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ABSTRACT
In recent years, the rapid spread of smartphones has led to the in-
creasing popularity of Location-Based Social Networks (LBSNs).
Although a number of research studies and articles in the press have
shown the dangers of exposing personal location data, the inherent
nature of LBSNs encourages users to publish information about
their current location (i.e., their check-ins). The same is true for the
majority of the most popular social networking websites, which of-
fer the possibility of associating the current location of users to their
posts and photos. Moreover, some LBSNs, such as Foursquare, let
users tag their friends in their check-ins, thus potentially releas-
ing location information of individuals that have no control over
the published data. This raises additional privacy concerns for the
management of location information in LBSNs.

In this paper we propose and evaluate a series of techniques for
the identification of users from their check-in data. More specifi-
cally, we first present two strategies according to which users are
characterized by the spatio-temporal trajectory emerging from their
check-ins over time and the frequency of visit to specific locations,
respectively. In addition to these approaches, we also propose a hy-
brid strategy that is able to exploit both types of information. It is
worth noting that these techniques can be applied to a more general
class of problems where locations and social links of individuals are
available in a given dataset. We evaluate our techniques by means
of three real-world LBSNs datasets, demonstrating that a very lim-
ited amount of data points is sufficient to identify a user with a high
degree of accuracy. For instance, we show that in some datasets we
are able to classify more than 80% of the users correctly.
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1. INTRODUCTION
With the proliferation of GPS and Internet enabled smartphones

over the last years, Location-Based Social Networks (LBSNs) have
been increasingly popular and have attracted millions of users. Ex-
amples of LBSNs include BrightKite1, Gowalla2, Facebook Places 3

and Foursquare4. While BrightKite and Gowalla have been discon-
tinued, Foursquare is now one of the most popular and widely used
LBSNs with nearly 30 million users and over 3 billion check-ins.

These systems are based on the concept of check-in: a user can
register in a certain location and share this information with his/her
friends with the possibility of leaving recommendations and com-
ments about shops, restaurants and so on. However, a great deal of
research has highlighted the dangers of exposing personal location
information [2, 5, 20]. In particular, the problem of protecting pri-
vacy in LBSNs has also been the subject of several studies, such
as [4, 17, 19, 33, 7, 22, 28, 29]. The social nature of LBSNs in-
evitably introduces new concerns, as users are encouraged to dis-
seminate location information on the network [31]. Moreover, as
noted by Ruiz et al., the practice of tagging users can lead to the
release of location information about other individuals that have no
control over the published data [31]. For instance, in August 2012
Foursquare announced the possibility of tagging friends belonging
to other social networks, i.e., Facebook, even when these are not
Foursquare users5. In general, there is an increasing concern about
the possibility of identifying users from the information that can be
extracted from geo-social media.

In this paper, we address the problem of identifying a user through
location information from a LBSN. Our aim is to elaborate a num-
ber of strategies for the identification of users given their check-
in data. More specifically, we firstly propose a trajectory-based
approach where a user is identified simply considering the trajec-
tory of spatio-temporal points given by his/her check-in activity.
In addition to this, we propose a series of alternative probabilis-
tic Bayesian approaches where a user is characterized by his/her
check-in frequency at each location. We also propose to exploit
the social ties of the LBSNs by augmenting the frequency infor-
mation of a user with that of his/her neighbors in the social graph.
Finally, we combine the trajectory-based and the frequency-based
techniques and propose a hybrid identification strategy. In order to
evaluate these techniques, we measure experimentally the loss of
victims’ privacy as a function of the available anonymized infor-

1http://techcrunch.com/2011/12/20/brightkite-winds-down-says-
it-will-come-back-with-something-better-again/
2http://blog.gowalla.com/
3https://www.facebook.com/about/location
4https://foursquare.com
5http://aboutfoursquare.com/foursquare-extends-friend-tagging-
to-facebook/



l1 l2 l3 l4
Alice 4 4 4 4
Bob 1 1 1 4
Charlie 5 1 2 0

id Trace Other
u1 l4, l1, l4 s1
u2 l1, l1, l1 s2
u3 l1, l2, l3 s3

Table 1: Linking location information across different databases
allows the attacker to break users’ privacy.

mation. We also propose to quantify the complexity of the iden-
tification task by means of the generalized Jensen-Shannon diver-
gence [21] between the frequency histograms of the users.

To the best of our knowledge, this is the first work concerning
the problem of identification of users through LBNS location data.
We find that the check-in data of the neighbors of a user, depend-
ing on the dataset being used, have a limited impact on the ability
of identifying that user, which fits with what previous studies have
observed on the interaction between mobility and social ties in LB-
SNs [6, 13, 14]. We also show that the more unique a GPS position
is (i.e., the less shared it is among users), the more efficient the
trajectory-based strategy is when the number of check-ins that we
intend to classify is small. Overall, however, we find that the hy-
brid approach yields the best classification performance, with an
accuracy of more than 90% in some of the selected datasets.

We should stress that the identification strategies proposed in this
paper can be generally applied to any setting in which location in-
formation and social ties are available. One example is the case of a
dataset composed of “significant places” [1] and social connections
for a set of users. Significant places of a specific user are usually
extracted by means of clustering techniques (see, for example, the
seminal work by Ashbrook et al. [1]) and they can be interpreted as
his/her check-in locations.

One can argue that by choosing to participate in a LBSN, the user
implicitly accepts the respective privacy disclosure agreement. In
fact, LBSNs users willingly share their location data on the net-
work, where their identity is publicly visible to all the other users.
However, it is possible to note that a potential attacker who intends
to break the privacy of an additional source of anonymized loca-
tion information may use the LBSNs data to transfer the identity
information to the anonymized dataset [11]. As a consequence,
we believe that it is of pivotal importance to investigate the threats
posed by identification attacks of users from their check-in data.

The remainder of this paper is organized as follows. Section 2
defines the identification problem and the motivations for the present
work. Section 3 gives an overview of the three datasets selected for
this study. In Section 4 we introduce the techniques proposed in
this paper for identifying a user given a set of check-ins and we
propose a way to measure the complexity of the identification task
over a given dataset. In Section 5 we provide an extensive exper-
imental evaluation of the classification accuracy using data from
three different LBSNs and we review our main findings and the re-
lated work in Section 6. Finally, we conclude the paper in Section 7
and we outline our future research agenda.

2. PROBLEM DEFINITION
We assume that an attacker has access to both unanonymized

LBSN data and a source of anonymized location information6. This
database is anonymized in that the true identities of its partici-
pants are replaced by unique random identifiers. Note that such
a database may also contain other potentially sensitive data, e.g.,
health or financial information. Given this setting, the attacker tries
6This could be in the form of check-in data or sequences of GPS
points. These can be reduced to a finite set of venues by extracting
the set of significant places as in [1].

to reveal the identities of the participants by linking the location
information in the LBSN, where the users’ identities are revealed,
to the anonymized database.

Let us introduce the problem by means of a toy example illus-
trated in Table 1. The left part shows, for each user, the number
of times that he or she has checked-in at location li, whereas the
right part shows an additional database of location data in which
the identities of the participants have been masked using random
identifiers. More specifically, each row of this database consists
of an identifier ui, a sequence of visited locations lj and an addi-
tional sensitive attribute denoted as si. The task of the attacker is
that of linking the information across the two databases using the
location data. In this example, we note that u1’s presence has been
recorded 2 out of 3 times at l4, which suggests that u1 is either Al-
ice or Bob, as Charlie has never checked-in at l4. The uncertainty
can be further reduced by observing that while the check-in history
of Alice suggests that she has an equal probability of checking-in at
any location, the frequency histogram of Bob is sharply peaked at
l4, which fits better the sequence of locations visited by u1.

Note that the issues that arise from linking information across
different databases have been widely investigated in recent years
by the community working on differential privacy [33, 26, 11, 7,
22]. The problem we consider in this paper, however, differs from
the previous work by being focused on the identity privacy leakage
of LBSNs data. With respect to other source of mobility data, in
fact, LBSNs add a further social dimension that can be exploited
when trying to break the privacy of an individual.

3. OVERVIEW OF THE DATASETS
We choose to validate the proposed techniques on three different

LBSNs, namely Brightkite, Gowalla and Foursquare. More specif-
ically, we use the Brightkite and Gowalla data collected by Cho et
al. [6] and the Foursquare data collected by Gao et al. [13, 14].

The Brightkite data contains 4,491,143 check-ins from 58,228
users over 772,764 location, from April 2008 to October 2010. The
Gowalla dataset is composed of 6,442,890 check-ins from 196,591
users over 1,280,969 locations, collected from February 2009 to
October 2010. Finally, the Foursquare dataset is a collection of
2,073,740 check-ins from 18,107 users over 43,063 locations, from
August 2010 to November 2011. Due to the lack of an API to col-
lect personal check-ins from Foursquare, the authors of [13, 14]
collected the data using Twitter’s REST API, while the social ties
were collected directly from Foursquare. BrightKite and Gowalla
instead used to provide an API to directly access the publicly avail-
able data.

For each check-in, we have the (anonymized) user identifier, the
location identifier, the timestamp and the GPS coordinates where
the check-in was made. Note, however, that while in the Foursquare
dataset these are precisely the spatial coordinates where the user
shared his/her position, in the other datasets these actually refer to
the GPS coordinates of the venue itself. As a consequence, the
location information in the Foursquare dataset is in a sense much
more unique [9] than in the other two datasets. By uniqueness, we
mean the extent to which a location in a dataset is shared among dif-
ferent individuals, i.e., the less shared a location is, the more unique
it is. In this sense, the precise GPS location of a user where he/she
performed his/her check-in is more unique than the GPS coordi-
nates of the venue itself, as the latter will be shared in the records
of all the users that checked-in at that venue. As a result, the less
unique a piece of information is, i.e., the more shared it is among
several users, the less discriminative it will be when exploited to
identify users.



SFB NYB LAB SFG NYG LAG SFF NYF LAF
number of users 525 494 371 2,203 1,280 690 697 2,592 473

number of check-ins 66,593 61,607 63,923 340,366 136,548 79,616 65,092 258,469 42,011
number of locations 12,929 13,592 11,329 15,673 4,074 2,695 1,173 4,484 1,177

Table 2: Number of users and locations in the the selected cities. The subscript denotes the initial of the name of the LBSN dataset (Brighkite,
Gowalla and Foursquare).

Note that, given the nature of our task, identifying users from
check-ins scattered all over the world may be considered as an al-
most trivial task, due to the sparsity of the location information and
the lack of a substantial overlap between different users in their
check-ins habits. For this reason, we decide to restrict our analysis
to the users that are active in San Francisco, New York and Los
Angeles, considering only the check-ins in the urban boundaries of
these cities. More specifically, given the latitude and longitude of
the city center of a city7, we keep all the users and locations within
a 20km radius from it. We select these cities since they have the
highest number of active users, so as to render the identification
task as hard as possible. Table 2 shows the number of users and
locations in each selected city. Note that for each city we consider
only the users that performed at least 10 check-ins, as explained in
Section 5.

4. IDENTIFICATION METHODS
In this section, we propose a set of techniques to identify a user

given a series of check-ins data. Let C = {c1 . . . cn} denote a
set of check-ins. In our dataset, each check-in ci is labeled with a
user identifier u_idi, a location identifier l_idi, a timestamp ti and
a GPS point pi indicating where the user performed the check-in.
LetC(u) denote the set of check-ins ci with u_idi = u and u ∈ U ,
where U is the set of users. For each user u, we divide C(u) into a
training test Ctrain(u) and a test set Ctest(u), where in the latter
we remove the user identifier attribute. Given Ctest(u), our task is
that of recovering the identity of the original user. We propose to
solve this task by using location data at different levels of granular-
ity. More specifically, we use both the trajectory of high-resolution
GPS coordinates visited by the users and the frequency of visits to
the different locations. We conclude the section introducing a sim-
ple yet effective way to measure the complexity of the identification
task over a given dataset.

4.1 Trajectory-based Identification
Since every check-in action is labeled with the precise GPS po-

sition where the user was located at that moment, we firstly ex-
plore an identification technique based on the analysis of the spatio-
temporal information alone. More precisely, let the set of time la-
beled points pi in Ctrain(u) and Ctest(u) be denoted as Ttrain(u)
and Ttest(u) respectively. In other words, Ttrain(u) and Ttest(u)
are spatio-temporal trajectories induced by the check-ins of u. Then,
given the spatio-temporal trajectory Ttest(u), we assign it to the
user v ∈ U who minimizes the distance dist(Ttrain(v), Ttest(u))
defined as follows. Recall that the Hausdorff distance between two
finite set of points A = {a1, · · · , am} and B = {b1, · · · , bn} is
defined as

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) is the directed Hausdorff distance from set A to B

h(A,B) = max
a∈A

min
b∈B
||a− b|| (2)

7http://www.census.gov/geo/maps-data/data/gazetteer.html

T (u)

T (v)

p1 p2 p3

pu1 pu2

pu3
pv1 pv2

pv3

Figure 1: Two users v and u and their traces T (v) (grey) and T (u)
(black) along with a set of three points (red) sampled from T (u).
These points are classified as belonging to T (u) because the aver-
age distance to the corresponding nearest points in T (u) is lower
than the average distance to the nearest points in T (v).

and || · || denotes the norm on the underlying space. The modified
Hausdorff distance is introduced by Dubuisson et al. [10] as

hm(A,B) =
1

|A|
∑
a∈A

min
b∈B
||a− b|| (3)

where |A| denotes the number of points in A. We then define the
spatio-temporal distance dst(p1, p2) between two points p1 and p2
as

dst(p1, p2) = ds(p1, p2)e
dt(p1,p2)

τ (4)

where ds denotes the distance computed using the Haversine for-
mula [30], while dt denotes the absolute time difference between
two points. Here the exponential is used to smooth the distance
between two points according to the absolute difference of their
timestamps. Note that by setting τ → ∞ we ignore the temporal
dimension, i.e., the distance between two spatio-temporal points is
equivalent to their Haversine distance. As it turns out, due to the
spatial and temporal sparsity of the check-in data, the best identi-
fication accuracy is achieved for τ → ∞, and thus we define the
distance between a user’s trajectory Ttrain(v) and a set of check-in
coordinates Ttest(u) as

dist(Ttrain(v), Ttest(u)) =

1

|Ttest(u)|
∑

p1∈Ttest(u)

min
p2∈Ttrain(v)

ds(p1, p2). (5)

We stress that the modified Hausdorff distance is not properly a
metric, as it is not symmetric. We choose the modified Hausdorff
distance over other commonly used distances such as the Haus-
dorff [32], Fréchet [12], or Dynamic Time Warping distance [3], for
its simplicity and robustness to outliers. Note in fact that the Haus-
dorff distance between Ttrain(v) and Ttest(u) is low only if every
point of either set is close to some point of the other set. This is
clearly not true in our case, as we expect Ttest(u) to contain much
fewer points than Ttrain(v), and thus a large portion of Ttrain(v)
consists of outliers with respect to Ttest(u). More specifically, we
need to compute the distance between a subset of points and an en-
tire trajectory. The Fréchet and DTW distances, on the other hand,
are designed to evaluate the distance between two trajectories of
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Figure 2: The multinomial models (without Laplace smoothing)
for three users in the city of San Francisco.

points, while here the set of points Ttest(u) can contain as little as
a single point. Figure 1 shows the intuition behind the use of the
modified Hausdorff distance.

4.2 Frequency-based Identification
Although the GPS points pi describing a user in the trajectory

based model are generally considered to be distinct, they are ac-
tually clustered around a limited number of locations. Hence, we
can characterize a user with the frequency of visit to this set of
locations, rather than the trajectory of spatio-temporal points. In
particular, given a set of check-ins Ctest(u) = {c1 . . . cm} where
the user attribute has been removed, we propose to solve the identi-
fication task by selecting the user v which maximizes the posterior
probability

v∗ = arg max
v∈U

P (v|c1 . . . cm) (6)

where P (v|c1 . . . cm) denotes the probability of v ∈ U being the
user who generated the check-in series Ctest(u).

4.2.1 Multinomial Model
We also develop an identification method based on a multinomial

naïve Bayes model, widely used for several classification tasks,
such as text classification [25]. By applying Bayes theorem and
making the naïve assumption that each check-in ci is conditionally
independent of the others given the user v, we can rewrite Eq. 6 as

v∗ = arg max
v∈U

P (v)

m∏
i=1

P (ci|v) (7)

where P (v) is the user prior and P (ci|v) is the probability of ci
being a check-in generated by v. Here we assume a uniform dis-
tribution for the user prior, while we apply a standard maximum
likelihood approach to estimate the multinomial distribution asso-
ciated to each user, i.e.,

P (ci|v) =
Nv
i∑n

j=1N
v
j

(8)

where Nv
i denotes the number check-ins of v at the location l_idi

in Ctrain(v).
We eliminate zero probabilities by applying Laplace smooth-

ing [24], i.e.,

P (ci|v) =
Nv
i + α∑n

j=1N
v
j + α|L| (9)

where α > 0 is the smoothing parameter and |L| is the number of
locations in our dataset. In other words, we assume a uniform prior
over the set of locations. Figure 2 shows the probability distribu-
tions over the set of locations of three different users in the city of
San Francisco. For the sake of clarity, only the locations visited by
at least one of the users are shown.

4.2.2 Time-dependent Multinomial Model
The multinomial model can be enhanced by exploiting the tem-

poral information of the check-ins. In fact, we know that people
tend to check-in at the same locations at similar times, yet differ-
ent people may exhibit different temporal habits. Here, we propose
to use 4 time units of 6 hours each to characterise the daily ac-
tivity of users. Let ξ ∈ Ξ = {1, 2, 3, 4} be a discrete variable
denoting the parts of the day. We model each user with 4 different
multinomial distributions describing the time dependent check-in
frequency over the locations, i.e.,

Pξ(ci|v) =
Nv
i (ξ) + α∑n

j=1N
v
j (ξ) + α|L| (10)

where Pξ(ci|v) denotes the time dependent probability of perform-
ing a check-in at l_idi during the time interval ξ and Nv

i (ξ) is the
number of check-ins of user v at location l_idi during the time in-
terval ξ.

4.2.3 Social Smoothing
Given the social nature of LBSNs, it is reasonable to expect that

the activity of a user may be influenced by that of his/her friends
in the network [14, 13]. Hence, we explore the possibility of ex-
ploiting the check-in distributions of the social neighbors of u to
augment the previous models. More formally, let hu ∈ Rn be a
vector such that hu(i) denotes the number of check-ins performed
by user u at the location i. We first define the similarity between
two users u and v as the cosine similarity between hu and hv , i.e.,

s(u, v) =
h>u hv

||hu||||hv||
(11)

where a>b denotes the dot product between a and b and ||a|| is
the Euclidean norm of a. The underlying intuition is that the more
similar two users are the more likely they are to influence each
other.

We then apply a “social smoothing” to the check-in data of v as
follows:

P (ci|v) =

Nv
i + µ

∑
w∈S(v) s(v, w)Nw

i + α∑n
j=1N

v
j + µ

∑
w∈S(v)

∑n
j=1 s(v, w)Nw

j + α|L| (12)

where S(v) denotes the social neighborhood of v and µ is a param-
eter that controls the impact of the social smoothing. The rationale
behind the social smoothing is that if a location has not been visited
by v, it has a higher chance to be visited in the future if it has been
visited by some of his/her friends. However, care should be given
to the choice of the value of µ, as large values would introduce
too much smoothing, effectively rendering a user indistinguishable
from his/her social neighborhood. Note also that we still need to
apply Laplace smoothing to avoid zero probabilities.

4.2.4 Hybrid Model
Finally, we propose to merge the spatial and frequency informa-

tion in a single hybrid model. Given a set of check-ins Ctest(u)
and a user v, we assign the pair a value which is a convex combi-
nation of the probability of Ctest(u) being generated by v with the
inverse of the distance to v defined in Eq. 5, i.e.,

γ(v, Ctest(u)) = wprobP (Ctest(u)|v)

+
wdist

1 + dist(Ttrain(v), Ttest(u))
(13)



where wprob and wdist are non negative weights such that wprob +
wdist = 1. The second term of Equation 13 encodes the spatial
similarity between the two trajectories, and it is bounded between
0 and 1. Since we also have that 0 ≤ P (Ctest(u)|v) ≤ 1, it follows
that γ(v, Ctest(u)) itself will be a real number between 0 and 1.

4.3 Measuring the Complexity of the Identifi-
cation Task

We conclude this part by introducing a simple yet effective way
to quantify the complexity of the identification task over a given
dataset, under the assumption that a Bayesian approach is used to
break the privacy of the dataset as described in the previous sub-
section. This in turn requires computing the Jensen-Shannon diver-
gence [21] between the multinomial distributions associated with
the users, i.e., their check-in frequency histograms. Unlike other
pairwise divergence measures, such as the relative entropy [8], the
Jensen-Shannon divergence is designed to deal with n ≥ 2 prob-
ability distributions. Since in our case the number of users n is
indeed larger than 2, the choice of the Jensen-Shannon divergence
seemed the most appropriate.

Let P1, P2, · · · , Pn, with Pi = {pij , j = 1, · · · , k}, be n
probability distributions over some finite set X , where π = {π1,
π2, · · · , πn|πi > 0,

∑
πi = 1} is a set of weights, i.e., a set

of priors. The generalized Jensen-Shannon divergence of the set
P1, P2, · · · , Pn is defined as

JSπ(P1, · · · , Pn) = H(

n∑
i=1

πiPi)−
n∑
i=1

πiH(Pi) (14)

where H(·) denotes the Shannon entropy. Eq. 14 is essentially
measuring the irregularity of the set P1, · · · , Pn as the difference
between the entropy of the convex combination of the Pi and the
convex combination of the respective entropies. Interestingly, when
all the Pi are equal we have that JSπ = 0. For the case n = 2,
Lin [21] has shown that the Jensen-Shannon divergence is bounded
between 0 and 1, symmetric and non-negative. However, in the
general case where n > 2, the upper bound of the Jensen-Shannon
divergence becomes log(min(n, k)) [15].

As a first attempt to rigorously measure the complexity mea-
sure of the complexity task, we decided to use the Jensen-Shannon
divergence to compute lower and upper bounds of the multiclass
Bayes error as shown by Lin [21]. In fact, the Bayes error can be
seen as a measure of the hardness of a classification problem. More
specifically, the Bayes error estimates the probability of misclassi-
fying an observation in a Bayesian framework, i.e., in our case,
the probability of misidentifying an individual. Given a multiclass
problem with n classes c1, · · · , cn, class conditional distributions
P1, · · · , Pn and priors π = (π1, · · · , πn), the following relation-
ship between the Jensen-Shannon divergence and the Bayes proba-
bility of error P (e) holds:

J2
n

4(n− 1)
≤ P (e) ≤ Jn

2
, (15)

where Jn = H(π) − JSπ(P1, · · · , Pn). However, our experi-
mental evaluation found that the bounds to be not tight enough to
be informative. In particular, we found the upper bound to be larger
than 1, over all the cities and datasets. This may be a consequence
of the fact that, in order to reflect the lack of knowledge on the
prior probability of the different users, we set π = ( 1

n
, 1
n
, · · · , 1

n
).

Note in fact that H(π) ≤ log(n), and in our specific case equality
holds. On the other hand, the upper bound of JSπ(P1, · · · , Pn)
is log(min(n, k)), and, as a consequence, we have that Jn ≤
log n

min(n,k)
. In particular, Jn is certainly greater than 1 when-

ever k < n and H(π) = log(n). Unfortunately, although in our
case n < k for all the cities and datasets, we still observe a value
of Jn

2
> 1, thus rendering the bound of limited interest. We also

tried to estimate πi as the frequency of the check-ins of users i with
respect to the total number of check-ins, thus lowering H(π), but
the results were equally uninformative. For example, we found that
for the city of New York (Foursquare) 0.011 < P (e) < 2.819.

Given the limitations of Eq. 15, we propose a different way to
measure the complexity of the classification task. LetD be a dataset
holding the records of n users, each of which is characterized by a
probability distribution Pi over a finite set X of size k. Then the
complexity of discriminating the users of D is defined as

C(D) = 1− JSπ(P1, · · · , Pn)

log(min(n, k)).
(16)

Although not directly connected to the Bayes error, C(D) is bounded
between 0 and 1 and it gives us a readily interpretable measure of
the complexity of identifying the users of D. More specifically,
C(D) = 1 if and only if the values of Pi are equal for all i, i.e.,
it is impossible to discriminate between the users based on their
check-in frequency. Moreover, when the distributions are maxi-
mally different, i.e., the frequency vectors Pi form an orthonormal
set, then C(D) = 0, i.e., it is trivial to discriminate between the
users.

5. EXPERIMENTAL EVALUATION
In this section we will describe the evaluation of the methods pre-

sented above. We firstly describe the experimental settings and we
then evaluate the performance of the proposed identification strate-
gies.

5.1 Preliminaries
Given a city in our dataset (see Table 2), for each active user

we randomly remove 10 check-ins from his/her history C(u) and
we use the remaining data to train our algorithms. That is, for each
user uwe separateC(u) into a training testCtrain(u) and a test set
Ctest(u). Hence, we are left with |U | sets Ctest(u) of 10 check-
ins, where |U | is the number of users in the city. Given Ctest(u),
the task consists in the identification of the user that originated the
set of check-ins. We measure the performance of the different iden-
tification strategies in terms of classification accuracy, i.e., the ratio
of successfully identified users. Moreover, we are interested in de-
termining the score of each strategy, i.e., the number of guesses
required to correctly identify a user. Here the baseline is a random
guess, which has average score |U |/2. The results of the experi-
ments are then averaged over 100 runs. Note that the scale of the
standard error is generally too small to appear in our plots and it
has been omitted from the tables as it is always smaller than 10−3.
Finally, note that, in the following experiments, we keep the size of
Ctest(u) fixed to 10, but we vary the number of check-ins that we
sample from it to identify the users, in order to measure how the
performance of the proposed methods depends on the number of
observed check-ins. We refer to the set of check-ins sampled from
Ctest(u) as Csample(u).

Recall that the proposed strategies are dependent on the choice
of a number of parameters, which include the smoothing parameter
α, the social smoothing parameter µ and the interpolation weights
wprob and wdist. The parameters are optimized by means of an
exhaustive search over a manually defined subset of the parameters
space. For each city and dataset, we run our experiments on the
training set alone for different combinations of these parameters,
and we select the optimal combination in terms of classification ac-
curacy. To this end, we extract 5 check-ins from each user and we
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(b) Gowalla
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(c) Foursquare

Figure 3: The effect of the social smoothing on the average classification accuracy for the users in San Francisco.
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(a) Brightkite
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(b) Gowalla
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(c) Foursquare

Figure 4: The average classification accuracy in the city of San Francisco on the three datasets for increasing size of Csample(u). In the
Foursquare dataset, the trajectory-based strategy is the best performing one when the number of sampled check-ins is small. Overall, the
hybrid model is the best performing one: it consistently outperforms all the other methods in the Brightkite and Gowalla datasets.
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(a) Brightkite
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(b) Gowalla
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(c) Foursquare

Figure 5: The average score in the city of San Francisco on the three datasets for increasing size of Csample(u). In terms of average
score, the hybrid model consistently outperforms all the other strategies. Also, in the Foursquare dataset the performance gap between the
frequency-based strategies and the trajectory-based one is clearly reduced.

apply our identification strategies as described above. Note that,
after the test check-ins are removed, the less active users can have
as little as 1 check-in in the training set. Thus, we perform the ex-
haustive search using only those users with more than 5 check-ins
in their training set, which in our experimental setting amount for
more than 97% of the users. We find that the best classification
accuracy is achieved for small values of α. In fact, α represents
the prior probability of a user to visit any location in the dataset,
independently from his/her check-in history and, therefore, choos-

ing a high value of α would smooth the distribution too much, thus
rendering the user harder to classify.

5.2 Experimental Results
Figure 3 shows the effect of applying the social smoothing to the

frequency-based strategies. Here we show the average classifica-
tion accuracy in the city of San Francisco as the value of µ varies.
The impact of the social smoothing seems to be rather limited in
Foursquare and Brightkite, while in Gowalla the best accuracy is
achieved for µ = 0, i.e., when no social smoothing is applied. As
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(a) Multinomial
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(b) Temporal
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(c) Trajectory
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(d) Hybrid

Figure 6: Activity versus average accuracy on the city of San Francisco (Foursquare). Less active users are more difficult to classify correctly,
due to the limited number of check-ins available for the training, while very active users are easier to classify.

expected, on the other hand, for large values of µ the performance
suddenly drops, as the smoothing starts to render the users indistin-
guishable from their social neighborhoods. The fact that the social
smoothing does not result in a clear increase of the accuracy is not
surprising and it fits with what previous studies have observed on
the interaction between mobility and social ties in LBSNs [6, 13,
14]. In particular, Cho et al. [6] have found that friendship has a
very limited influence on short distance movements (i.e., shorter
than 25km, whereas the radius of the cities considered in this paper
is 20km), and it is an order of magnitude lower than the influence
on long distances (i.e., longer than 1,000km). In particular, they
show that only 9.6% of all the check-ins in Gowalla and 4.1% of
all the check-ins in Brightkite were first visited by a friend before
being visited by a user. In Gao et al. [13, 14], on the other hand,
the authors observe an improvement of the location prediction ac-
curacy when the social information is taken into account. However,
their study also shows that the impact of the social information is
rather limited, and that historical check-in information is more cru-
cial in terms of prediction accuracy.

Figures 4 and 5 show how the average classification accuracy
and score on the city of San Francisco vary as we increase the
size of Csample(u). The score is reported as a percentage of the
baseline score |U |/2, i.e., a score of 1 indicates that the method
has the same performance of a random guess. We observe that in
the Foursquare dataset, when the number of sampled check-ins is
smaller than 5, the best performing strategy in terms of accuracy
is the trajectory-based one. This is likely due to the high precision
and uniqueness of GPS data (the extent to which the data is shared
among different users). Recall, in fact, that in this dataset a GPS po-

sition refers to the precise spatial coordinates where the user shared
his/her position, rather than the coordinates of the venue itself. As a
consequence, the spatial information may be sufficient to discrim-
inate among different users who checked-in at the same venue but
in positions corresponding to different geographic coordinates, i.e.,
different places in an urban or non-urban area. However, the same
does not hold for Brightkite and Gowalla, where the GPS location
of a check-in refers to a unique set of coordinates associated to
each venue. In this case, the trajectory-based strategy is always
the worst performing one, which confirms our intuition about the
uniqueness of the spatial information. As for the frequency-based
strategies, we see that the addition of the temporal dimension al-
ways yields an increase of the accuracy with respect to the standard
multinomial model. Overall, the best performing method is the hy-
brid one. In the Foursquare dataset, the hybrid model seems to be
able to combine the advantages of both the trajectory-based and the
frequency-based strategies, by achieving a good performance when
the number of sampled check-ins is small, and the best performance
when |Csample(u)| ≥ 6. Conversely, in Brightkite and Gowalla,
the hybrid method is consistently outperforming all the others.

In terms of score, Figure 5 also shows that the hybrid method
consistently outperforms all the others, in all the three datasets.
Note also that, in terms of score, in the Foursquare dataset the ad-
vantage of the trajectory-based strategy over the frequency-based
one seems to be greatly reduced. In other words, when a user is
misclassified, the number of guesses needed to correctly identify
him/her is generally higher in the trajectory-based approach than in
the frequency-based ones. Interestingly, we also observe that the
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(a) Trajectory (Brightkite)
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(b) Multinomial (Brightkite)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Avg. Accuracy

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Check−ins=1
Check−ins=5
Check−ins=10

(c) Temporal (Brightkite)
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(d) Hybrid (Brightkite)
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(e) Trajectory (Gowalla)
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(f) Multinomial (Gowalla)
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(g) Temporal (Gowalla)
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(h) Hybrid (Gowalla)
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(i) Trajectory (Foursquare)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Avg. Accuracy

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Check−ins=1
Check−ins=5
Check−ins=10

(j) Multinomial (Foursquare)
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(k) Temporal (Foursquare)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Avg. Accuracy

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Check−ins=1
Check−ins=5
Check−ins=10

(l) Hybrid (Foursquare)

Figure 7: The empirical Cumulative Distribution Function of the user classification accuracies of all the methods on Los Angeles, for the
three datasets. In the Gowalla dataset, the hybrid method can identify more than 90% of the users with an accuracy of at least 80%, with
|Csample(u)| = 10. Note that the results for the other cities show similar trends, and they are omitted due to space constraints.

average scores of the multinomial and its time-dependent version
in the other datasets are very close.

The scatter plot of Figure 6 shows the user classification accura-
cies related to San Francisco (Foursquare), as a function of the users
activity. Note that we present the results only for the city of San
Francisco due to space limitations. However, the observations we
make here hold also in the case of the other cities and datasets. We
observe that for the most active users we get a better classification
accuracy, as we have a large number of check-ins available to train
our models. On the other hand, the performance in terms of classi-
fication of less active users can vary considerably. In fact, it would
be trivial to identify a user who performed a single check-in at a
location where nobody else checked-in. However, a user who per-
forms a small number of check-ins all at very popular venues can be
easily misclassified. Figure 6 also shows the advantage of the hy-
brid method over the other strategies. When the number of sampled
check-ins is small, the multinomial and time-dependent models fail
to identify most of the users. Instead, the hybrid model shows a
distribution similar to that of the trajectory-based strategy, which
is the best performing one for small values of Csample(u). When
we increase the number of sampled check-ins, on the other hand,
the hybrid model performs similarly to the frequency-based strate-

gies, while the trajectory-based approach performs rather poorly,
especially for less active users.

Figure 7 shows the empirical distribution function of the user
classification accuracies for all the methods and datasets for the
city of Los Angeles. These plots show that the classification task
seems to be easier on the Brightkite and Gowalla datasets. In the
latter, the hybrid method can identify more than 90% of the users
with an accuracy of at least 80%, with |Csample(u)| = 10. This
may be partly due to the fact that, especially in Brightkite, we ob-
serve a very large number of locations, which might be the result
of fake check-ins. In fact, in both datasets we find several instances
of users performing a series of check-ins at locations having differ-
ent identifiers but same GPS coordinates, and in a relatively short
time interval. This in turn results in a very sparse dataset, where
there is little overlap between the check-ins of different users, and
thus an easier classification task for our strategies. We consider the
presence of fake check-ins as a sort of natural feature of datasets
extracted from LBSNs. Therefore, we do not perform any pre-
processing on our datasets. The classification methodologies have
to be robust enough and able to deal with the presence of spurious
check-ins associated to a given user.

For the sake of completeness, we report the average classification
accuracy and the score of all the strategies over all the cities for the



Trajectory SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.325 0.402 0.388 0.110 0.189 0.232 0.238 0.182 0.299
|Csample(u)| = 5 0.465 0.493 0.530 0.724 0.730 0.815 0.301 0.275 0.402
|Csample(u)| = 10 0.475 0.505 0.534 0.764 0.760 0.846 0.309 0.294 0.418

Multinomial SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.413 0.460 0.471 0.145 0.189 0.260 0.086 0.075 0.144
|Csample(u)| = 5 0.710 0.766 0.769 0.754 0.771 0.850 0.272 0.227 0.404
|Csample(u)| = 10 0.787 0.837 0.841 0.862 0.867 0.867 0.378 0.301 0.513

Temporal SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.423 0.467 0.478 0.167 0.224 0.300 0.095 0.079 0.155
|Csample(u)| = 5 0.731 0.777 0.787 0.814 0.828 0.887 0.299 0.250 0.435
|Csample(u)| = 10 0.810 0.850 0.860 0.906 0.909 0.948 0.414 0.335 0.552

Hybrid SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.437 0.487 0.496 0.168 0.225 0.301 0.234 0.199 0.308
|Csample(u)| = 5 0.738 0.781 0.792 0.828 0.835 0.894 0.303 0.256 0.439
|Csample(u)| = 10 0.812 0.851 0.863 0.912 0.913 0.951 0.414 0.335 0.552

Table 3: Average classification accuracy over all the cities of the three datasets. The best performing method for each city, dataset and size
of Csample(u) is highlighted in bold. The standard error is not shown as it was always less than 10−3.

San Francisco New York Los Angeles
Brightkite 0.144 0.079 0.120
Gowalla 0.335 0.279 0.233

Foursquare 0.606 0.571 0.527

Table 4: The identification complexity C(D) over all the cities and
datasets, using the multinomial model.

San Francisco New York Los Angeles
Brightkite 0.083 0.018 0.061
Gowalla 0.190 0.126 0.094

Foursquare 0.469 0.448 0.397

Table 5: The identification complexity C(D) over all the cities and
datasets, using the time-dependent multinomial model.

three datasets in Tables 3 and 6. Again, we see that in most of the
cases the best performing method is the hybrid one. Note that we
achieve a remarkably high accuracy on some cities: for example, in
the city of Los Angeles (Gowalla), we obtain a 95% identification
accuracy, when 10 anonymized points are observed. On the other
hand, when as little as 1 anonymized point is observed, the maxi-
mum accuracy is achieved on the city of Los Angeles (Brightkite),
where we can correctly identify nearly 50% of the users.

Finally, we compare these results with those obtained by mea-
suring the identification complexity C(D) according to Eq. 16. Ta-
bles 4 and 5 show the average value of C(D) for each city and
dataset, under the multinomial and time-dependent multinomial mod-
els, respectively. More specifically, each time we train the (time-
dependent) multinomial model on a training set Ctrain we also
compute C(Ctrain). In other words, when computing C(Ctrain)
each individual is characterized by a (time-dependent) multinomial
distribution pi, and thus the results should be compared with the
classification accuracy of the (time-dependent) multinomial model
of Table 3. We should stress, however, that the proposed complex-
ity measure is not restricted to these models and can be applied to
any set of probability distributions pi characterizing an ensemble
of users. Finally, note that while in the frequency-based identifica-
tion methods we applied Laplace smoothing to remove the occur-

rence of zero probabilities, when computing the Shannon entropy
this step is not necessary. In fact, we followed the convention that
0 log 0 = 0, which is justified by continuity since x log x → 0 as
x→ 0.

Tables 4 and 5 show that the cities in the Foursquare dataset
are the most complex ones, which is in accordance with the low
classification accuracy achieved by the multinomial model in this
dataset. We also observe that the identification task over the cities
in the Brighkite dataset seems to be less hard, which is only in par-
tial agreement with the results of Table 3. In fact, when a single
point is observed in Csample(u), the Brightkite dataset proves to
be the less complex one, in terms of classification accuracy. How-
ever, when a larger sample of points is observed, the difference in
classification accuracy between Brightkite and Gowalla completely
disappears. This may be due to the Laplace smoothing that was
applied when training the models. Finally, we observe that the ad-
dition of the temporal dimension invariably leads to a reduction of
the identification complexity, as already observed in Table 3.

6. DISCUSSION AND RELATED WORK
The results of the experimental evaluation show that it is possi-

ble to classify a user from his/her check-in data with high accuracy
given a small number of points. In general, the best identification
accuracy is achieved by combining frequency and spatial informa-
tion together. However, if the GPS data refers to the spatial coor-
dinates where the user shared his/her position, the trajectory-based
strategy outperforms all the others, when the number of check-ins
to classify is small. On the other hand, we observe a negative im-
pact if the GPS information refers to the coordinates of the venue
itself, since it has less discriminatory power.

Moreover, in some cases the check-in activity of the friends of
a user can be used to increase the identification accuracy, although
the effect seems rather limited. The experimental results show that
in Brightkite and Gowalla the proposed identification strategies can
achieve an accuracy of more than 80% using only 10 check-ins. In
Foursquare, we still obtain a classification performance between
30% and 50%, with the same number of check-ins. Given the ris-
ing popularity of LBSNs, we believe that our findings raise serious
concerns on the privacy of their users. Moreover, we should stress
again that the identification strategies proposed in this paper can be



Trajectory SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.289 0.275 0.222 0.094 0.090 0.063 0.395 0.384 0.318
|Csample(u)| = 5 0.208 0.180 0.136 0.036 0.031 0.021 0.295 0.271 0.207
|Csample(u)| = 10 0.195 0.158 0.113 0.029 0.024 0.016 0.281 0.250 0.181

Multinomial SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.280 0.303 0.250 0.101 0.114 0.085 0.457 0.442 0.376
|Csample(u)| = 5 0.054 0.044 0.042 0.008 0.009 0.005 0.215 0.230 0.150
|Csample(u)| = 10 0.034 0.023 0.023 0.003 0.004 0.003 0.164 0.194 0.111

Temporal SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.285 0.309 0.255 0.098 0.114 0.088 0.453 0.445 0.376
|Csample(u)| = 5 0.052 0.042 0.040 0.006 0.007 0.004 0.200 0.216 0.141
|Csample(u)| = 10 0.031 0.022 0.021 0.002 0.003 0.002 0.145 0.179 0.100

Hybrid SFB NYB LAB SFG NYG LAG SFF NYF LAF
|Csample(u)| = 1 0.231 0.245 0.209 0.007 0.081 0.063 0.415 0.413 0.338
|Csample(u)| = 5 0.051 0.043 0.040 0.006 0.006 0.004 0.199 0.216 0.128
|Csample(u)| = 10 0.031 0.022 0.021 0.002 0.002 0.002 0.145 0.178 0.099

Table 6: Average score over all the cities of the three datasets. The best performing method for each city, dataset and size of Csample(u) is
highlighted in bold. The standard error is not shown as it was always less than 10−3.

generally applied to any identification problem in which location
information and social ties are available. If the location information
is in the form of GPS trajectories, it would be sufficient to extract
the significant places using clustering techniques [1] and interpret
them as the check-in locations.

The advent of mobile technologies has led to several studies con-
cerning human mobility in a geographic space. Recent papers in-
clude the prediction of the future location of a person [1], their
mode of transport [35] and the identification of individuals from a
sample of their location data [9]. In [16] it was shown that there
is a high degree of temporal and spatial regularity in human tra-
jectories: users are more likely to visit an area if they have been
frequently visited it in the past.

More recently, LBNSs have attracted an increasing interest, due
to the massive volume of data generated by their users and their
explicit social structure. Examples of applications go from the pre-
diction of the next visited location [27] to the clustering of differ-
ent types of behaviors of users [18]. Malmi et al. [23] present a
transfer learning approach to integrate different types of movement
data, including LBSNs check-ins, in order to address the next place
prediction problem. Gao et al. [14], on the other hand, propose a
geo-social correlation model to capture check-ins correlations be-
tween users at different geographical and social distances. Interest-
ingly, they find that there is a higher correlation between users who
are not friends but live in the same area rather than direct friends.
Similarly, Cho et al. [6] study how the friendships in LBSNs can
influence human mobility, and find that in general the influence is
higher on long-range movements rather than short-range ones. In
another paper, Gao et al. [13] propose a series of models that inte-
grate social information in a location prediction task. Joseph et al.
propose to use Latent Dirichlet Allocation to model the check-in
activity of Foursquare users and cluster them into different groups
with different interests [18]. Vasconcelos et al. [34] investigate the
use of “tips”, “dones” and “todos” in Foursquare to cluster users
profiles. The problem of privacy in LBSNs is discussed and ana-
lyzed in Ruiz et al. [31]. In particular, the authors study a number
of privacy issues related to the location and identity of LBSN users,
and describe possible means of protecting privacy.

Finally, Pontes et al. [29, 28] focus on the inference of the user
home location using publicly available information from Foursquare

and two different online social networks, namely Google+ and Twit-
ter. More specifically, in [29] the authors show that it is possible to
infer with high accuracy where a user lives based on his or her set
of Foursquare activities (such as “todos"). In [28], the analysis is
extended to Google+ and Twitter, where a number of attributes in-
cluding the location of the users’ friends are used to infer the home
city as well as their residence location of the individuals.

With respect to this body of work, to the best of our knowledge,
our paper is the first attempt of studying the problem of user iden-
tification from LBSNs data. We believe that this issue will be in-
creasingly important, given the ever growing popularity of smart-
phones running a plethora of location-aware (and usually socially-
aware) applications.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced and evaluated a series of tech-

niques for the identification of users in LBSNs. We have tested
the proposed strategies using three datasets from different LBSNs,
namely Brightkite, Gowalla and Foursquare. We have showed that
both the GPS information contained in a user’s check-ins and the
frequency of visits to certain locations can be used to successfully
identify him/her. In particular, we have demonstrated that it is pos-
sible to achieve a high level of accuracy with only 10 check-ins,
thus raising serious concerns with respect to the privacy of LB-
SNs users. Finally, we have proposed a simple yet effective way
to quantify the complexity of the identification task over a given
dataset.

We plan to apply the proposed methods on different datasets,
since we are aware of the possible peculiarities and limitations of
those used in this study. Indeed, even if we believe that the pro-
posed methodology can be applied to a vast number of identifi-
cation problems for which geographic and social information are
available, we aim to investigate the generalizability of the identi-
fication strategies presented in this work to larger and more chal-
lenging datasets, which may thus demand more scalable and effi-
cient machine learning techniques. Our future research agenda also
includes the definition, implementation and evaluation of obfusca-
tion techniques based on the findings presented in this paper. We
also intend to investigate the use of our identification complexity
measure on different datasets and to extend it to more general sce-



narios, considering also additional information from users’ profiles,
if available.

Acknowledgement
This work was supported through the EPSRC Grant “The Uncer-
tainty of Identity: Linking Spatiotemporal Information Between
Virtual and Real Worlds” (EP/J005266/1)

8. REFERENCES
[1] D. Ashbrook and T. Starner. Using GPS to Learn Significant

Locations and Predict Movement Across Multiple Users.
Personal and Ubiquitous Computing, 7(5):275–286, 2003.

[2] A. R. Beresford and F. Stajano. Location privacy in pervasive
computing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[3] D. J. Berndt and J. Clifford. Using dynamic time warping to
find patterns in time series. In Proceedings of the AAAI-94
Workshop on Knowledge Discovery in Databases,
volume 10, pages 359–370. Seattle, WA, 1994.

[4] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy
against location-based personal identification. In Secure
Data Management, pages 185–199. Springer, 2005.
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