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Abstract

People-centric sensing is poised to radically change
the way we see the world. Technological advances
in sensing, computation, storage, and communica-
tions will turn the near ubiquitous mobile phone into
a global mobile sensing device that enables myriad
new personal, social, and public sensing applications.
People-centric sensing will help drive this trend by en-
abling a different way to sense, learn, visualize and
share information about ourselves, friends, communi-
ties, the way we live and the world we live in. People-
centric sensing juxtaposes the traditional view of mesh
sensor networks where people are passive data con-
sumers that simply interact at the network periph-
ery with physically embedded static sensor webs, with
one where people carry mobile sensing elements (i.e.,
sensor-enabled mobile phones), enabling opportunis-
tic sensing coverage, and thus represent a key archi-
tectural component of the system. In this article, we
discuss our vision for people-centric sensing, the chal-
lenges it brings, and the ongoing development of a
number of social sensing applications as part of the
MetroSense Project.

1 Introduction

The evolution of sensing, computing and communi-
cation technology over the past few years has brought
us to a tipping point in the field of wireless sensor net-
working. A decade ago, research prototype hardware
began to emerge facilitating the genesis of wireless
sensor networks as they exist today - small resource-

limited embedded devices that communicate via low-
power low-bandwidth radio. A natural first application
of these networks of custom devices was solving rel-
atively small-scale specialized problems in the scien-
tific and industrial domains, such as forest monitoring
and preventative maintenance. While these problems
and applications remain important, the recent minia-
turization and subsequent introduction of sensors into
popular consumer electronics like mobile phones (e.g.,
Apple iPhone), PDAs (e.g., Nokia N810), and mp3
players (e.g., Nike+iPod) has opened the door to a new
world of application possibilities. With wireless sen-
sor platforms in the hands of the masses, and with the
proper architectural support, wireless sensor networks
can be leveraged to address urban-scale problems or
provide global information access (i.e., public sensing
applications). At the same time, people as individuals,
or in social or special interest groups, can apply these
new sensing networks to applications with a more per-
sonal focus. We see a continuing push in this direction
and the advent of a new era of people-centric sensing.

In a people-centric sensing system, humans, rather
than trees or machines, are the focal point of sensing,
and the visualization of sensor-based information is for
the benefit of common citizens and their friends, rather
than domain scientists or plant engineers. Addition-
ally, it is the aggregate mobility of the humans them-
selves that enables both sensing coverage of large pub-
lic spaces over time, and allows an individual, as a cus-
todian of the sensing device, to collect very targeted in-
formation about his or her daily life patterns and inter-
actions. We say the sensing coverage of spaces, events,
and human interactions is opportunistic in a people-
centric system since the system architecture has no



point of control over the human mobility patterns and
actions that facilitate this coverage. While this lack
of control can translate to gaps in sensing coverage,
the alternative of a world-wide web of static sensors
is clearly not tenable in terms of monetary cost, scala-
bility, or management. Further, by having the sensing
devices carried by people (e.g., mobile phones, iPods,
etc.), a people-centric sensing system creates a sym-
biotic relationship between itself and the communities
and individuals it serves.

In this article, we describe our vision of people-
centric sensing, and the architectural support we are
developing in the MetroSense Project [2] to realize
this vision. People-centric sensing (see Figure 1) gives
rise to a host of new applications that can be classified
into three main groups: (i) personal sensing, those fo-
cused on personal monitoring and archiving; (ii) social
sensing, those where information is shared within so-
cial and special interest groups; and (iii) public sens-
ing, those where data is shared with everyone for the
greater public good (e.g., entertainment, community
action). Each of these application foci comes with
its own challenges in terms of how data is best sam-
pled, understood (e.g., via mining, inference), visual-
ized and shared with others. We present a number of
prototype applications we are developing in the Met-
roSense Project that cover these sensing scenarios, in-
cluding a discussion of how people can best learn in-
formation of interest from the raw data, represent that
information in a meaningful way and share that infor-
mation, as appropriate.

2 Background

People-centric sensing sits at the nexus of several
research disciplines, including sensor networking, per-
vasive computing, mobile computing, machine learn-
ing, human-computer interfacing, and social network-
ing. Significant research contributions made within
each discipline have facilitated the rise of people-
centric sensing, and research focusing on synthesiz-
ing these contributions is now emerging [1]. In the
following, we highlight current projects related to our
people-centric sensing initiative. SensorPlanet [15]
is a Nokia-initiated global research framework for
mobile-device-centric wireless sensor networks. Sen-
sorPlanet provides hardware platforms and a research

environment that enable the collection of sensor data
on a large and heterogeneous scale, and establishes a
central repository for sharing the collected sensor data.
SenseWeb [5], a project sponsored by Microsoft Re-
search, provides shared sensing resources and sensor
querying and data collection mechanisms to develop
sensing applications. In both projects, participating
universities develop their own applications and share
the collected data to facilitate research on data anal-
ysis and mining, visualization, and machine learning.
The Urban UCLA Sensing initiative [13] has a vision
of equipping users to compose a sensor-based record-
ing of their experiences and environment by leverag-
ing sensors embedded in mobile devices and integrat-
ing existing public outlets of urban information (e.g.,
weather, traffic, air quality). Urban Sensing is explor-
ing how these individual stories of everyday life can
be coordinated to document the urban environment, as
well as be fused with other sensed data about the city
and fed back into the physical, collective experience
in urban public spaces. The Intel-sponsored Urban At-
mospheres project [14] is also using sensors to explore
the human condition. The MIT Cartel project [4] pro-
vides a mobile communications infrastructure based
on car-mounted communication platforms exploiting
open WiFi access points in a city, and provides ur-
ban sensing information such as traffic conditions. The
Harvard/BBN CitySense project [11] provides a static
sensor mesh offering similar types of urban sensing
data feeds.

3 The MetroSense Vision

The MetroSense conception of a people-centric
sensing system is based on a three stage Sense,
Learn, Share framework. In the sense stage, Met-
roSense leverages mobility-enabled interactions be-
tween human-carried mobile sensors (e.g., mobile
phones, personal medical sensing devices), static sen-
sors embedded in the civic infrastructure (e.g., vehicle-
based sensing networks, home medical sensing net-
works), and edge wireless access nodes providing a
gateway to the Internet, to support: (i) the delivery of
application requests to the mobile devices, (ii) the sam-
pling of sensors specified by the request, and (iii) the
delivery of sampled data back to the application. Ap-
plication functions, including generating requests, data
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Figure 1. People-centric sensing applications can be thought of as having a personal, social, or

public focus.

analysis and visualization logic, may be installed di-
rectly on the mobile device, may run on remote servers
(e.g., a web application) but communicate with the
mobile device via wireless gateway nodes (e.g., GPRS
gateway, WiFi access point), or may be split between
the mobile device and these servers. An application
sampling request specifies at least one required sensor
type (e.g., an accelerometer), and the required sam-
pling context, that is, the set of conditions that must be
met for the sampling to take place (e.g., time of day,
location, sensor orientation). In the learn stage, we an-
alyze the sensed data using both simple statistical mea-
sures and more involved machine learning techniques
to extract higher-level meaning. The choices of what
data analysis techniques to apply, and what data fea-
tures to analyze are made to best match the availabil-
ity and characteristics of the sensed data (e.g., noisi-
ness, incompleteness), and the target application visu-
alization. In addition, we leverage the people-centric
nature of the system by using social connections be-
tween system users when possible to improve the per-
formance of learned models (e.g., activity classifiers)

and decrease the time it takes to learn these models. In
the share stage, the learned information is visualized
by the individual and optionally shared. For example,
sharing is possible within social groups (e.g., class-
room, sports team, Facebook, MySpace), or within a
global community (e.g., Second Life). Each of the
stages in the Sense, Learn, Share framework are fur-
ther discussed in the following.

4 Sense: Exploit Mobility, Be Opportunistic

From an infrastructural point of view, we ob-
serve that sensing, computing, and communication re-
sources are already widely deployed, in the form of
end user electronics, enterprise and public radio ac-
cess networks, and Internet backhaul. Therefore, there
is no longer a need to deploy specialized custom-built
hardware to enable collection and transport of people-
centric sensor data. Instead, we aim to symbiotically
leverage this extant infrastructure to support people-
centric applications. We also take advantage of the
increasing integration of sensors (e.g., camera, micro-



phone, accelerometer, temperature, infrared) into off-
the-shelf consumer devices (e.g., Nokia N95 mobile
phone, Nokia N810 tablet PCs, iPod Touch) to trans-
parently sample the device custodian (i.e., the human
user) and the custodian’s environment.

4.1 What Role do People Play?

Utilizing human-carried devices as a fundamental
building block of the sensing system raises the ques-
tion of what roles people, as sensing device custodi-
ans, should (or are willing to) play in the architecture.
Deciding to what extent people should be conscious
active participants in meeting application sensing re-
quirements has significant design implications, espe-
cially in terms of defining the fundamental research
challenges to implementing a robust, scalable and se-
cure system. It is useful to consider the two endpoints
of the design spectrum of custodian awareness and in-
volvement [8], which can be thought of as opportunis-
tic [2] and participatory [13].

With participatory sensing the custodian con-
sciously opts to meet an application request out of per-
sonal or financial interest. A participatory approach
incorporates people into significant decision stages of
the sensing system, actively deciding what application
requests to accept, what data to share and to what ex-
tent privacy mechanisms should be allowed to impact
data fidelity. Since most of the tough sensing and
privacy decisions are made by the human, a purely
participatory system design focuses on tools that as-
sist people to share, publish, search, interpret and ver-
ify information collected using a custodian’s device.
Purely participatory sensing places many demands on
involved device custodians (e.g., prompting via their
device GUI for authorization to take a sound sample
or share a particular image sample), which restricts the
pool of willing participants. The tolerance of people
to endure interruptions on behalf of applications lim-
its the number and request load of concurrent applica-
tions that can likely be supported. Further, under the
participatory approach, an application needs to have a
critical mass of community appeal. These factors may
combine to limit both an application’s scale and the
diversity of applications that are likely to be supported
by a purely participatory people-centric network.

In the MetroSense Project, we emphasize an op-

portunistic approach. Opportunistic sensing shifts the
burden of supporting an application from the custo-
dian to the sensing system, automatically determining
when devices can be used to meet application requests.
In this paradigm, the custodian configures his device
to allow applications to run (subject to privacy and re-
source usage restrictions), but may not be aware of the
applications active at any given time. Instead, a cus-
todian’s device (e.g., mobile phone) is utilized when-
ever its state (e.g., geographic location, body location)
matches the context requirements of an application. In
this way, applications can leverage the sensing capa-
bilities of all system users without requiring human
intervention to actively and consciously participate in
the application, lowering the bar for applications to run
in people-centric networks. To support symbiosis be-
tween the custodian and the system, sensor sampling
occurs only if the privacy and transparency needs of
the custodian are met. The main privacy concern is the
potential leak of personally sensitive information indi-
rectly when providing sensor data (e.g., the custodian’s
location). To maintain transparency, opportunistic use
of a device should not noticeably impact the normal
user experience of the device.

4.2 Challenges of Opportunistic Sensing

Along with the aforementioned benefits, the op-
portunistic paradigm introduces a number of chal-
lenges. The opportunistic use of sensor custodian de-
vices means that sensing is a secondary, low-priority
operation on the mobile device (e.g., mobile phone).
Consequently, the periods when the device is able to
meet the sensing requirements defined by an applica-
tion request may be short and intermittent. Oppor-
tunistic systems also take on much more of the deci-
sion making responsibility and are thus more complex
and may use more resources. Specific challenges that
must be overcome for opportunistic sensing to be fea-
sible include: determining the sampling context of the
device; adapting to the changing resource availability
and sampling context of devices; achieving sufficient
sensing coverage in the face of sensing target mobil-
ity; and sustaining custodian privacy. We are currently
investigating methods to address these challenges, as
outlined in the following.



4.2.1 Sensing Context

Sensing context is the meta-data that describes the
conditions to which the sensing hardware is exposed
and affects both the sensor data itself and its ability to
perform the sensing operation. Knowledge of sens-
ing context is required as an input to a number of
operations of an opportunistic sensing system. With
sensor sharing (described later), it is used to evalu-
ate potential candidate sensor devices in terms of a
given application request. During servicing of appli-
cation requests it indicates when sampling should be
started and stopped. More generally, knowing sens-
ing context is important in understanding the sampled
data, especially from consumer devices (e.g., mobile
phone) where sensing is largely a second class citi-
zen and samples may be taken under suboptimal con-
ditions (e.g., when the device is in a pocket or purse).

4.2.2 Sensor Sharing

In order for an opportunistic sensing system to collect
samples that meet a general set of application require-
ments (e.g., sensor type, location, physical orientation,
time), it must be able to adapt to the changing resource
availability and sampling context of sensing devices.
For example, a mobile phone device may run out of
memory or power, or may be placed in the custodian’s
pocket before a required light level, sound, GPS, or
image sample is taken. To help the sensing system be
more robust to these changes, we are developing a sen-
sor sharing mechanism. This approach allows applica-
tion requests assigned to a particular device to borrow
samples from the best-suited sensors (i.e., matching
the required sensing context, not already in use by an-
other application on the device) of any available device
in the neighborhood at the time. Devices exchange
current context information, and data is selected from
the device whose context most closely matches the re-
quirements of the application. Given the potentially
rapid dynamism of sampling context, a research chal-
lenge is determining a context matching metric that,
when used for this sharing mechanism, provides sam-
ples with high average-case fidelity with respect to the
applications requirements.

4.2.3 Mobile Target Sensing

In people-centric sensing where people are frequently
the intended sensing targets, there is a need to support
the tracking and sensing of mobile targets (e.g., a noisy
truck, a missing child’s voice) with mobile sensing de-
vices. There are two major challenges in building mo-
bile event sensing system using mobile sensors carried
by people. First, mobile sensors need to be informed
about the sensing target (i.e., be “tasked”) before sens-
ing, but for efficiency only those mobile sensors near
the mobile target should be tasked. Second, there is
no guarantee that there will always be enough mobile
sensors around the target to maintain sensing cover-
age. To efficiently establish a sensing area around the
target, a mobile sensor that detects the target using its
sensors forwards the task to its neighbors. To recover
a lost target, we estimate the area to which the target is
predicted to move based on a distributed Kalman filter,
and then use a geocast scheme to forward the task to
the sensors in the predicted area.

4.2.4 Privacy

Opportunistic sensing faces barriers to wide scale
adoption unless users trust the system to provide pri-
vacy guarantees on par with those provided by state of
the art systems, a difficult research challenge. For the
sensing device custodians, the potential exists for the
leakage of sensitive personal information both from
the collected data samples themselves, and from the
process by which the samples are collected. As an
example of the latter, during sensor sharing, the fact
that data is shared between devices reveals informa-
tion about the contexts of these devices. Also, sen-
sor data itself (e.g., images, sound, accelerometer data)
may contain information that device custodians do not
wish to expose about themselves. Further, even those
who are not device custodians and may not be the
primary sensing targets are vulnerable to an acciden-
tal compromise of privacy, a “second-hand smoke” of
people-centric sensing systems. Ongoing work in the
MetroSense project begins to address these issues by
providing mobile device custodians with a notion of
anonymity through k-anonymous tasking [6].



5 Learn: Understanding Opportunistic Data

Once the data has been sampled and delivered to the
application, higher level meaning must be extracted
from the raw samples. Two main challenges facing
data analysis in the people-centric sensing domain [9],
and in the construction of accurate inference models
(e.g., human activity models) in general, are the lack of
appropriate sensor data inputs and the time and effort
that must be spent in training models that gives suffi-
cient classification accuracy. The COTS-device-based
sensing substrate upon which we build people-centric
applications is characterized by heterogeneity in terms
of sensing and other resources (e.g., memory, battery
capacity, CPU power), impacting both the construc-
tion and usage of models. The data inputs most useful
in generating high accuracy models may not be avail-
able on all devices, requiring users of less capable de-
vices to settle for less accurate models based on other
available data features. As an example using a snap-
shot of current technology, a common approach in the
literature is to extract data features from a GPS sen-
sor to generate an indoor/outdoor classifier. However,
GPS is integrated into only a relatively small percent-
age of mobile phones on the US market today. These
observations motivate a careful consideration of where
in the architecture classifiers should run, and inspire
two possible solutions for model creation: opportunis-
tic feature vector merging, and social-network-driven
sharing of models and training data.

5.1 Opportunistic Feature Vector Merg-
ing

With the opportunistic feature vector merging ap-
proach we seek to push the performance of classifica-
tion models possible with sensor-poor devices towards
that possible with sensor-rich devices. When merg-
ing feature vectors (i.e., multi-element numerical ob-
ject or activity representations), data features available
from more capable devices are borrowed and merged
with data features natively available from a less ca-
pable device in the model building stage, allowing a
higher accuracy model to be built even for the less
capable device. This borrowing is facilitated by op-
portunistic interaction, both direct and indirect, be-
tween a less capable device and a more capable de-

vice in situ. As an example of direct interaction, as
two mobile phone users follow their daily routines, a
mobile phone without GPS can borrow GPS data fea-
tures from a mobile phone with GPS as an input to its
indoor/outdoor location classifier. For indirect inter-
action, both devices collect data samples according to
their respective capabilities. Subsequently, centralized
matching between other features collected by both de-
vices (i.e., non-GPS-based features) may provide for
a binding between the feature vector collected by the
phone without GPS and the GPS features collected by
the GPS-equipped phone. The GPS features can then
essentially be borrowed via this binding.

5.2 Social-network-driven Model and

Data Sharing

Even when devices provide an appropriate set of
data features to build accurate models, users may be
required to gather a large set of training data (per-
haps manually labeling it) before applications using
the models’ outputs work best. The inconvenience
in both the labeling of training data and the time re-
quired for model training to complete may act as dis-
incentives to the broad-scale adoption of new people-
centric applications. We propose the sharing of train-
ing data among users to reduce training time and label-
ing effort by amortizing the model training cost over
all system users. However, this is likely to reduce
the accuracy of the resulting model (e.g., since people
do the same activity in many slightly different ways,
and might describe the same activity with slightly diff-
erent labels). With our social-network-driven sharing
approach, training data is shared only within social
circles, within which we conjecture group vocabular-
ies and other commonalities lead to more consistent
and understandable labeled training data and a higher
model accuracy, while still reducing the quantity of per
user training data required. A careful consideration of
the particular labeling problem is required in decid-
ing within which social group sharing might be most
effective. Initial results implementing these two tech-
niques are promising [7].

5.3 Additional Resource Considerations

In addition to model generation, resource limita-
tions on mobile devices designed primarily for other



purposes require a careful consideration of where data
processing takes place. For example, due to limita-
tions in CPU power we have noticed running a full
spectrum FFT on a mobile phone can impact other on-
going operations, and can run too slowly to keep to
keep up with the stream of sampled data. Such be-
haviour violates our tenet of symbiosis with the de-
vice’s primary user experience. Further, due to local
storage limitations, analysis that requires access to a
large amount of historical data may not be possible
without interaction with persistent storage on backend
servers. When placing learning functionality, a sys-
temic view is required that considers mobile phone re-
source constraints, communication cost to the backend
servers, and the sampling rate required to detect and
characterize the phenomena of interest.

6 Share: Enabling Social Sensing Applica-
tions

People-centric sensor networking aims to support
applications that engage the general public. This po-
tential for interest across a broader segment of the pop-
ulation, in concert with our use of an opportunistic
sensing design, facilitates the availability of a massive
number of mobile sensing devices, in turn increasing
the scope and scale of applications that can be sup-
ported, and also improving the fidelity of sampled ob-
jects, events, and human activities. In the following,
we discuss a number of applications we have devel-
oped in the MetroSense Project that incorporate per-
sonal, social and public sensing.

6.1 CenceMe - Social Sensing

The growing ubiquity of the Internet provides the
opportunity for an unprecedented exchange of infor-
mation on a global scale. Those with access to this
communication substrate, and among these especially
the youth, increasingly incorporate personal informa-
tion exchange (e.g., availability, activity, mood) into
their daily routines via technologies such as email,
blog, instant message (e.g., Skype or MSN), SMS,
video sharing (e.g., YouTube), social network soft-
ware (e.g., Facebook and MySpace), and VOIP. Yet,
the question of how to incorporate personal sensing
information such as human activity inferencing into

these applications has remained largely unexplored.
While existing communication forums allow the ex-
change of text, photos, and video clips, we believe a
more richly textured user experience can be provided
by integrating automatically harvested, processed and
shared sensor data into the mix. With the CenceMe
application [10], we distill this sensed data (see Figure
2(a)) into what we call a user’s “sensing presence”, a
virtual representation of a user’s status in terms of his
activity (e.g., sitting, walking, meeting friends), dispo-
sition (e.g., happy, sad, ok), habits (e.g., at the gym,
coffee shop, at work) and surroundings (e.g., noisy,
hot, bright, high ozone).

We are evolving a prototype implementation of
CenceMe that enables members of social networks
both to access historical traces of their own data,
and more powerfully to share their sensing presence
among their buddies in a secure manner. For users on-
the-go, we have implemented a client to show current
buddy sensing presence on the GUI-based displays of
most new mobile phones, using a set of simple and
intuitive icons representing, for example, the activity
and location of a user. We include this sensing pres-
ence snapshot, along with a more complete, brows-
able representation of the sensing presence of a user
and his buddies via the CenceMe web portal. Exam-
ples include archived historical traces, comparisons of
presence attributes with friends - am I above average?,
and extracted patterns and features of importance in
one’s life routine, etc. However, the real power of the
automatic inference of sensing presence is the ability
for a user to configure CenceMe to export this sens-
ing presence, without direct intervention, across his
online social networks. This has only recently been
made possible through the release of developer APIs
for Facebook, Skype, Pidgin, MSN Messenger and the
like. We have implemented a number of widgets a user
can add to her Facebook account (see Figure 2(b)) to
share various representations of sensing presence with
her Facebook buddies. CenceMe users share data ac-
cording to CenceMe group membership policies set
through the web portal. CenceMe buddies are defined
by the combination of buddy lists imported from the
social networking application accounts a user registers
with CenceMe. Thus, CenceMe inherits group struc-
tures already created by a user for his other applica-
tions, but also allows for the specification of more so-
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(a) CenceMe distills a user’s “sensing presence” from samples taken from
sensors embedded in personal mobile devices (e.g., mobile phone, PDA, mp3
player), sports equipment (e.g., running shoes, bicycle), and the civic infras-
tructure. Sensing presence is sharable with a user’s friends through popular

social networking applications.

(b) We have built widgets for Facebook that al-
low expression of sensing presence through the
friends list, the mini-feed, and a dedicated Sen-
sor Presence display.

Figure 2.

phisticated group privacy policies within CenceMe.
6.2 Global Sharing in Virtual Worlds

Virtual world simulators (e.g., Second Life) repre-
sent one of the new frontiers in online entertainment
and business services. People lead virtual lives in these
alternative worlds using personal avatars. Bridging
real life and these virtual worlds together is challeng-
ing, but enables new application scenarios for these
systems via public sensing. The sensors embedded
in commercial mobile phones can be used to infer
real-world activities, that in turn can be reproduced
(see Figure 3) in public virtual environments, sharing
with the (virtual) world. While previous research has
brought static objects from the real world to the vir-
tual world, we are the first to bring people’s real world
sensing presence to active subjects (i.e., their avatars)
in the virtual world [12]. People’s sensor data can be
rendered in the virtual world anywhere on the spec-
trum between reality and fantasy. That is, arbitrary
mappings between sensed physical data and the avatar
actions, appearance, and location are possible. Fur-

ther, the connection between the physical and virtual
worlds need not be only one way, and we envision
that users may receive communication (e.g., emails,
instant messages or SMS) or actuation triggers (e.g.,
mobile phone vibration) to indicate the status or en-
vironment changes experienced by their avatar in the
virtual world. As an initial step, we have implemented
activity recognition and voice detection classifiers that
run on the mobile phone, acting on data from local em-
bedded sensors. We have also built a data bridge using
available APIs to control a user’s avatar in Second Life
(see Figure 3).

6.3 BikeNet - Recreational Sensing

BikeNet is a recreational application that contains
elements of personal, social and public sensing. There
is substantial interest in the mainstream recreational
cycling community in collecting data quantifying var-
ious aspects of the cycling experience, mirroring the
broader interest in fitness metrics among exercise en-
thusiasts and other health conscious individuals. Ex-
isting commercial bike-sensing systems targeting this



Figure 3. Second Life integration with the physical world. Accelerometer data is collected from
a person’s mobile phone, and classified into activity states sitting, standing and running. These
states are then injected into Second Life via the mobile phone object the avatar carries (see picture
inset). The Second Life user defines the profile for his avatar to interpret and render these incoming
activity states. For example, in the figure sitting, standing and running have been mapped by the
user to yoga-floating, standing, and flying, respectively.

demographic measure and display simple data such
as wheel speed, and provide simple inferences such
as distance traveled and calories burned. These sys-
tems have become increasingly more sophisticated and
miniaturized.

We have designed and implemented the prototype
of a system reflecting a future where wirelessly ac-
cessible sensors are commonly embedded in commer-
cially manufactured bicycles, and the cyclist’s mobile
device (e.g., mobile phone) interacts with these sen-
sors during the ride to quantify aspects of cycling per-
formance and environmental conditions. In terms of
personal sensing, we view this system as akin to the
Nike-+iPod kit, a system for recreational runners that
logs exercise history. The BikeNet application [3]
measures the following metrics to give a holistic pic-
ture of the cyclist experience: current speed, average
speed, distance traveled, calories burned, path incline,

heart rate, COg level, car density surrounding the cy-
clist, and galvanic skin response (a simple indicator of
emotional excitement or stress level). All data sensed
by the system is stamped with time and location meta-
data. This data is provided to the cyclist immediately,
for example, via the mobile phone’s LCD, but is also
uploaded to a personal repository on remote BikeNet
servers for long term archiving, and for later trend
analysis (e.g., cycling performance, personal health).
The BikeView portal (http://bikenet.cs.dartmouth.edu)
provides a personal sensing repository for all ride
statistics. Additionally, it provides for sharing of in-
formation via real-time requests, a function most likely
enabled within social groups (e.g., for race-time man-
agement within cycling team, or for rough tracking of
a family member to know when to order the pizza).
Sharing of aggregate statistics and route rankings (op-
tionally stripped of identifying information) is facil-
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Figure 4. The BikeView portal provides personal access to archived cycling data, which can be so-
cially shared with cyclists, or used to support a public sensing initiative. The CO, map shown here
is the result of multiple users’ data merged to form a complete map of Hanover, NH, USA.

itated within the cycling community group. In ad-
dition, BikeNet facilitates public sensing and sharing
by allowing multiple users to merge their individual
data, for example, to create pollution, allergen, and
noise maps of their city. Such a map not only pro-
vides a way to learn about the safest (e.g., least cars en-
countered) and healthiest (e.g., better air quality, lower
noise) ways to get around town, but also may provide
the basis for political action to improve the city. Figure
4 shows such a map, built through the BikeView por-
tal, of CO; readings combined from users of our pro-
totype BikeNet system mapping the town of Hanover,
NH, USA.

7 Conclusion

Technology advances in sensing and microelectron-
ics and their integration into everyday consumer de-
vices lays the ground work for the rise of people cen-
tric sensing. Applications will be structured around
personal, group, and public sensing. The MetroSense
Project (http://metrosense.cs.dartmouth.edu) is devel-
oping new architectures, protocols, and applications
for people-centric sensing, where people are used di-
rectly as mobile sensing facilitators and indirectly, by
leveraging their social network structures, in the learn-
ing and sharing of sensing presence.
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