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ABSTRACT
Understanding the customer behaviours behind transactional data has high commercial value in the grocery retail industry. Cus-
tomers generate millions of transactions every day, choosing and buying products to satisfy specific shopping needs. Product
availability may vary geographically due to local demand and local supply, thus driving the importance of analysing transactions
within their corresponding store and regional context. Topic models provide a powerful tool in the analysis of transactional data,
identifying topics that display frequently-bought-together products and summarising transactions as mixtures of topics. We use
the segmented topic model (STM) to capture customer behaviours that are nested within stores. STM not only provides topics and
transaction summaries but also topical summaries at the store level that can be used to identify regional topics. We summarise the
posterior distribution of STM by post-processing multiple posterior samples and selecting semantic modes represented as recur-
rent topics, and employ Gaussian process regression to model topic prevalence across British territory while accounting for spatial
autocorrelation. We implement our methods on a dataset of transactional data from a major UK grocery retailer and demonstrate
that shopping behaviours may vary regionally and nearby stores tend to exhibit similar regional demand.

1 | Introduction

In the grocery retail industry, millions of transactions are gen-
erated every day by customers that choose and buy products to
fulfil one or more needs. Transactions typically contain few prod-
ucts out of thousands of available items, reflecting unseen cus-
tomer motivations. Customers visit grocery retailers to fulfill dif-
ferent shopping objectives; for instance, to buy food for break-
fast, ingredients to cook a roast dinner or popular products for a
barbecue. Identifying customer behaviours provides insights into
high-resolution shopping patterns that may help retailers to max-
imise efficiency while delivering value to all stakeholders.

Abbreviations: GP, Gaussian process; STM, segmented topic model.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Customer motivations may be driven not only by everyday
needs, but also by geographical effects, that is, showing prod-
uct combinations that are only relevant in specific regions. For
example, a store in Scotland may offer products from local brands
and/or products that are part of the local cuisine; these products
might not have the same popularity in other further constituent
countries in the UK. In response, retailers customise product
assortments in each store to include locally supplied products
and to fulfil local demand. Identifying regional shopping objec-
tives may help retailers launch marketing campaigns, customise
store assortments and layout, and may also support the pre-
diction of composition for new stores. Moreover, geographical

Applied Stochastic Models in Business and Industry, 2024; 0:1–19 1 of 19
https://doi.org/10.1002/asmb.2890

https://doi.org/10.1002/asmb.2890
https://orcid.org/0000-0002-5379-2916
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/asmb.2890
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasmb.2890&domain=pdf&date_stamp=2024-09-16


resolution of shopping patterns may aid the investigation of
eating habits driven by social and cultural factors that otherwise
rely on expensive ad hoc studies.

In this article, we aim to model the regional distribution of
shopping objectives represented as grocery product combina-
tions directly from transactions. We analyse transactions from a
major grocery retailer in the UK. The data consist of individual
transactions, indexed by store, where each observation is a set
of products purchased within a single transaction at a particular
store within a particular timeframe. Our overarching goal is to
identify combinations of products in high demand in specific
areas and to determine their spatial prevalence, characterising
customer behaviours from different regions and constituent
countries of the UK. To this end, two main ingredients are
needed: a model for capturing customer behaviours through
transactional data, combined with a model that captures the
spatial distribution of these customer behaviours.

To model grocery transactions, we employ the segmented topic
model (STM) [1], which models product combinations purchased
together as a mixture of multinomial distributions representing
‘shopping objectives’, taking into account the store hierarchy.
This enables the identification of product combinations within
the store context. STM provides topic distributions (here rep-
resenting shopping objectives), transaction-specific mixtures of
objectives, and store-specific mixtures of objectives. Shopping
objectives describe products that are frequently bought together
with high probabilities, reflecting different customer behaviours.
Mixtures of objectives summarise purchased products according
to their composition of objectives, that is, a very popular shop-
ping objective in a store-specific mixture of objectives would
show a high probability.

To complement the transaction model with a spatial distribution
without a fully integrated model, we extract posterior summaries
for each shopping aim of the STM to feed into a Gaussian process
regression (GPR) [2]. This allows us to capture multiple posterior
modes of the STM, so that uncertainty about shopping objectives
can be meaningfully incorporated through posterior clusters.
We characterise the spatial distribution of regional shopping
objectives using GPR [3–5] on store-specific objective probabil-
ities, modelling topical prevalence over the UK. GPR accounts
for store meta-data and the geographical proximity between
stores, both of which STM does not account for, and allows us
to identify and characterise variation in the topic probabilities,
which are explained by spatial autocorrelation as well as regional
covariates. We demonstrate that the GPR approach naturally
achieves a better out-of-sample predictive behaviour than a
linear model by borrowing information from neighbouring
stores while affording an interpretable model with quantifiable
uncertainty.

This article is organised as follows: Section 2 provides the contex-
tual background to topic modelling and spatial modelling. STM
and GPR are introduced in Sections 3 and 4. Regional topics in
British grocery retail transactions are presented in Section 5. Spa-
tial analysis of regional topics is discussed in Section 6. Finally,
we conclude and summarise our findings in Section 7.

2 | Background

Topic modelling was originally introduced to analyse and sum-
marise large collections of text corpora. In retail analytics, topic
modelling allows describing transactions and groups of transac-
tions as probabilistic mixtures of topics, representing shopping
objectives, which are distributions over a fixed product assort-
ment. For the remainder of this article, we will use ‘topics’ and
‘shopping objectives’ interchangeably, depending on the context.
Different shopping objectives exhibit different combinations of
products with high probability, expressing different customer
behaviours. Topic models have been applied to model customer
behaviour over highly aggregated product assortments [6–10],
but were only recently applied to transactional data at the full
product resolution [2, 11].

In the UK, spatial analysis has been previously applied to
grocery retail data to study store catchment and store perfor-
mance. For example, Sturley, Newing, and Heppenstall [12]
used an agent-based model to extract key consumer behaviours
about shopping frequency, shopping mission, store choice and
spending. Davies, Dolega, and Arribas-Bel [13] applied a spatial
interaction modelling (SIM) technique, to create catchment areas
and investigate the spatial variation on competition, sales area,
trade intensity, among other factors. With a SIM approach, New-
ing, Clarke, and Clarke [14] forecasted store patronage and store
revenues in two English regions. Waddington et al. [15] explored
spatiotemporal fluctuations of store sales and catchment areas.
Berry et al. [16] examined workplace geographies and census
statistics to investigate store trading characteristics in inner
London. However, none of the existing literature investigates
spatial variations of customer behaviours by modelling product
combinations directly.

Grocery consumption habits are an important driver of pop-
ulation health, and in the UK are studied regularly by the
Department for Environment Food and Rural Affairs (DEFRA)
through the targeted, detailed ‘Family Food Survey’ and by the
Office for National Statistics through the former ‘Living Costs
and Food Survey’ [17]. Other studies use targeted consumer
surveys [18] or analyse coarse consumer trends such as the
‘Greggs-Pret’ index [19] to explore regional differences. These
studies offer a valuable resource and provide opportunities to
explore many aspects of purchasing patterns: expenditure, intake
of energy and nutrients, geographical and demographic differ-
ences, and trends over time. However, surveys are costly and
time-consuming to obtain, as they require participants to keep
a food diary over a period of several weeks, which is analysed
alongside participants’ answers to interview questions. In con-
trast, the data used in this article are readily available through
stores’ transaction records, but are high in resolution as they
capture individual products.

On the other hand, regional food consumption has also been dis-
cussed in anthropological and sociological works. For instance,
Kuznesof, Tregear, and Moxey [20] found that ‘regional foods’
are perceived as ‘regional products’ or ‘regional recipes’, which
are associated with high-value, speciality, or hand-crafted prod-
ucts and with dishes that require home preparation and cooking.
Groves [21] defined ‘regional food’ as the food of a particular area
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of the country, often representing a regional speciality. However,
these studies were also not carried out using transactional data,
but instead employed market research methods such as focus
groups and questionnaires.

In this article, we capture topics with geographical variability by
accounting for the dependency of transactions on store index, to
reflect store-specific product assortment, that is, transactions can
only contain products that are available at their associated stores.
Modelling this dependency implies a hierarchy in which stores
are one level above transactions. Without store hierarchy, region-
ally purchased products would be drowned out by the sheer vol-
ume of nationally supplied products, hampering the identifica-
tion of regional topics. Thus, we apply the STM [1], which enables
the identification of product combinations within the store con-
text. STM provides topic distributions, transaction-specific mix-
tures of objectives, and store-specific mixtures of objectives.

Summarising the posterior distribution of STM is needed but it
is not an easy task. Topic models are often highly multi-modal,
resulting in topics that may not reappear among posterior sam-
ples [22, 23]. Here, we summarise posterior topic distributions by
identifying thematic modes following the clustering methodol-
ogy in [2]. This methodology fuses topic distributions from mul-
tiple posterior samples to identify recurrent topics and their asso-
ciated uncertainties. Topics are grouped into clusters, which are
represented by their average distribution, named clustered top-
ics, and by their cluster size, named recurrence. Users evaluate
subsets of clustered topics and select a posterior topical summary
depending on generalisation and quality metrics.

2.1 | Connections to Other Models

Fully integrating STM and GPR by assuming a Gaussian Pro-
cess distribution over store-specific mixtures of objectives is
feasible but computationally prohibitive. The joint model would
be similar to the correlated topic model [24] with two layers
of mixtures of objectives and a covariance matrix defined over
geographical distance. We do not pursue this approach as the
non-conjugacy of the Gaussian process poses a challenge for
posterior inference. Instead, we feed a GPR with a topical poste-
rior summary obtained from the clustering of the STM posterior
samples, taking advantage of the closed form Gibbs sampler
of STM.

Although in this and related work we have performed xtensive
model comparison and model exploration, direct model valida-
tion (for example, through simulated data) is challenging. This is
because our approach does not have an obvious data generative
model, since it is fitted stepwise. The closest generative model
is perhaps a combination of the STM used in this article [1],
extended to include covariate effects on the logit scale of the
topic probabilities, similarly to the structural topic model [25].
In this case, the covariate effects would include a fixed effect
of the region along with spatially-varying errors through a GP
regression. Although fitting this model would be very challeng-
ing, one could use such a model to create simulated data for the
purpose of model validation for our two-step approach. This,
however, is beyond the scope of the current paper and is part of
ongoing work.

3 | Topic Modelling

Topic modelling was originally introduced to automatically
organise, understand, and summarise large collections of text
corpora. Latent Dirichlet allocation (LDA) [26, 27] is one of
the most popular topic modelling techniques, which represents
documents as mixtures of topics, and topics as distributions over
a fixed vocabulary. The STM [1] is an extension to LDA which
includes hierarchical structure within documents, thereby rep-
resenting documents as collections of paragraphs (segments).
Both documents and paragraphs are represented as mixtures of
topics, where a paragraph-specific topical mixture derives from
its document-specific topical mixture. LDA and STM interpret
documents as bags of words, disregarding word order.

STM has been mainly used in text applications but has not
been applied in retail analytics to the best of our knowledge.
For instance, STM has been used to match experts with ques-
tions [28] and to analyse multi-aspect sentiment in customer
reviews [29]. We apply STM in the context of grocery retail
data, interpreting stores as documents, transactions as segments
and topics as distributions over a fixed assortment of products.
Transaction-specific mixtures of objectives derive from the cor-
responding store-specific topical mixture. Thus, transactions
and stores share the space of latent topics; placing a hierar-
chical structure over transactions at each store allows us to
capture socio-economic and cultural variability across different
areas. The bag of words assumption organically fits the grocery
retail domain since products are registered at stores without an
inherent order.

In the standard LDA model, topics display products that are
frequently purchased together. If a product is frequently pur-
chased in few stores (and rarely purchased due to unavailability
or low preference in the majority of stores), then the product is
unlikely to rank highly within a topic. Thus, analysing retail data
through LDA might overlook topics that reflect regional or local
customer behaviours. In contrast, STM can harness meta infor-
mation of store hierarchy over transactions. Thereby, product
co-occurrence is relative to store context and transactions taking
place at the same store are expected to exhibit more similar
mixtures of objectives than transactions from other stores.

3.1 | Segmented Topic Model

STM [1] consider the following hidden variables: topic distri-
butions, store-specific mixtures of objectives and transaction-
specific mixtures of objectives. In detail, 𝐾 topic distributions,
[𝜙1, … .𝜙𝐾], are sampled from a Dirichlet distribution governed
by hyperparameters 𝜷; each 𝜙 is a 𝑉-dimensional vector, and 𝑉

is the size of the product assortment. 𝐷 store-specific mixtures of
objectives, 𝜃1, … , 𝜃𝐷 , are sampled from a Dirichlet distribution
governed by hyperparameters 𝜶, where𝐷 is the number of stores;
each 𝜃 is a 𝐾-dimensional vector. 𝑃 transaction-specific mixtures
of objectives, 𝜈1,𝑑, … , 𝜈𝑃,𝑑, are sampled from a Poisson–Dirichlet
process (PDP) distributed with discount parameter 𝑎, strength
parameter 𝑏 and base measure 𝜃𝑑; each 𝜈 is also a 𝐾-dimensional
vector.

STM follows a generative process in which each transaction
is created by sampling products from topics, which are also
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sample from a transaction-specific topical mixture. This gen-
erative process has two steps. First, a topic assignment 𝑧𝑛,𝑝,𝑑 is
sampled from a transaction-specific topical mixture 𝜈𝑝,𝑑. Second,
a product 𝑤𝑛,𝑝,𝑑 is sampled from the assigned topic distribu-
tion 𝜙𝑧𝑛,𝑝,𝑑 , where 𝑛 is the 𝑛th item in transaction 𝑝 in store 𝑑.
Mathematically,

𝜙𝑘 ∼ Dirichlet(𝜷)

𝜃𝑑 ∼ Dirichlet(𝜶)

𝜈𝑝,𝑑 ∼ PDP(𝑎, 𝑏, 𝜃𝑑)

𝑧𝑛,𝑝,𝑑 ∼ Multinomial(𝜈𝑝,𝑑)

𝑤𝑛,𝑝,𝑑 ∼ Multinomial(𝜙𝑧𝑛,𝑝,𝑑 )

(1)

The PDP [30–32] is a generalisation of the Dirichlet process, also
called the Pitman–Yor process. PDP is useful to handle conju-
gacy between Dirichlet and Multinomial distributions. A graphi-
cal representation of the STM is shown in Figure 1.

3.1.1 | Inference

PDP has a useful representation through the Chinese restaurant
process (CRP) [33]. CRP follows an intuitive analogy in which a
Chinese restaurant with infinite table capacity receive customers
who choose to sit around an occupied table or to open a new
table; customers sitting around the same table share the same
dish. Interpreting the CRP in the retail context, customers are
products and dishes are customer behaviours; thus products that
fulfil the same customer need are grouped around the same topic.
Note that customers and dishes are linked through tables and a
dish can be served by multiple tables. Thus, the CRP introduces
‘table counts’, constrained latent variables 𝒕, that represent the
number of tables serving the same dish.

Marginalising transaction-specific variables 𝜈 introduces the
constrained latent variables 𝒕 and leaves the store-specific vari-
ables 𝜃 in conjugate form. Integrating out topic distributions 𝜙
and mixtures of objectives 𝜃, 𝜈, the joint conditional distribution
of STM is:

𝑝(z,w, t|𝜶, 𝜷, 𝑎, 𝑏) = ∏
𝑑

Beta𝐾(𝜶 +
∑

𝑝 t𝑝,𝑑)
Beta𝐾(𝜶)

∏
𝑝,𝑑

(𝑏|𝑎)∑
𝑘 𝑡𝑝,𝑑,𝑘

(𝑏)𝑁𝑝,𝑑∏
𝑝,𝑑,𝑘

𝑆
𝑁𝑘|𝑝,𝑑
𝑡𝑝,𝑑,𝑘 ,𝑎

∏
𝑘

Beta𝑉(𝜷 + N𝑘)

Beta𝑉(𝜷)
(2)

where 𝑡𝑝,𝑑,𝑘 is the table count for transaction 𝑝, store 𝑑 and
topic 𝑘. Beta𝐾(𝜶) is the 𝐾-dimensional beta function that
normalises the Dirichlet distribution; t𝑝,𝑑 = [𝑡𝑝,𝑑,1, … , 𝑡𝑝,𝑑,𝐾]

is a 𝐾-dimensional vector of table count; (𝑥|𝑦)𝑁 denotes
the Pochhammer symbol; 𝑁𝑝,𝑑 size of transaction 𝑝 in store
𝑑; 𝑆𝑁

𝑀,𝑎
is a generalised Stirling number; 𝑁𝑘|𝑝,𝑑 number of

topic assignments of topic 𝑘 in transaction 𝑝 in store 𝑑.
Beta𝑉(𝜷) is 𝑉 dimensional beta function that normalises
the Dirichlet distribution; N𝑘 = [𝑁1|𝑘, … ,𝑁𝑣|𝑘, … ,𝑁𝑉|𝑘] is a
𝑉-dimensional vector of term counts, which is the number of
products of type 𝑣 assigned to topic 𝑘. Detailed definitions of
the Pochhammer symbol and generalised Stirling number are
explained in [1].

Due to the intractable computation of marginal probabilities,
the posterior distribution of latent variables cannot be computed
directly. Thus, inference of STM uses a Monte Carlo approxi-
mation through a Gibbs sampler. Du, Buntine, and Jin [1] and
Buntine and Hutter [30] developed a Gibbs sampler which sam-
ples topic assignments and table counts; later, Chen, Du, and
Buntine [34] proposed a more effective algorithm that jointly
samples topic assignments and ‘table indicators’ for each term.
Table indicators are constraint variables that reconstruct table
counts through summation. We use this block Gibbs sampler
algorithm in our application of STM. The flavour of the Gibbs
sampler is similar to the one of the standard LDA model, where
topic distributions and document topic weights are ‘collapsed’
as a product of multinomials, allowing words to be sampled into
topics directly. In the case of STM, this computation becomes
more complex, because re-assigning words into topics has a
potential knock-on effect on table indicators and table counts.
Using numerical approximations, the conditional distributions
can be computed, allowing Gibbs sampling of topic assign-
ments and table indicators. See Appendix D for more inference
details.

As in the case of LDA, the block Gibbs sampler algorithm does
not explicitly sample topics 𝝓, store-specific mixtures of objec-
tives 𝜽 or transaction-specific mixtures of objectives 𝝂. Instead,
hidden variables are approximated using a posterior sample 𝑠

of topic assignments and table counts. Then, hidden variables
are approximated at each iteration by their conditional posterior
means:

𝜃𝑠
𝑑,𝑘

= 𝐸(𝜃𝑠
𝑑,𝑘

|t𝑠, 𝜶) = 𝛼𝑘 +
∑

𝑝 𝑡
𝑠
𝑝,𝑑,𝑘

𝛼 +
∑

𝑝,𝑘 𝑡
𝑠
𝑝,𝑑,𝑘

(3)

FIGURE 1 | STM graphical model in plate notation. Nodes denote random variables and edges denote dependencies. Unshaded node denote hidden
random variables and shaded nodes denote observed random variables. Plates denote replication. The hidden variables are 𝑧 topic assignments, 𝜃
store-specific topical mixtures, 𝜈 transaction-specific mixtures of objectives, 𝜙 topic distributions, 𝛼 and 𝛽 Dirichlet hyperparameters. Here 𝐾 is the
number of topics, 𝐷 number of stores, 𝑃 number of transactions, and 𝑁 number of products.
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𝜈𝑠
𝑝,𝑑,𝑘

= 𝐸(𝜈𝑠
𝑝,𝑑,𝑘

|z𝑠 , t𝑠 , 𝑎, 𝑏) = 𝑁𝑠
𝑝,𝑑,𝑘

− 𝑎 × 𝑡𝑠
𝑝,𝑑,𝑘

𝑏 + 𝑁𝑠
𝑝,𝑑

+ 𝜃𝑑,𝑘

∑
𝑘 𝑡

𝑠
𝑝,𝑑,𝑘

× 𝑎+𝑏

𝑏 + 𝑁𝑠
𝑝,𝑑

(4)

𝜙𝑠
𝑘,𝑣

= 𝐸(𝜙𝑠
𝑘,𝑣
|z𝑠, 𝜷) = 𝛽𝑣 + 𝑁𝑠

𝑘,𝑣

𝛽 + 𝑁𝑠
𝑘

(5)

where 𝛼 =
∑𝐾

𝑘
𝛼𝑘 and where 𝛽 =

∑𝑉
𝑣
𝛽𝑣 .

3.2 | Summarising Topic Distributions

Summarising the posterior distribution of a topic model is
challenging because the posterior distribution is often highly
multi-modal, resulting in posterior samples that capture differ-
ent shopping needs (in the text analysis context, these are called
semantic modes). Although dominant topics, capturing common
shopping needs, may consistently appear in every single MCMC
iteration, topics with lower overall prevalence may only recog-
nisably appear in some iterations [22, 23]. Thus, component-wise
posterior averaging may merge topic distributions that respond
to different semantic concepts.

In response, we follow the methodology described in [2] to con-
struct a summary of topical modes using multiple posterior sam-
ples from various MCMC chains, similar in spirit to [35] and fol-
lowing clustering principles by Hennig et al. [36]. The rationale
of this approach is that, in order to provide meaningful posterior
summaries of topics, one needs to define a meaningful distance
metric that can be used to assess whether two topics correspond
to the same theme/concept, in this case a shopping need. To this
end, the authors Vega Carrasco et al. [2] use the cosine similarity
to compare similarity between topics, defined as

𝑑(𝜙𝑖, 𝜙𝑗) =
𝜙𝑖 ⋅ 𝜙𝑗||𝜙𝑖||||𝜙𝑗|| =

∑𝑉
𝑣=1𝜙𝑖𝑣𝜙𝑗𝑣√∑𝑉

𝑣=1𝜙
2
𝑖𝑣

√∑𝑉
𝑣=1𝜙

2
𝑗𝑣

because it better captures relative ratios of weights of different
products within each topic. The method [2] uses clustering to
create groups of topics across different posterior samples that cor-
respond to the same shopping need; these clusters can then be
used to compute cluster-specific posterior summaries.

Specifically, the methodology inputs all topics across MCMC iter-
ations and clusters them using a bottom-up hierarchical cluster-
ing approach. At each step, the algorithm finds the pair of clusters
with the lowest cosine distance and merges clusters only if their
topic distributions come from different samples. The algorithm
keeps merging clusters up to a cosine distance threshold. Each
resulting cluster is represented by the average topic distribution,
named clustered topic, and by the number of topics gathered in
the same cluster, named cluster size. Cluster size is a measure
of recurrence and denotes (un)certainty, that is, a topic that has
occurred in every posterior sample is highly recurrent, showing
no uncertainty. Although use this approach was used within a
standard LDA model [2], the methodology is naturally applicable
to STMs as well.

3.3 | Evaluation of Clustered Topics

Depending on the cosine distance threshold, the clustering
algorithm produces a set of clustered topics, which can be

selected according to their recurrence. Thus, multiple subsets
of clustered topics can be formed by varying cosine distance
threshold and recurrence (setting a minimum cluster size). We
evaluate each subset of clustered topics on four aspects: gener-
alisation or predictive power of a subset of topics, coherence of
individual topics, the distinctiveness of a topic with respect to
the other topics in the same posterior sample, and credibility of
a topic with respect to the topics from other posterior samples.

Topic coherence, distinctiveness and credibility are measured as
described in [2]. Model generalisation, however, is measured by
the perplexity of unseen transactions given topics, store-specific
mixtures of objectives and PDP parameters:

Perplexity = −
log𝑃(w′

𝑑
|Φ, 𝜃𝑑, 𝑎, 𝑏)
𝑁′

(6)

where w′
𝑑

is a set of products in a held-out transaction at store 𝑑,
𝑁′ is the number of products in w′

𝑑
, Φ = [𝜙1, 𝜙2, … , 𝜙𝐾] the set

of inferred topics, 𝜃𝑑 is the store-specific mixtures of objectives
associated to store 𝑑, 𝑎 and 𝑏 are the PDP parameters. We aim
to select a subset of clustered topics that shows low perplexity,
gathering topics that are coherent, distinctive and credible (low
uncertainty).

The quality of the clustered topics is influenced by both the num-
ber of topics specified in the sampler and the choice of hyper-
parameters. In this article, we chose the hyperparameters and
the number of topics through an exploration of various combina-
tions. For a detailed discussion on model evaluation and model
selection, we refer readers to our earlier paper [2].

4 | Gaussian Process Regression

According to Tobler’s first law of geography [37]: ‘everything
is related to everything else, but near things are more related
than distant things’. Thus, we expect that nearby stores show
similar shopping patterns and that some specific patterns may be
limited to particular geographical areas. STM does not take into
account store location or proximity between stores. Although a
topic model that simultaneously accommodate store hierarchy
over transactions and store location would be mathematically
possible, it would be computationally prohibitive at the level of
resolution of interest. Instead, we use the summarised posterior
distributions of topics obtained from STM and take a spatial
modelling approach to capture their geographical structure and
regional behaviour.

4.1 | Model

A linear regression with spatial Gaussian process errors is defined
as

Y = X𝜷 + 𝜼 + 𝜺 (7)

where Y is the dependent variable, X is the matrix of 𝑝 covariates
associated with locations s1, … , s𝑛, 𝜷 is a 𝑝-dimensional fixed
effect, 𝜼 is a spatial process, which captures spatial residual, and 𝝐
is an independent process, which models pure error, also known
as the nugget effect.
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The spatial process 𝜂(s1), … , 𝜂(s𝑛) is distributed as a zero-mean
Gaussian process 𝐺𝑃(0, 𝐶𝜼) with positive definitive covari-
ance matrix 𝐶𝜼. Residuals 𝜀(s1), … , 𝜀(s𝑛) are assumed 𝑖𝑖𝑑 with
𝜖(s𝑖) ∼ 𝑁(0, 𝜎2). Thus, observations are distributed as:

Y ∼ 𝑁(X𝜷, Σ) (8)

where Σ = 𝐶𝜼 + 𝜎2𝐼.

Here, we use the positive definitive square exponential covari-
ance function,

𝐶𝜼(s𝑖 , s𝑗|𝛼, 𝜌) = 𝛼2 exp

(
−

dist(s𝑖 , s𝑗)2

2𝜌2

)
(9)

where parameters𝛼 and 𝜌 control the amplitude and length-scale
of the spatial dependence, respectively. dist(s𝑖 , s𝑗) is a measure of
distance between locations.

4.2 | Methods

The GPR specified in Equation (7) is fitted using Stan [38]. Stan
facilitates Bayesian inference by gradient-based sampling tech-
niques such as Hamiltonian Monte Carlo methods [39] and vari-
ational inference [40]. In our study, the inference is computed
by the default Stan algorithm No-U-Turn Sampler (NUTS) [41].
NUTS is an extension of the Hamiltonian Monte Carlo (HMC)
algorithm that effectively explores the parameter space by avoid-
ing retaking previously sampling paths in a U-turn style.

4.3 | Predictions

Predicted topic probabilities Y⋆ = [𝑌⋆(s1), … , 𝑌⋆(s𝑛)] at new
locations s⋆1 , … , s⋆

𝑛
are distributed as:

Y⋆|Y, 𝜷, Θ,X⋆,X

∼ 𝑁(X⋆𝜷 + Σ21Σ
−1
11 (Y − X𝜷), Σ22 − Σ21Σ

−1
11 Σ12)

(10)

where X⋆ is the matrix of 𝑝 covariates at the new locations. Here,
Σ11 is the covariance matrix of s1, … , s𝑛 locations, Σ12 = Σ21
the covariance matrix between s1, … , s𝑛 and s⋆1 , … , s⋆

𝑛
, and

Σ22, covariance matrix of s⋆1 , … , s⋆
𝑛

. The first quantity in the
expected topic probabilities 𝐸(Y⋆) are computed is obtained by
multiplying the design matrix by the fixed effects as in multiple
linear regression. The second quantity pulls the expected value
at a new store towards the values of the nearby stores if spatial
dependence is significant.

5 | Identifying Regional Grocery Topics

We analyse grocery transactions from a major retailer in the
UK. Transactions are sampled randomly, covering 100 nation-
wide superstores between September 2017 and August 2018.
Transactions with fewer than 3 products are filtered out because
they inflate the dataset without providing additional meaningful
information. The training data set contains 36,000 transactions
and a total of 392,840 products and the test data set contains

3600 transactions and a total of 38,621 products. Transactions
contain 10 products on average. The product assortment contains
10,000 products, which are the most monthly frequent, ensuring
the selection of seasonal and non-seasonal products. We count
unique products in transactions, disregarding the quantities of
repetitive products. For instance, 5 loose bananas count as 1 prod-
uct (loose banana). We do not use an equivalent of stop words
list (highly frequent terms), as we consider that every product or
combination of them tell different customer needs. We disregard
transactions with fewer than 3 products assuming that smaller
transactions do not have enough products to exhibit a regional
topic. No personal customer data were used for this research.

5.1 | STM Posterior Summary

We explore STM with 100 topics to capture as many topics as pos-
sible without making inference too computationally prohibited.
As shown in [2], a topic model with 100 topics identifies a variety
of customer behaviours in the domain of our application. Explor-
ing STM with a smaller or larger number of topic is out the scope
of this article.

We use symmetric priors with hyperparameters𝛼𝑘 = 1000∕𝐾 and
𝛽𝑣 = 0.01, and PDP hyperparameters 𝑏 = 3.0 and 𝑎 = 0.5. We run
four MCMC chains for 100,000 iterations with a burn-in of 80,000
iterations, samples were recorded every 5000 iterations, obtain-
ing 20 thinned posterior samples (five samples for each chain).
MCMC trace plots are presented in Appendix A, where the con-
vergence is satisfactory.

Posterior topic distributions are summarised by clustering a bag
of 2000 topics obtained from the aforementioned 20 posterior
samples. As shown in Appendix C, we observe that the subset
formed with a minimum cluster size 10 (which represent 50% of
the samples) and a cosine distance threshold ≥ 0.35 show greater
coherence, credibility and generalization, concurring with [2].
Based on these results, we choose this subset which contains 104
clustered topics.

To obtain store-specific mixtures of shopping objectives across
the identified 104 clustered topics, the STM is re-fitted using
these 104 clustered topic distributions, which are held fixed dur-
ing the re-fitting process. The sampler follows the steps described
in Section 3.1.1, but only Equations (3) and (4) are updated. A
MCMC chain runs with a burn-in period of 1000 iterations,
recording posterior samples with a thin of 500 iterations. The
MCMC trace plot in Appendix B shows satisfactory convergence.
We collect 30 posterior samples which are then averaged to esti-
mate store-specific mixtures of objectives for 500 stores across
the UK.

5.2 | Interpreting Topic Distributions

We interpret six out of the 104 clustered topics as they capture
a clear, interpretable regional pattern. A few more topics, along
with their geographical distribution, are shown in Appendix F.
The majority of the remaining topics either show a ubiquitous
distribution across the UK or do not have a clear, unique inter-
pretation in terms of the underlying shopping objectives. We
interpret topics by analysing the product descriptions of the
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15 products with the largest probabilities. Topics are manually
named after the regional pattern or customer preference reflected
on the product descriptions. Note that the six illustrated topics
appeared consistently across the 20 posterior samples (size =

20), indicating low posterior uncertainty.

Product descriptions in Figure 2a–c suggest foods supplied
locally and local brands associated to Scotland, Northern
Ireland and Wales. For instance, the Scottish topic includes
‘Scottish-branded skinless sausages’ and ‘Scottish-branded
potato scones’, the Northern Irish topic shows the ‘North Ire-
land semi-skimmed milk’, ‘white potatoes packed in North
Ireland’, and the Welsh topic contains ‘Welsh jacket potatoes’
and ‘Welsh-branded bread’. Hence, we name the Scottish topic,
Northern Irish topic and Welsh topic after the nationality that
their product descriptions suggest.

Figure 2d,e show a variety of products such as types of milk,
types of bread, fruits and vegetables and so forth. Close inspec-
tion of product descriptions such as ‘oven bottom muffin’, ‘fruit
teacake’, and ‘potato and meat pie’ in Figure 2d, and ‘pork pies’
and ‘scotch eggs’ in Figure 2e may reveal a regional topic when
regional expertise is available. Since these product descriptions
do not provide interpretations that can be directly associated
with specific regions, we momentarily name these topics ‘Mixed
basket I’ and ‘Mixed basket II’. Figure 2f shows ‘organic’ quality
foods, indicating a specific customer preference, however, the
topic does not suggest any specific regional pattern.

Interpreting topic descriptions is not sufficient to identify geo-
graphically driven shopping motivations, reinforcing the need for
exploring store-specific mixtures of objectives.

5.3 | Mapping Mixtures of Objectives

Interpreting product descriptions may reveal the existence of
regional topics, that is, the Northern Irish/ Scottish/ Welsh topic.
Topic interpretations may dismiss regional topics that exhibit
products that are not directly linked with specific areas. Thus,
we visualise the store-specific topic probabilities at the store’s
location, aiming to find topics with a regional pattern. We link
store postcodes with location coordinates through querying
stores’ postcodes in the lookup table from the Office for National
Statistics [42]. Figure 3 shows the topic probabilities of the six
clustered topics mapped across the UK.

Figure 3a–c clearly confirm that the Scottish, Northern Irish
and Welsh topics are more likely in their respective constituent
countries. More interestingly, Figure 3c shows the prevalence
of the Welsh topic over neighbouring regions. Figure 3d shows
high topic probabilities concentrated in the North West and
surrounding regions, and Figure 3e shows high topic probabil-
ities in the central and southern English regions. We rename
both topics as North and Centre and South and Midlands due
to their cross-regional prevalence. Figure 3f, which maps the
Organic topic, shows significant probabilities concentrated
in London.

In comparison to the Scottish, Northern Irish and Welsh topics,
interpretations of the most probable topics in the North and Cen-
tre, South and Midlands and Organic topics do not easily suggest
a geographical pattern. Mapping the store-specific topic proba-
bilities aids the analysis and identification of topics with spatial
patterns.

(a) Scottish (b) Northern Irish (c) Welsh

(d) Mixed basket I (e) Mixed basket II (f) Organic

FIGURE 2 | Most probable products in grocery regional topics. Each topic is interpreted using the 15 products with the largest probabilities. Prob-
abilities and products are sorted in descending order. General brand names have been replaced by XXX. Local brands in North Ireland, Scotland, Wales
and North of England have been replaced by NI-XXX, SC-XXX, WE-XXX, NE-XXX. NPMI and size are measures of topic coherence and recurrence.
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(a) Scottish (b) Northern Irish (c) Welsh

(d) North and Centre (e) South and Midlands (f) Organic

FIGURE 3 | Topic probabilities of clustered grocery topics in the UK. Purple and yellow points reflect the largest and smallest topic probabilities,
respectively.
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5.4 | STM Versus LDA

STM shows two advantages over LDA. First, STM provides topi-
cal summaries for stores, by including the store hierarchy above
transactions. Second, and less obvious, STM discovers topics that
are relevant within their store context. In comparison, LDA finds
products that are frequently bought together across all transac-
tions. Thus, a product combination that is only frequent in few
stores may not be shown among LDA topics. The ability to cap-
ture store-specific topics is key to our subsequent spatial mod-
elling analysis.

We compare the 104 STM clustered topics (HC-STM-100) against
the posterior summaries of the LDA model with 100 and 200
topics. The posterior summaries of LDA were obtained using
the same training data and following the clustering method-
ology in [2]. The posterior summary of LDA with 100 topics
(HC-LDA-100) gathers 96 clustered topics and the posterior
summary of LDA with 200 topics (HC-LDA-200) gathers 198
clustered topics.

Figure 4a shows the cosine similarity between (HC-STM-100) 104
clustered topics and (HC-LDA-100) 96 clustered topics. Clustered
topics are ordered to visualise high similarities in the diagonal.
As observed, the majority of clustered topics are identified in
both models, STM and LDA, with high cosine similarity >0.7.
Figure 5a shows that 70% of the (HC-STM-100) clustered topics
are found among HC-LDA-100 clustered topics, and 85% of the
HC-LDA-100 clustered topics are found among the HC-STM-100
clustered topics with high similarity. For instance, the Northern
Irish topic is found in both models with high cosine similarity
(0.97). As depicted in Figure 6a, Northern Ireland related prod-
ucts rank in the top 15 products in both topics. The Organic topic

was also found among HC-LDA-100 clustered topics with high
cosine similarity (0.95).

We also compare the 104 STM clustered topics against the 198
LDA clustered topics obtained from summarising LDA posterior
samples of 200 topics. This comparison allows identifying the
regional topics that were not caught in LDA samples with 100
topics. For instance, the Scottish topic described in Figure 2a,
is not found in the HC-LDA-100 subset, but it is found in the
HC-LDA-200 subset with a cosine similarity of 0.83. As observed
in Figure 4b, the majority of the 104 clustered topics are found
among the (HC-LDA-200) 198 LDA clustered topics with high
cosine similarity (>0.7). However, Figure 5b shows that there are
still some STM clustered topics that do not match with any of the
LDA clustered topic with high similarity. For example, the Welsh
topic described in Figure 2c, is not found in either of the two
subsets of LDA clustered topics. The Welsh topic and the closest
clustered topic in HC-LDA-200 (with 0.67 cosine similarity)
are listed in Figure 6b; as observed, few products are shared by
the topics but Welsh products are not described in both topics.
The North and Centre topic and the South and Midlands topic
were not found among the HC-LDA-200 clustered topics either.
Perhaps, these regional topics would appear among posterior
samples of a larger LDA model, that is, LDA with 300 topics;
however, increasing the model complexity is not only more
computationally expensive but also less efficient since topics
tend to show less distinctiveness [2].

In summary, three out of the six regional topics are identified by
STM and the other three regional topics are identified by both
STM and LDA models. One of these topics was captured by a
larger LDA model. STM shows its strength over LDA by identi-
fying more regional topics.

(a) HC-STM-100 vs HC-LDA-100 (b) HC-STM-100 vs HC-LDA-200

FIGURE 4 | Cosine similarity between clustered topics obtained from posterior summaries of STM with 100 topics and LDA with 100 and 200 topics.
Topics have been aligned following a greedy algorithm that at each step searches and pairs topics (that have not been paired) with the highest cosine
similarity.
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(a) HC-STM-100 vs HC-LDA-100

(b) HC-STM-100 vs HC-LDA-200

FIGURE 5 | Distributions of the maximum cosine distance obtained from each cosine similarity matrix in this figure. (a) Plots maximum cosine dis-
tances between clustered STM topics (HC-STM-100) against the posterior summary of LDA with 100 topics (HC-LDA-100) (left); and from HC-LDA-100
to HC-STM-100 (right). (b) Plots maximum cosine distances between HC-STM-100 against the posterior summary of LDA with 200 topics (HC-LDA-200)
(left); and from HC-LDA-200 to HC-STM-100 (right).

6 | Modelling Regional Prevalence

We aim to model topic probabilities across stores in the UK by
constructing a linear model with fixed effects associated with
the constituent countries of the UK (Wales, Scotland, Northern
Ireland) and the nine English regions, and imposing spatial
dependency though a Gaussian process that captures residual
spatial association as defined in Equation (7). In this manner, we
can quantify the significance of a topic to a region or constituent
country. This administrative division was chosen assuming that
each country and region would broadly show differences in
customer behaviour. Analysis over other subdivisions is possible,
but it is out of the scope of this article.

The dependent variable Y𝑘 is the logit transformation of
the store-specific 𝑘th topic probabilities [𝜃s1 ,𝑘

, 𝜃s2 ,𝑘
, … , 𝜃s𝑛,𝑘],

given by:
Y𝑘 = logit([𝜃s1 ,𝑘

, 𝜃s2 ,𝑘
, … , 𝜃s𝑛,𝑘]) (11)

where each 𝜃s𝑖 ,𝑘 is the average probability over 30 posterior
samples of the 𝑘th topic at store location s𝑖 from Section 5.1. For
simplicity, we assume independence among topic probabilities
and model each topic separately, that is, for each topic, a linear
model is constructed. However, topic probabilities of a topical
mixture are not independent of each other since they need to
sum to 1.

The logit transformation not only avoids predicting nonsensical
values (i.e., topic probabilities >1 or <0), but also aids the visu-
alisation of topic probabilities that cannot be appreciated in the
original scale. For instance, Figure 7 (left panel) highlights stores
in the South West that are not noticed in Figure 3c.
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(a) The Northern Irish topic in STM and LDA

(b) The Welsh topic in STM and its most similar topic in LDA

FIGURE 6 | Comparison of topics identified in STM and LDA posterior samples. Highlighted products appear in both topics. While the Northern
Irish topic is clearly identified by both models, the Welsh topic is only found by the STM model.

The covariate matrix X is defined by dummy variables responding
to the constituent countries: ‘North Ireland’, ‘Scotland’, ‘Wales’;
and the English regions: ‘North East’, ‘North West’, ‘Yorkshire
and the Humber’, ‘East Midlands’, ‘West Midlands’, ‘South West’,
‘South East’, and ‘East Anglia’, where ‘London’ is the reference
category.

The spatial distance dist(s𝑖 , s𝑗), which define covariance
between stores 𝐶𝜼(s𝑖 , s𝑗), is calculated by first finding the
latitude-longitude coordinates associated with the store’s post-
code, second computing the distance between pair of coordinates
using the Haversine formula [43]. The Haversine formula pro-
vides accurate approximations of distance for locations over
large areas. Postcode coordinates are queried from the postcode
lookup table from the Office for National Statistics [42]. Spatial
distance is measured in kilometres.

We complement the Bayesian hierarchical model with weakly
informative priors: 𝜎2 ∼ half𝑁(0, 1), 𝛽 ∼ 𝑁(0, 10); 𝛼 ∼ 𝑁(0, 2),
and 𝜌 ∼ 𝐼𝐺(2, 50).

Parameters of the GPR are estimated with Stan, using 2 MCMC
chains which run for 2000 iterations, 1000 burn-in iterations, and
a thin of five iterations. Convergence of MCMC chains is satisfac-
tory with scale factor reduction 𝑅 = 0.998.

6.1 | Prevalence of Regional Behaviours in the
UK

We take a closer look at regional behaviours, drawing parallels
to the 2012 Food Survey study published by the Department
for Food and Rural Affairs [44]. Table 1 shows posterior sum-
maries of the GPR. The intercept can be interpreted as how
likely (in logit scale) a topic is at a store in London and vice
versa. Positive average coefficients indicate that the topic is
more likely than in London. Average coefficients that are high-
lighted in red correspond to non-zero 95% credible intervals
with 0 > upper bound, and bold average coefficients cor-
respond to non-zero 95% credible intervals with 0 < lower
bound.
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FIGURE 7 | Welsh topic: (left panel) observed topic probabilities in logit scale; (central panel) probability estimates (in logit scale) using only fixed
effects; (right panel) spatial residuals captured by the Gaussian process.

TABLE 1 | Regression parameters for regional topics Red/bold mean estimates for coefficients with non-zero credibility intervals that
decrease/increase the topic probability, respectively.

Northern
Irish Scottish Welsh

North and
Centre

South and
Midlands Organic

Parameter Avg. SE Avg. SE Avg. SE Avg. SE Avg. SE Avg. SE

Intercept −10.4 0.02 −9.52 0.03 −8.9 0.04 −6.34 0.04 −4.42 0.02 −4.62 0.05
Northern Ireland 8.67 0.03 −0.72 0.04 −1.44 0.07 −4.11 0.05 −5.77 0.03 −1.25 0.06
Scotland 0.19 0.02 6.84 0.04 −1.12 0.05 −1.93 0.04 −1.82 0.03 −1.34 0.06
Wales −0.4 0.03 −0.57 0.03 5.63 0.07 0.39 0.04 −2.27 0.03 −1.27 0.06
North West 0.15 0.03 1.54 0.04 0.1 0.08 3.3 0.05 −0.99 0.03 −1.91 0.06
North East −0.86 0.04 3.27 0.05 −0.33 0.08 3.05 0.06 −1.25 0.04 −2.5 0.07
Yorkshire 0.04 0.03 1.08 0.04 −0.43 0.05 2.98 0.06 −0.43 0.03 −1.68 0.05
West Midlands −0.15 0.02 −0.24 0.03 1.89 0.07 1.95 0.05 0.26 0.03 −1.01 0.05
East Midlands −0.47 0.03 0.68 0.04 0.67 0.05 1.45 0.05 0.31 0.06 −1.47 0.05
East Anglia −0.27 0.02 −0.28 0.03 −0.38 0.05 −0.31 0.04 0.99 0.02 −1.03 0.05
South East −0.21 0.2 0.56 0.03 −0.25 0.04 −1.07 0.04 0.66 0.02 −0.51 0.05
South West −0.26 0.2 −0.1 0.03 1.26 0.05 −0.64 0.04 0.71 0.03 −0.02 0.05

Length-scale 𝜌 63.85 5.95 92.07 19.95 55.31 1.32 51.32 15.53 50.23 3.84 34.67 3.13
Amplitude 𝛼 0.13 0.01 0.3 0.03 1.04 0.01 0.74 0.02 0.23 0.01 0.86 0.02
𝜎 0.78 0.01 1.38 0.01 1.43 0.01 1.37 0.01 1.15 0.01 1.58 0.01

Unsurprisingly, the Scottish, Northern Irish and Welsh topics
show positive average coefficients with non-zero credibility
intervals for the respective constituent countries. This indicates
that their topic probability largely increases for stores in Scotland,
North Ireland and Wales, respectively.

Interestingly, Wales’s and Scotland’s neighbouring regions show
positive average coefficients with non-zero credibility intervals,
that is, North East and North West to the Scottish topic and
West Midlands and South West to the Welsh topic. As shown
in Figure 7 (central panel), probability estimates (in logit scale)
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of the Welsh topic for stores in West Midlands and South West
are greater than the probability estimates of the Welsh topic
at stores in further regions. Moreover, the Gaussian process
captures spatial residual distinguishing the stores in the neigh-
bouring regions that are close to Wales from the stores (in the
same regions) that are at further distances, as demonstrated in
Figure 7 (right panel).

The coefficients for the North and Centre topic clearly show that
the topic is more likely in the North West, North East, Yorkshire
and West Midlands and is less likely in Northern Ireland and Scot-
land. On the other hand, the coefficients for the South and Mid-
lands show that on average the topic is more likely in the south-
ern and central English regions; however, only the coefficient of
East England has a non-zero 95% credibility interval. The Organic
topic shows a different pattern, its average coefficients are nega-
tive; this indicates that the probability of the Organic topic is on
average lower than the average topic probability in London. In
other words, the Organic topic is more likely in London than in
any other region or constituent country; however, the coefficients
show 95% credible intervals containing zero, suggesting that the
regional effect may not be significant.

Chapter 3.3 of the 2012 Family Food report [44] explores regional
comparisons within England, highlighting several similar
regional differences which are model is also able to identify. For
example, our CentralSouth topic is very similar to the Central-
North, except the latter generally contains higher fat content:
bread is replaced by muffins, ham is replaced by bacon, resonat-
ing with the North–South differences of the Family Food survey.

Similarly, potatoes featured in the top 15 products of our Central-
North topic, but not the CentralSouth. Finally, our Cornish topic
showed high cream consumption, in-line with the Food Survey.
On the other hand, in the country-level comparison of the Family
Food report, Northern Island shows the highest consumption of
potatos, whereas in our analysis, the Welsh topic displays even
wider variety of potatoes. This could either indicate a new trend,
or reflect the fact that our analysis disregards quantities of items
within each transaction.

The covariance parameters length-scale 𝜌 and amplitude𝛼model
the covariance between stores, which is stronger when the spa-
tial distance is smaller than 𝜌 and when 𝛼 is significantly larger
from zero. The Welsh and the Organic topic show strong covari-
ance as depicted in Figure 8. On the other hand, the Northern
Irish topic and the Scottish topic show small values of 𝛼 indicat-
ing weak covariance functions.

6.2 | Linear Gaussian Process Regression
Versus Linear Regression

Here, we compare mean squared error and the log of the probabil-
ity density on held-out data obtained from model topic prevalence
using linear GPR and the linear regression (LR). We will show
that the former model retrieves more accurate estimates and bet-
ter predictive likelihood by modelling residual spatial effect.

Table 2 shows that GPR improves the prediction of topic prob-
abilities of the Welsh, English-Northern and Centre, South and
Midlands and Organic topics. The difference between the mean

(a) Welsh topic (b) Organic topic

FIGURE 8 | Covariance function of the (a) Welsh topic and (b) Organic topic. Lines are computed with posterior samples of 𝛼 and 𝜌.

TABLE 2 | Comparison of the linear Gaussian process regression (GPR) versus linear regression (LR).

Northern
Irish Scottish Welsh

English-North
and Centre

English-South
and Midlands Organic

LR: MSE (SE) 0.64 (0.001) 2.16 (0.004) 3.18 (0.006) 3.36 (0.007) 1.65 (0.004) 3.39 (0.007)
GPR: MSE (SE) 0.63 (0.001) 2.15 (0.004) 2.64 (0.005) 3.24 (0.004) 1.62 (0.003) 3.18 (0.006)
p-value 0.5877 0.1664 0.0000 0.0000 0.0000 0.0000

LR lppd (SE) −298.3 (0.30) −450.2 (0.25) −499.1 (0.23) −513.5 (0.31) −418.8 (0.38) −506 (0.26)
GPR lppd (SE) −296.5 (0.28) −449.3 (0.26) −476.9 (0.26) −504.9 (0.43) −412.6 (0.40) −493.9 (0.27)
p-value 0.0000 0.0169 0.0000 0.0000 0.0000 0.0000

Note: p-values are computed for the pointwise difference of the two methods at each observation in the test set.
Abbreviation: lppd: log posterior predictive density on test data.
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squared error of these topics is statistically significant at the 0.05
level, indicating that the Gaussian process provides significant
model improvement. Similarly, the log predictive likelihood
of the four aforementioned topics is significantly better at the
0.05 level. On the contrary, the GPR doesn’t show significantly
improved predictions of the Scottish and Northern Irish topics.
The difference of their mean squared errors is not statistically
significant at the 0.05 level; however, the GPR shows significantly
better predictive log-likelihood at the 0.05 level.

Examining GPR residuals in Figure 9, we still observe spatial pat-
terns that are not captured by the Gaussian process. For example,
concentrations of underestimated probabilities around North
West in Figure 9a, around the centre of Scotland in Figure 9b,
around South West and East Anglia in Figure 9c; and overes-
timated probabilities around South East in Figure 9b. Further
work could explore the Gaussian process with non-stationary
covariance to capture local spatial patterns.

7 | Discussion

In this article, we showed that STM is powerful in the analysis
of transaction retail data, identifying topics that characterise
various customer needs, particularly, those that reflect regional
demand. STM harnesses store structure, describing transactions
and stores as mixtures of objectives. More importantly, STM can
identify regional topics that otherwise would be overseen by the
widely used topic model, the LDA. Aggregating multiple samples
of the posterior distribution and selecting topic modes allow the
identification of certain and meaningful topics, achieving better
data representations and capturing posterior variability. Topic
analysis, through GPR, quantifies regional effects and captures

spatial dependence through the squared exponential covariance
function.

7.1 | Computational Considerations

The computational aspect of our approach is the biggest bottle-
neck of the model. Both the Gibbs sampler for the STM, as well
as the Hamiltonian Monte Carlo sampler implemented through
R-Stan, become prohibitively slow as sample sizes increases.

The parameter space of LDA and related models is vast and
discrete and thus exploration through a Gibbs sampler is slow,
even though eventual convergence is guaranteed. Tuning the
Gibbs sampler (for example, by using adaptive Gibbs sampling
[45]) may be a promising avenue to explore. In our experience,
variational approaches using the mean-field approximation [46]
do not produce topics of satisfactory quality for these types of data
(see discussion in our earlier paper [2]); however, recent advances
using amortised inference [47] may offer improvements.

GP regression using a large number of spatial points is also com-
putationally intensive, due to the underlying dense covariance
matrix. Computational shortcuts using a basis function approx-
imation via Laplace eigenfunctions have been shown to offer
results of similar accuracy at a fraction of the computational cost
for stationary GPs [48]. These improvements could also allow
the analysis of spatial topics using other geographical hierarchies
such as middle layer super output areas.

7.2 | Model Improvement and Future Work

Another consideration of the proposed method is the relation-
ship of the two-step approach to cut posteriors [49]. In this

(a) Welsh topic (b) North and Centre topic (c) Organic topic

FIGURE 9 | Residuals of modelling the Welsh/North and Centre/Organic topic with GPR.
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article, we fit the GP regression on posterior means of the STM
sampler. However, Equation (11) could be replaced by a set of 𝑡
posterior samples rather than a posterior mean estimate; these
posterior samples would then form 𝑡 draws from the GP process,
and would then be fitted as independent draws of the entire set
of geographical locations. This corresponds to a cut posterior
model and would capture not only the mean topic probabilities
but also their posterior uncertainty from the STM samplers. We
have not pursued this direction in this article due to the compu-
tational bottleneck of the GP in R-Stan, but this is part of ongoing
work.

A final consideration of model validity is the suitability of topic
models given their assumption of independent product draws
conditionally on the underlying set of topics. This assumption is
not valid in practice, since customers typically shop with some
version of a shopping list. For example, a topic including cleaning
products might contain two different brands of washing powder
with high probability; however, customers would be unlikely to
purchase both at the same time. This type of model misfit would
be particularly harmful if interest lay in predicting future grocery
baskets. In our case, however, ignoring that dependence and
focusing directly on marginal product inclusion probabilities still
reveals valuable and interpretable output.
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Appendix A

MCMC Convergence Plots

We evaluate four Markov chains of STM with 100 topics. Markov chains
are run for 100,000 iterations with a burn-in period of 80,000 itera-
tions. Log-likelihood is measured at every 10 iterations and shown in
Figure A1. We calculate the potential scale reduction factor using 8000
samples.

Appendix B

MCMC Convergence of Clustered STM Topics

Once the clustered topics are identified, the STM sampler is re-run with
104 clustered topics fixed and known a priori for 1500 iterations and
burn-in period of 1000 iterations. Figure B1 shows convergence of the
marginal log-likelihood over MCMC iterations.

Appendix C

Evaluation of Clustered STM Topics

Figure C1a,b shows the evaluation of the clustered topics across cosine
distance thresholds.

Appendix D

Block Gibbs Sampler

We use the block Gibbs sampling algorithm proposed in [34] that jointly
samples topic assignments and table indicators, leading to a more efficient
sampling method. Table counts are not sampled, instead reconstructed by
summation of the table indicators:

𝑡𝑘 =

𝑁∑
𝑛=1

𝑢𝑧𝑛 1𝑧𝑛=𝑘 (D1)

Using the table indicator representation, the PDP posterior distribution
is:

𝑝(𝑧, 𝑡|𝑎, 𝑏, 𝜃) = ∏
𝑘

𝑛𝑘!

𝑡!(𝑛𝑘 − 𝑡)!
𝑝(𝑧, 𝑢|𝑎, 𝑏, 𝜃) (D2)

responding to 𝑛𝑘!

𝑡!(𝑛𝑘−𝑡)!
sitting arrangements.

The joint distribution of topic assignments and table indicators can be
obtained by using Equation (D2) in Equation (2) resulting in:
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FIGURE A1 | Markov chains of STM with 100. Potential scale reduction factor 𝑅̂ ∶ 1.07.

FIGURE B1 | Markov chain of STM with 104 clustered topics known a priori. Potential scale reduction factor 𝑅̂ ∶ 0.998.

𝑝(z,w, t|𝜶, 𝜷, 𝑎, 𝑏)
=
∏
𝑑

Beta𝐾(𝜶 +
∑

𝑝 t𝑝,𝑑)
Beta𝐾(𝜶)

∏
𝑝,𝑑

(𝑏|𝑎)∑
𝑘 𝑡𝑝,𝑑,𝑘

(𝑏)𝑁𝑝,𝑑∏
𝑝,𝑑,𝑘

𝑆
𝑁𝑘|𝑝,𝑑
𝑡𝑝,𝑑,𝑘 ,𝑎

𝑡𝑝,𝑑,𝑘!(𝑁𝑝,𝑑,𝑘 − 𝑡𝑝,𝑑,𝑘)!

𝑛𝑝,𝑑,𝑘!

∏
𝑘

Beta𝑉(𝜷 + N𝑘)

Beta𝑉(𝜷)

(D3)

The block Gibbs sampling algorithm first samples a table indicator 𝑢𝑛 = 1
or 𝑢𝑛 = 0 with probabilities:

𝑝(𝑢𝑛 = 1|𝑧𝑛 = 𝑘) =
𝑡𝑘
𝑛𝑘

, 𝑝(𝑢𝑛 = 0|𝑧𝑛 = 𝑘) = 1 −
𝑡𝑘
𝑛𝑘

(D4)

and discounts the current assignment 𝑧𝑛 from 𝑁𝑝,𝑑,𝑘 and reduces 𝑡𝑝,𝑑,𝑘 by
1 if 𝑢𝑛 = 1.

Then, the full conditional distribution is computed taking into account
two scenarios: the probability of opening a new table (Equation D5) and

the probability of choosing an occupied table (Equation D6) if 𝑡′
𝑝,𝑑,𝑘

> 0.

𝑝(𝑧𝑛 = 𝑘, 𝑢𝑛 = 1|z − {𝑧𝑛},u − {𝑢𝑛},w, 𝜶, 𝜷, 𝑎, 𝑏)

∝
𝛼𝑘 + 𝑡′

𝑑,𝑘

𝛼 + 𝑡′
𝑑

𝑏 + 𝑎𝑡′
𝑝,𝑑

𝑏 + 𝑁′
𝑝,𝑑

𝑆
𝑁′
𝑝,𝑑,𝑘

+1

𝑡′
𝑝,𝑑,𝑘

+1

𝑆
𝑁′
𝑝,𝑑,𝑘

𝑡′
𝑝,𝑑,𝑘

𝑡′
𝑝,𝑑,𝑘

+ 1

𝑛′
𝑝,𝑑,𝑘

+ 1

𝛽𝑣 +𝑀′
𝑘,𝑤𝑝,𝑑,𝑛

𝛽 + 𝑀′
𝑘

(D5)

𝑝(𝑧𝑛 = 𝑘, 𝑢𝑛 = 0|z − {𝑧𝑛},u − {𝑢𝑛},w, 𝜶, 𝜷, 𝑎, 𝑏)

∝

𝑆
𝑁′
𝑝,𝑑,𝑘

+1

𝑡′
𝑝,𝑑,𝑘

𝑆
𝑁′
𝑝,𝑑,𝑘

𝑡′
𝑝,𝑑,𝑘

1
𝑏 + 𝑁′

𝑝,𝑑

𝑛′
𝑝,𝑑,𝑘

− 𝑡′
𝑝,𝑑,𝑘

+ 1

𝑛′
𝑝,𝑑,𝑘

+ 1

𝛽𝑣 +𝑀′
𝑘,𝑤𝑝,𝑑,𝑛

𝛽 + 𝑀′
𝑘

(D6)

where the dash indicates statistics after excluding the current assignment.

Finally, update the counts of 𝑛𝑝,𝑑,𝑘 and 𝑡𝑝,𝑑,𝑘 with the sampled topic
assignment 𝑧𝑛 and table indicator 𝑢𝑛 .
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(a) Generalisation (b) Coherence

(c) Distinctiveness (d) Credibility

FIGURE C1 | Evaluation of subsets of clustered topics. Subsets are formed with combinations of minimum cluster size and cosine distance thresh-
olds. Horizontal lines and dotted lines show the average measures (±one standard error) of the STM posterior samples. Subsets of clusters formed with
a minimum cluster size of 10 show greater coherence and credibility, and the subsets formed with a cosine distance threshold larger than 0.3 show
better generalisation (in comparison to the average generalisation of the STM posterior samples). Subsets with a minimum cluster size of 10 show less
distinctive clustered topics, which might result from filtering out distinctive but uncertain topics. A cosine distance threshold larger than 0.35 cosine
distance does not significantly improve perplexity.

Appendix E

Hierarchical Clustering

The hierarchical clustering algorithm takes a bag of topics, a list with sam-
ple indexes, and a cosine distance threshold. The bag of topics gathers
topic distributions from various posterior samples from various MCMC.
The list of sample indices records a sample index for each topic, that is,
assuming that the first 50 topics in the bag of topics come from posterior
sample 1 and the next 50 topics come from posterior sample 2, then the
first 50 elements in the list of samples indices are 1 and the next 50 ele-
ments are 2. The cosine distance threshold indicates the limit up to which
topics would be merged.

The algorithm will start by forming clusters with each of the topics in the
bag of topics. So, if there are 𝑁 topics, there are 𝑁 initial clusters. Then,
a list 𝐿 is created to record the cosine distance between two clusters. This
list contains the indexes of the two compared clusters and the cosine dis-
tance between the clustered topics. A clustered topic is the average topic
distributions of the cluster members.

At each step, the algorithm finds the pair of clusters in 𝐿 with the
minimum cosine distance. Then, the algorithm evaluates if the members

of both clusters are from different posterior samples using the list of
sample indices. If so, a new cluster is created by merging the evaluated
pair of clusters. Then, the algorithm removes from the 𝐿 all comparisons
that had any of the identified clusters and adds comparisons from all the
remaining clusters to the new cluster. But, If the evaluation is false, the
algorithm updates the cosine distance between the pair of clusters with
1. Thereby, the algorithm would not take the same pair of clusters in the
next step.

The algorithm will keep merging clusters until the minimum cosine
distance is larger than the cosine distance threshold. The algorithm
then retrieves all the remaining clusters (clusters that are not eliminated
because they do not get merged).

Appendix F

Further Topics

Finally, we show the spatial distribution of three more grocery topics in
Figure F1.
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(a) England-Wales

0.031 XXX FARMS CARROTS 1KG
0.029 PRE PACK BROCCOLI 350G
0.018 CAULIFLOWER EACH
0.015 MARIS PIPER POTATOES 2.5KG
0.015 BRITISH S/SKIMMED MILK 2.272L, 4 PINTS
0.015 XXX FARMS WHITE POTATOES 2.5KG
0.011 CARROTS LOOSE
0.010 CLOSED CUP MUSHROOMS 300G
0.010  XXX FARMS PARSNIP 500G
0.009 PARSNIPS LOOSE
0.009 XXX FARMS UNPEELED SPROUTS 500G
0.009 LEEKS 500G
0.009 LARGE SWEDE EACH
0.008 BROWN ONIONS 3PK 385G
0.007 SAVOY CABBAGE EACH
0.006 XXX 12 GOLDEN YORKSHIRES 220G
0.006 SWEETHEART CABBAGE EACH
0.006 BANANAS LOOSE
0.005 JACKET POTATOES 2.5KG
0.005 ROOT VEGETABLE MEDLEY 1KG

stability : 20/20

(b) Vegetarian

0.010 BANANAS LOOSE
0.009 VEX DAIRY FREE SPRD 500G
0.008 VEX 6 VEGETARIAN SAUSAGES 300G
0.007 VEX COCKTAIL SAUS 180G
0.006 VEX PICNIC EGG 180G
0.006 VEX FREE−LACTO FRESH S/SKIMMED MILK 1 LTR
0.005 LONGLIFE SOYA DRINK SWEETENED 1LTR
0.005 RIPE BANANAS 5 PACK
0.005 VEX MINCE 500G
0.005 VEX SAUSAGES 336G
0.004 VEX FREE−LACTO MATURE CHEDDAR CHEESE 200G
0.004 VEX ALMOND FRESH DRINK ALT 1 LTR
0.004 VEX BIG POT VANILLA YOGHURT 500G
0.004 BUDGET VALUE LONGLIFE SOYA UNSWEETENED 1LTR
0.004 VEX SOUTHERN FRIED BITES 300G
0.004 VEX DAIRY FREE SUNFLOWER SPREAD 500G
0.004 VEX SOYA FRESH DRINK 1 LTR
0.004 VEX CHICKEN STYLE PIECES 500G
0.004 VEX FALAFEL 200G
0.004 VEX 2 MOZZARELLA BURGERS 227G

stability : 20/20

(c) BBQ

0.019 PREMIUM 4 BRITISH BEEF STEAK BURGERS 454G
0.015 SOFT WHITE ROLLS 6 PACK
0.012 HOT DOG ROLLS 6 PACK
0.011 WHOLE CUCUMBER EACH
0.011 WHITE FINGER ROLLS 6 PACK
0.010 LARGE WHITE BAP 4 PACK
0.010 STRAWBERRIES 400G
0.009 BBQ MINTED LAMB KEBABS 400G
0.009 4 1/4LB BEEF BURGERS 454G
0.008 XXX ICE CUBES 2KG
0.008 ICEBERG LETTUCE EACH
0.008 BBQ MAPLE PORK LOIN STEAKS 600G
0.008 10 SLICES 200G
0.007 BBQ MANGO & SWEET CHILLI CHIKEN MINI FL300G
0.007 BBQ CHINESE PORK LOIN STEAKS 600G
0.007 SWEETCORN COBETTES 4 PACK
0.006 BRIOCHE BUNS 4 PACK
0.006 BBQ CHIKEN & CHORIZO KEBABS 272G
0.006 SOFT WHITE HOT DOG ROLLS 6 PACK
0.006 XXX WHITE SLICED SANDWICH ROLLS 12 PACK

stability : 15/20

(d) England-Wales (e) Vegetarian (f) BBQ

FIGURE F1 | Topic probabilities of clustered grocery topics in the UK for three further topics: (a) England-Wales, (b) Vegetarian and (c) BBQ. The
top row shows the top 20 products within each topic. In the bottom row, purple and yellow points reflect the largest and smallest topic probabilities,
respectively.
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