from the other days each lasted for 45 minutes. For the purposes of this analysis, the data were
segmented into bins of 16 µs. The probability distributions required for calculating the three information-theoretic
quantities of interest were generated by analyzing the spike trains from groups of ten distinct electrodes. Within
each group, one electrode was randomly designated as the Y variable, and the remainder as the features. For
every time step in the spike trains, the states (spiking or not) of the feature electrodes at time t and the Y
electrode at time t+ 1 were noted. This tabular data could then act as input to Algorithms 4 and C.1. This
procedure was replicated for each set of non-identical electrodes, ensuring that groups with interchanged features
were only considered once to prevent duplication. A full discussion of this dataset can be found in Timme and
Lapish (2018).

H Further Experiments on Classic Machine Learning Datasets

H.1 Iris Dataset

In this section, we apply PIDF to the Iris dataset. One of the earliest and best-adopted datasets in ML, Iris was
used to predict flower type given the petal length and width and sepal length and width.

In Figure 6, we observe that, unsurprisingly, there is a large amount of redundancy between the features in the
Iris dataset. UMFI’s pre-processing step, which removes redundancies between pairwise features, is unable to
resolve the more complex redundancies we see Figure 6; hence, the assignment of feature importance scores of 0.
Meanwhile, PIDF is the only method able to reveal the complex set of redundancies, showing that sepal width and
sepal length are both well correlated with the target. But the sepal width also provides redundant information
with respect to the petal length and width, making this the most informative feature, as revealed using PI.

H.2 Abalone Dataset

In this section, we apply PIDF to the Abalone dataset, which comprised information about the size and weight of
an Abalone, and is used to predict its age.

In Figure 7, it is possible to observe that in this everyday dataset we see synergistic interactions occurring. The
whole weight and shucked weight combine synergistically with the shell weight. Intuitively, this makes sense as
finer grained detail about the weights of individual components of the animal may lead to greater knowledge of
the animals age. Meanwhile, we observe that the viscera weight and shell weight are redundant with respect to
one another, while this is not the case with whole and shucked weights.

H.3 Whitewine Dataset

In this section, we apply PIDF to a classic ML dataset, which uses the chemical properties of wine to predict its
quality.

In Figure 8, we observe that the alcohol levels and density provide redundant information with respect to
each other. This redundancy can be attributed to the fact that, apart from alcohol, wine primarily consists of
water-based solubles. Consequently, the density of the wine is a function of the alcohol-water ratios. Interestingly,
we see that the free and total sulfur dioxide features are not highly redundant with respect to one another. This
is because, during the wine-making process, free sulfur dioxide is added for anti-microbial effects. Meanwhile, the
bound sulfur dioxide is more dependent on the grape used.

4https://potterlab.gatech.edu/potter-lab-data-code-and-designs/

 https://potterlab.gatech.edu/potter-lab-data-code-and-designs/
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H.4 Cleveland Heart Disease Dataset

In this section, we apply PIDF to a classic ML dataset, which uses medical data to predict cases of heart disease
in Cleveland, Ohio.

In Figure 9, we observe that thalassemia intermedia and the number of major articles with blockages as detected
by fluoroscopy combine synergistically to predict heart disease.

I Feature Duplication Experiments

In the main body of the paper, we demonstrated that our method could be used to successfully detect redundancies
in synthetic data. Extending this validation, inspired by experiments in Catav et al. (2021), we now demonstrate
our method’s ability to illuminate known redundancies in real-world datasets. This is achieved by duplicating
features within the, widely recognized, California housing, Abalone, and Whitewine ML datasets. Subsequently,
we provide evidence demonstrating the successful detection of these introduced redundancies by our methodology.
These duplicated features will simply be added to the original datasets.

In Figure 10, we showcase the outcomes from our experiments on duplicated features. The findings demonstrate
that FWS and MI of the duplicated features mirror that of their non-duplicated counterparts. However, the
information provided by these features is now redundant.

J Computational Requirements

In its current form, the execution of PIDF requires more computational resources that its other counterparts
for feature interpretability (Catav et al., 2021; Janssen et al., 2023). For example, executing the results for the
TERC-1 and TERC-2 datasets, which contained six features each with 1000 instances took 45 minutes on a P100
NVIDIA GPU cluster. However, this can easily be reduced via the following methods:

1. As discussed in the conclusion, a hierarchical approach can be adopted. Rather than removing individual
redundant features, as per line 12 of Algorithm C.1, many can be checked and removed at once.

2. Another way in which it is possible to scale the PIDF implementation is by enhancing the efficiency of the
MI estimation. Currently, we use MINE (Belghazi et al., 2018), as the results are highly accurate and in
Nats, which are easily interpretable. However, if one wishes just to compare the relative values of PIDF,
without the need for values with units, more efficient methods can be used. In particular, we will make
available a version of PIDF implemented using the method developed in Covert et al. (2020). By using this
simple method of MI estimation,the time taken to execute PIDF is reduced by a factor of ten. However, the
resulting values only represent relative importance and do not exactly correspond to the ground truth. We
will discuss this method in detail in the following section.

K Scalability Experiments

In our experiments, we estimated MI using MINE. In this section, we discuss how MINE, despite its high accuracy,
is computationally expensive. Therefore, it may be preferable to use a faster method, even if it sacrifices some
accuracy. We now present an implementation of PIDF using an alternative method of MI estimation. We will
demonstrate that, using this approach, PIDF is highly scalable, making it applicable to real-world datasets, such
as MNIST. We will discuss the inherent trade-offs between computation efficiency and accuracy of this alternative
method.

K.1 Comparison of MI Estimation Techniques

First, we empirically represent the trade-off between efficiency and accuracy for three different MI estimation
techniques (Covert et al., 2020). In Figure 11, we observe that MINE takes the longest to converge, but is the
most accurate. Meanwhile, the method presented by Covert et al. (2020) with an MSE loss converges rapidly, but
it is not accurate.
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K.2 Alternative Method for the Calculation of MI and Trade-offs

Based on the results in the previous section, replacing MINE with the method presented by Covert et al. (2020)
with an MSE loss would likely result in a more efficient but less accurate approach. We briefly discuss the validity
of such a method before presenting results.

PIDF ideally would derive the values of FWR and FWS in bits; however, significant insights into the interactions
can still be gained from the relative values of FWS, FWR, and MI. To clarify, Figure 11 illustrates the PIDF
results obtained from two simple datasets using both MINE and our more efficient estimator. We observe that
while the relative proportions of FWR, FWS, and MI remain consistent, the exact values in the two rightmost
graphs are no longer accurate. Consequently, even when using the efficient estimator, it is still possible to discern
the interactions and their respective elements.

Consequently, we apply this more scalable method to the MNIST dataset and present the results in Figure 13.
The outer pixels in MNIST are often just black; consequently, only the central pixels contribute to strongly
synergistic or redundant interactions, as they are the only pixels providing information. Furthermore, we observe
a tendency for these pixels to interact synergistically. This occurs because, when considered together, their
spatial relationships and patterns (such as edges, corners, and textures) emerge. These features are crucial for
recognizing handwritten digits in MNIST. We might expect that pixels near one another would have high levels
of redundancy. In fact, pixels close to one another did have high pairwise MIs. However, according to line 3 of
Algorithm C.1, this caused them to be checked and removed first when identifying the set of maximum synergy.
Consequently, other pixels were then identified as providing redundant information.
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Figure 6: Comparison of feature importance methods using the classic Iris dataset.
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Figure 7: Comparison of feature importance methods using the classic Abalone dataset.
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Figure 10: Feature duplication experiments. We apply PIDF to a modified version of the California housing,
Abalone, and Whitewine datasets. These modified datasets are obtained by adding a duplicate feature to the
original ones. The duplicate features we used in our experiments are longitude, diameter and density, respectively.
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Figure 13: The results achieved when applying scalable PIDF to MNIST.


	INTRODUCTION
	RELATED WORK
	RESEARCH QUESTIONS
	PIDF AT A GLANCE
	Overview
	A Practical Example

	FEATURE-WISE PID
	PIDF
	Interaction Information Based Measure
	Handling Redundant Information
	PIDF in Practice
	PIDF for Feature Selection

	EXPERIMENTAL EVALUATION
	PIDF for Data Interpretability
	Example of How to Interpret the Results of PIDF
	Synthetic Datasets
	Real-World Datasets

	PIDF for Feature Selection

	CONCLUDING REMARKS
	In Depth Comparison with PID
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof that under Assumption 1 FWR is a Linear Combination of Redundant Contributions.

	Algorithms
	Partial Information Decomposition of Features
	PIDF for Feature Selection

	Example Calculations
	Partial Information Decomposition of Features Calculation
	Feature Selection Calculation

	Hyperparameter Selection
	Explaining Data Hyperparameters
	Feature Selection Hyperparameters

	Statistical Characterization of Synthetic Datasets
	Sampling Method for Neural Culture Data
	Further Experiments on Classic Machine Learning Datasets
	Iris Dataset
	Abalone Dataset
	Whitewine Dataset
	Cleveland Heart Disease Dataset

	Feature Duplication Experiments
	Computational Requirements
	Scalability Experiments
	Comparison of MI Estimation Techniques
	Alternative Method for the Calculation of MI and Trade-offs


