
Software Engineering for Mobility:
Reflecting on the Past, Peering into the Future

Gian Pietro Picco†, Christine Julien‡, Amy L. Murphy∗, Mirco Musolesi∗∗, Gruia-Catalin Roman⊕
†University of Trento (Italy), ‡University of Texas-Austin (USA), ∗Bruno Kessler Foundation-IRST (Italy),

∗∗University of Birmingham (UK) ⊕University of New Mexico (USA)
Contact author: gianpietro.picco@unitn.it

ABSTRACT
At the end of the second millennium, mobility was a hot research
topic. Physical mobility of devices was becoming commonplace
with the availability of cheap wireless cards, the first attempts to
transform phones into personal do-it-all devices were beginning to
appear, and mobile ad hoc networks were attracting a huge inter-
est from many research communities. Logical mobility of code
was still going strong as a design option for distributed systems,
with the Java language providing some of the ready-to-use build-
ing blocks. In 2000, when we put forth a research “roadmap” for
software engineering for mobility, the challenges posed by this dy-
namic scenario were many.

A decade and a half later, many things have changed. Mobil-
ity is no longer exotic: we juggle multiple personal devices every
day while on the move, plus we grab and update applications on a
whim from virtual stores. Indeed, some trends and visions we con-
sidered in our original paper materialized, while others faded, dis-
appeared, or morphed into something else. Moreover, some players
unexpected at the time (e.g., cloud computing and online social net-
works) appeared on the scene as game changers.

In this paper we revisit critically our original vision, reflecting
on the past and peering into the future of the lively and exciting
research area of mobility. Further, we ask ourselves to what extent
the software engineering community is still interested in taking up
the challenges mobility bears.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous

General Terms
Design, Algorithms, Human Factors

Keywords
Mobility, mobile computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2865-4/14/05 ...$15.00.

1. INTRODUCTION
In the context of computer science and engineering, mobility is a

term with many nuances. Mobility is often associated with mobile
computing using untethered computation devices, e.g., equipped
with wireless communication abilities and autonomous power sup-
ply. At the end of the second millennium, technological advance-
ments enabled a surge of opportunities in this realm. Moreover,
alongside this form of physical mobility of devices, there was great
interest also in the logical mobility of software components, whose
code and state could be relocated entirely or partially as a design
alternative to the classic client-server paradigm.

In other words, mobility was an exciting research field still rel-
atively unexplored, with potential implications for software engi-
neering. As researchers working in the field, some of us were
charged by the ICSE community with the arduous, yet inspiring,
objective to identify the software engineering challenges concern-
ing mobility. The result was a paper [1] published in 2000 as part
of the well-known “Future of Software Engineering” book [2].

In the paper, we deliberately took a broad notion of mobility, mo-
tivated by the desire to encompass both the aforementioned forms
of mobility:

From a software engineering perspective, we view mo-
bile computing to be the study of systems in which com-
putational components may change location.

A decade and half later, the conceptual and technological land-
scape for mobility has changed dramatically. Logical mobility is no
longer a “hot topic”: some of the design paradigms and implemen-
tation techniques are now taken for granted, others are relegated to
historical interest, if not oblivion [3]. More importantly, the fast-
paced world of computing and communication has reshaped itself
a few times since our original paper, with implications on mobility.
A critical re-evaluation of the challenges we identified in 2000 is
therefore in order, along with a fresh look at the future that takes
into account the conceptual and technological developments that
appeared in the meantime.

The aforementioned considerations provide the roadmap for this
paper, which indeed unfolds as a travelogue of sorts. In Section 2
we ideally rewind in time and place ourselves at the end of the sec-
ond millennium. We first remind the reader with some anecdotal
evidence of what “mobility” meant back then, from a technology
standpoint, and follow with a concise summary of the considera-
tions and challenges we1 identified in [1]. At the end of the section,
empowered by hindsight, we give a critical look at our own con-
siderations, and comment on which of these still hold, which are
irrelevant today, and which we missed. In Section 3, before the fast-

1The set of authors of this paper is a superset of the original one
in [1]. We gloss over this detail, for the sake of readability.

forward to present day of Section 4, we analyze some of the disrup-
tive, unexpected players—the “game changers”—that materialized
in this decade and a half, and that determined the fate of some of
our considerations, along with the groundwork for the present (and
arguably future) state of affairs. The latter is dissected in Section 4,
where we repeat the treacherous but stimulating exercise of elicit-
ing the current macro-trends shaping the field of mobility at large,
and of imagining the future ones and the challenges they bring to
software engineering.

The mix of considerations over the past, present, and future that
characterizes this paper is also the opportunity to ponder, in Sec-
tion 5, whether the software engineering community still considers
the topic of mobility important—or even just worth studying. Fi-
nally, Section 6 ends the paper with some brief concluding remarks.

2. REFLECTING ON THE PAST
In this section, we revisit critically the content of the original pa-

per [1] we wrote in 2000. We begin by reminding ourselves and the
readers what mobile computing meant back then, providing context
for our following considerations. We then proceed by concisely
summarizing the main challenges we identified in [1], maintaining
the same high-level distinction between theory and systems that we
initiated in 2000. Finally, we fast-forward to the present day and
discuss what happened to those challenges—have they been solved
or are they still open? Were they really relevant or were there others
that, in the end, mattered more? Answering these questions helps
look at the present and future state of affairs in later sections.

2.1 Mobile Computing in A.D. 2000
Fourteen years is a long time in the fast-moving field of computer

science and communication engineering. Some of our youngest
readers may have only a vague idea of what mobile computing
meant back then and take the current wealth of pocket-size compu-
tation and communication power for granted. The considerations
we expressed in [1] must be placed in context to be appreciated.

Our intent is not to provide a complete, exhaustive account. Our
original paper contains a more in-depth description, and plenty of
“historical” material is available elsewhere to the interested reader.
Instead, in the following we single out, almost in an anecdotal
fashion and not without a bit of nostalgia, some elements that are
paradigmatic of the change mobile computing went through over
nearly two decades.
State-of-the-art mobile device: PDA. When we wrote our paper,
a distinct trend towards portable, affordable computing had already
appeared. Laptops were increasingly cheap and powerful, although
still typically weighing a few kilograms. However, a new form
of personal computer had started to appear, targeting drastically
smaller form factors: the Personal Digital Assistant (PDA).

PDAs were hardly a new concept. While they originally ap-
peared as glorified organizers at the end of the 90’s, the concept
became popular again with the (in)famous Apple Newton, released
in 1993, for which the term PDA was actually coined. It was only
later, however, that the PDA finally exploded on the market, slowly
evolving from the role of organizers to that of small computers with
their own operating systems, either custom-designed like PalmOS
or stripped-down versions of conventional ones, as in the case of
WindowsCE. At some point, a whole continuum of devices ap-
peared, connecting basic organizers to laptops through a plethora of
devices (“palmtops” and “hand-helds”) with different form factors
and capabilities, such as computing power and screen real estate.

Initially, these devices were meant to be connected, at least spo-
radically, to a conventional computer, either through serial, USB,

(a) Palm VII. (b) Communicator 9110.

Figure 1: Some ancestors of modern smartphones.

or infrared. Indeed, “synchronization” of user data was one of
the main features available. As they were gaining power, how-
ever, these devices moved away from the organizer stereotype, and
eventually gained also connectivity. In our paper we stated:

Recently 3Com released the Palm VII personal digital
assistant with built in wireless capabilities for access-
ing the Internet.

While this may trigger a benevolent smile today, it was big news
at the time. Despite the fact that connectivity was provided by a
proprietary network, the Palm VII (Figure 1(a)) proved actually
quite successful and introduced other elements now commonplace
in smartphones, such as location-based services, although based on
inferred zipcodes rather than GPS. Yet another beast was the Black-
Berry, introduced in 1999, an e-mail pager based on a proprietary
network, a functionality that eventually proved key in securing a
vast base of users, peaking at 79 million in 2012.
What about smartphones? PDAs can be regarded as one of the
ancestors of modern-day smartphones. The term “smartphone” did
not exist at the time, however, the concept of merging the func-
tionality of a PDA with the one of a phone appeared shortly after,
with the notion of a “communicator.” The latter was borrowed from
arguably the most successful of these devices, the Nokia Communi-
cator, introduced in 1996. The concept of these devices was some-
how similar to present-day smartphones: a hybrid between the PDA
and the cellular phone, essentially extending the computation abil-
ities of the former with the ubiquitous connectivity provided by the
latter. These devices, however, were a far cry from those most of us
carry in our pockets today. The clamshell design of the Nokia Com-
municator 9110, introduced in 1998, had a size of 158×56×27 mm
and a weight of 253 g, already a big leap forward w.r.t. the 397 g
of the previous 9000 model. It was equipped with a 33 MHz, 486-
like AMD processor and 8 MB of memory, of which only 2 MB
were dedicated to user data. The “apps” were limited to the stan-
dard suite communication suite including email, SMS, fax (!), and
a browser, along with productivity applications such as a notepad.
WAP: The mobile Internet (on a tiny screen). At the time of
writing the original paper, the vision of ubiquitous Internet access
was beginning to appear, enabled by an increasing penetration of
cellular phones. To many users, the Internet essentially meant the
World Wide Web. In this context, the most promising technology at
the time was the Wireless Access Protocol (WAP), which appeared
in 1997 and specified an entire protocol suite, from low-level data-
grams up to the application, in support of Web browsing.

WAP was motivated by the impossibility to render HTML pages
directly on the cellular phones available at the time. Web sites had
to be replicated and written in a different markup language, the
Wireless Markup Language (WML), expressly designed for render-
ing on the small screens of cellphones common at the time. Cell-

phones would download WML pages through a WAP proxy, sitting
between the device and a common Web server.

WAP was accompanied by a lot of hype, which peaked at about
the time of writing of [1]. However, the need to maintain separate
Web content, along with the inherent limitations of the target plat-
forms, impacted user experience and eventually led WAP to its cur-
rent irrelevance. Nevertheless, it should be pointed out that, while
WAP never really took off in Europe and the USA, it was very suc-
cessful in Japan.
WiFi on PCMCIA cards. WiFi (or, more precisely, Wi-Fi) was
actually established as an independent standard organization, the
Wi-Fi Alliance, only in 1999, shortly before we published our pa-
per [1]. At the time, WiFi was still definitely an exotic technology,
whose actual impact remained still vague to many, even among re-
searchers. For instance, one of us recalls a conversation with a se-
nior, experienced colleague—also an author of a different chapter
in the “Future of Software Engineering” book—who argued how
useless wireless access was going to be, given that Ethernet plugs
had become pervasive.

An element providing grounds for this reaction was the fact that
the WLAN cards (as they were commonly called) were large, typ-
ically provided through PCMCIA connections, often with external
antennas and hardware so bulky it had to be physically attached to
the back of laptop screens. No wonder the aforementioned “com-
municators” did not have WiFi connectivity. WLAN cards were
also rather slow: before IEEE 802.11b, published in 1999 and
promising 11 Mbit/s, WLAN cards supported transmission rates
up to 2 Mbit/s.
Mobile code and mobile agents were a “hot” topic. The exam-
ples put forth so far are all concerned with what we called physi-
cal mobility in [1], i.e., the ability of portable devices, carried by
mobile users, to communicate and therefore perform a distributed
computation while on the move.

Nevertheless, in our paper we also considered logical mobility,
where the code and/or state associated with a process are moved
across hosts. This notion was then very popular and relied on a
small number of design paradigms (code on demand, remote eval-
uation, and mobile agent) that gave rise to a plethora of systems,
roughly divided into those supporting strong (i.e., code and execu-
tion state) or weak (i.e., only code) mobility [4]. In particular, the
notion of a mobile agent captured the imagination of many, espe-
cially in its most radical form, where a complete process is able to
migrate of its own volition across hosts and yet retain its execution
state (e.g., program counter).

Many applications of logical mobility were envisioned at the
time, and the notion of mobile agent gave rise to a surge of for-
mal models of mobility. Mobile code and agents were expected to
radically change the way distributed applications were built. The
gap between this dream and the current state of affairs is analyzed
elsewhere (e.g., in [3]), and constitutes the basis for some of our
considerations in the following.

2.2 What Were the Challenges
In our original paper, we outlined the open challenges with a

classification into theory and systems, addressing models and algo-
rithms in the former and applications and middleware in the latter.
The intent was to focus on foundational research, then on research
driven by application needs. Keeping in mind the state of the mo-
bile computing in 2000, as just summarized, we recap the chal-
lenges we saw, revisiting them in the next section to evaluate their
evolution.
Theory: Models. Models allow us to step back from the details

of the topic at hand to address fundamental aspects, which further
allows us to focus on the core challenges. Regarding models for
mobility, three critical elements we identified are the unit of mobil-
ity, location and context.

The unit of mobility can be defined as the smallest component
of the system that moves. In a physically mobile system, models
typically identify devices along with their applications and state.
Analogously, models for logical mobility consider different granu-
larities of application code, from single variables, to classes or li-
braries, to entire applications. One popular instantiation of a logical
mobility model is code on demand, where a stationary application
is augmented by functionality downloaded on the fly. Alternately,
a model of mobile agents more closely resembles a physically mo-
bile system as the execution does not necessarily stop when a mo-
bility action is taken. Further, by separating the system state from
the executing unit, models allow new perspectives on the design of
languages to support mobility and its reconfiguration opportunities.

Mobility requires a notion of location, whether this is a physical
point in space or a logical execution environment. The movement
of units through these spaces and the corresponding reconfigura-
tions make mobile systems unique, and thus representing location
explicitly in models is critical. In some modeling infrastructures,
the precise definition of a location, e.g., as a Cartesian coordi-
nate, is not critical; instead the ability to proactively change lo-
cation and/or react to location changes are critical. In other frame-
works, the space itself is structured, e.g., hierarchically. The chosen
shape gives rise to specific movement rules among the available lo-
cations, and coordination rules among units are often tied to the
location. In any case, by explicitly addressing location, mobility
models uniquely emphasize the challenges arising from location
changes.

While location is important, the notion of context moves beyond
it, addressing the whole environment in which computation is per-
formed, e.g., including the presence or absence of other mobile
units, access to information, or even the task at hand. It is possi-
ble for two mobile units to share a location but perceive different
contexts. Similarly, two units can share a context but not a loca-
tion. In general, context-aware computing arises from an ability to
react in a timely manner to changes in the environment. Although
all computation takes place in some context, it is the abrupt and un-
predictable nature of context changes in mobile systems that makes
them unique. Taking a coordination perspective, one should spec-
ify how the mobile unit interacts with its context separately from
the behavior of the unit itself. Mobile coordination approaches
range from implicit reconfiguration of the coordination space to
automatic, transient sharing of data. Such transparent coordination
mechanisms are amenable to open systems, one of the challenges
we posited for mobile systems.

To confront the challenges of context, we put forth the need for
models to incorporate naming schemes, discovery capabilities, and
registries to cope with changes in the availability of other nodes in
disconnected environments. Additionally, we suggested the need
for context-aware security mechanisms to prevent unauthorized ac-
cess and simplify allowed interactions, balancing the expressive
power with security concerns.
Theory: Algorithms. Next we shift from abstract models address-
ing mobility to the need for algorithms that generically solve recur-
ring challenges such as location changes, frequent disconnections,
resource variability, power limitations, communication constraints,
and dynamic changes in the connectivity pattern. We supposed that
some challenges such as power consumption would fade over time
with newly developed technologies offering solutions. We also
presumed that algorithms exploiting asymmetric communication

would grow in importance due to the difference in reception and
transmission powers.

Fundamentally, physical mobility requires a relationship with
space, and we presumed that algorithms addressing spatial prob-
lems would have a place. For example, in autonomous robotic sys-
tems, algorithms for systematic exploration of a space are impor-
tant. Additionally, algorithms supporting spatial constraints such
as coverage or traveled distance maximization/minimization were
needed.

Regarding algorithms supporting coordination, we outlined the
need to support collective tasks among physically neighboring no-
des. We emphasized the need for standard algorithms, such as
checkpointing, event ordering, and leader election, to address dis-
connections among nodes, as would be the case without a sup-
port infrastructure. Without infrastructure, approaches would be
required to meaningfully group the nodes according to logical or
physical location, movement patterns, or the task at hand, with
careful attention to expensive communication. Patterns exploiting
these logical groups would be useful in fundamental algorithm de-
velopment.

On the other hand, one strategy we foresaw was shifting compu-
tation and communication away from the mobile components and
their wireless links and into the infrastructure, leveraging cheap
and abundant communication and storage inside the wired network.
Nevertheless, the need to support disconnection of the mobile units
was key, and we foresaw standard techniques, such as randomized
or epidemic algorithms, being adapted to help adapt to connectivity
changes.
Systems: Applications. In our 2000 paper, we also focused on the
applications envisioned back then, with the belief that

the most visible impact of software engineering research
will be in the wide range of applications expected to
emerge on the market

At the time, continuous connectivity to the wired infrastructure
simply did not exist, or came at too high a cost. Therefore, we fore-
saw a need for systems to address the needs of individual users and
groups without infrastructure access. For the individual, access to
resources, such as file systems, without relying on persistent com-
munication was important. Caching and hoarding schemes offered
one solution, but remote query execution also offered promise, as
it limited the amount of data transmitted over expensive wireless
links. Without the fixed network, we also foresaw groups of users
with localized connectivity forming ad hoc communities. These
groups, formed by students or conference attendees, could exchange
business cards, session notes and schedules without any infrastruc-
ture support.

While this technological limitation implied one direction for ap-
plications, novel technologies opened new domains. For example,
sensors combined with wireless communication could be used to
measure the environment or, more generally, detect context changes.
Combining GPS information with wireless communication offered
opportunities such as long-lived collaboration among vehicles trav-
eling in the same direction or data sharing among passing vehi-
cles. Further, wireless kiosks, themselves attached to the fixed net-
work, could exchange local information with passing cars, exploit-
ing physical co-location and wireless capabilities.

Across these novel, mobile applications, we identified several
cross-cutting issues. First, the degree of mobility awareness ex-
posed to the user is key. In some applications the user is involved
in decisions that affect functionality, e.g., specifying files to be
cached. In others, the system transparently adapts to changing con-
ditions, e.g., reducing video quality when changing networks or

preventing access when the security domain changes. Further, ap-
plications are also shaped by mobile device capabilities as well as
infrastructure access and support, which may limit interaction due
to a small screen size or force only localized interactions when ac-
cess points are not available.
Systems: Middleware. Middleware offers support for application
development with new mechanisms situated on top of the operat-
ing system. In our original paper, we distinguished between logical
mobility middleware as a new tool supporting the related novel de-
sign paradigms, and physical mobility middleware as supporting a
new set of application and system requirements.

Support for logical mobility in a middleware focuses on pro-
gramming language extensions of an existing programming lan-
guages, most commonly Java, for mobility of code and state. At the
time, code on demand through the dynamic loading of Java classes
was already integrated and available in the mainstream. However,
abstractions and supporting mechanisms for rebinding strategies
and architectural styles had not been addressed.

As for physical mobility, we argued that:
the challenge for mobile middleware is to devise mech-
anisms and constructs to allow detection of changes in
location, to specify what belongs to the context of the
computation, to relate changes in location to context
modifications, and to determine how the computation
itself is affected by changes in the context.

These challenges required bridging the gap between low-level
information such as battery level, communication quality, neigh-
borhood, and location, and a more abstract application developer
interface. Accomplishing this in a general way was a challenge we
foresaw for context-aware middleware with service discovery and
service support, e.g., with message delivery adapting to disconnec-
tions and changing locations.

At the time, we saw coordination as one concrete possibility to
both bring together the worlds of logical and physical mobility and
to serve as a concrete, formal foundation for the middleware sup-
porting both types of systems. For example, tuple spaces can be
remotely accessed by mobile and non-mobile units, offering a sin-
gle, abstract access mechanism to system data, including context
information. Alternately, the data contained in tuple spaces can
represent code to be accessed or moved throughout a distributed
system. To make such state-based abstractions practical in dynamic
environments, additional elements were being considered, e.g., en-
abling reaction to changing state, and thus event-like interfaces.

2.3 What Happened to Them?
Now that we have reminded ourselves about what mobile com-

puting meant at the end of the last millennium and the challenges
we identified at the time, we are in the position to look back criti-
cally at our considerations.

We structure this section by revisiting what we stated in 2000,
with the obvious advantage of hindsight. Hereafter, we provide
a concise account by focusing first on the challenges and dimen-
sions of mobility we believe are still relevant, then on those dimen-
sions we overemphasized, and those we underemphasized or even
missed. Table 1 provides a quick, at-a-glance summary of how the
relevance of the macro-challenges we outlined in [1] and in Sec-
tion 2.2 shifted over the years.
What is still relevant? We believe the distinction between phys-
ical and logical mobility, along with their different roles—the for-
mer posing new requirements, the latter being essentially a design
choice—brought some “order” in the research field at the time.
The unified presentation of these concepts as characterized by unit

Models ↓ Models of mobility, albeit intellectually stimulating, are today much less relevant than we expected.
Algorithms = Algorithms are still fundamental, although the concern shifted greatly from the mechanics of mobility and discon-

nection towards directly supporting users and harvesting the data they generate and gather.
Applications ↑ The number and breadth of applications exploded since 2000, and the trend is still going strong, effectively

(re)defining the challenges for software engineering.
Middleware = Middleware is still a key element of the picture, enabling rapid development, although the type of primitives required

are shifting towards the user, similarly to algorithms.

Table 1: Macro-challenges for mobility: now and then.

of mobility, location, and context, is still valid, at least from a
conceptual standpoint, although it did not generate the impactful
modeling insights we advocated in the paper. On the other hand,
the aforementioned central role of location and context is reflected
in the system challenges we considered, applications and middle-
ware, discussed next. Context modeling remains a key (and largely
open) challenge for mobile systems today, though efforts continue
to strike a balance between expressiveness and usefulness of such
models [5, 6].

As for applications, we were well-aware they were the driver
for the users and the market, ultimately determining the success of
mobility, as well as shaping the research challenges involved, to the
point that we argued for

a need to consider a style of research that is much more
application centered than in the past.

Today, this reasoning holds even more strongly, given that the
application landscape is much richer and diverse than we could
imagine back then; we further elaborate on this aspect in Section 4,
where indeed we are faithful to our quotes above and outline re-
search challenges along classes of applications. However, as al-
ready mentioned, in our original paper we also highlighted the
importance of location as a first-class object, directly available to
applications through the use of GPS devices. Still somewhat ex-
otic (and utterly expensive) at the time, these devices are nowadays
cheap and omnipresent and at the core of a new wave of appli-
cations relying on different uses of location, from geo-tagging to
social networking. Another aspect we foresaw is the emergence
of specialized computing devices enabling fine-grained sensing,
which is today becoming more and more a reality, e.g., thanks to
research in the fields of wireless sensor networks and, more gen-
erally, pervasive computing. In these realms, the aforementioned
notion of context will gain increasing importance if the scenarios
enabled by distributed sensing or, more generally, by the “Internet
of Things” and “cyber-physical systems” materialize.

This last angle brings us to middleware, which is still a key chal-
lenge in enabling mobile applications. Today’s mobile platforms
provide rich libraries, but mostly focus on abstracting the device
features, such as on-board sensors and access to the network. Prop-
erly managing distributed context, despite the conspicuous litera-
ture on the topic, is still central to mobile applications, for which
ad hoc solutions are often employed and no prevailing approach
has appeared. In part, this is also a consequence of the dominat-
ing invocation-based paradigm, originally incarnated by RPC and
distributed objects and today revamped by service-oriented archi-
tectures, whose tight coupling is intrinsically at odds with the fluid,
dynamically-changing context enabled by mobility. In this sense,
our original emphasis on coordination as the “glue” among mobile
components still stands as a challenge:

If much of the research on concurrency looked at com-
ponents (i.e., processes) from inside out, coordination
seeks to view components (i.e., mobile units) from out-

side in.
Interestingly, while it is true that this view is somewhat marginal
in the mainstream, which is dominated by the invocation-based ap-
proaches inherited by distributed computing, the importance of co-
ordination has grown in other fields related to mobility, such as
pervasive computing and wireless sensor networks. For instance, in
the latter field, many programming approaches rely on some form
of data sharing as the primary means of communication [7]. The
TeenyLIME [8] system developed by some of the authors, a tuple
space middleware inspired by LIME [9], has been used successfully
in real-world wireless sensor network deployments [10, 11] where
it provided not only a significant reduction in the development ef-
fort, but also in the dimension of the resulting binary code—a very
desirable property for these resource-constrained applications.

On the other hand, we did overemphasize the role of algorithms
for coordination (e.g., supporting leader election, transactions, and
the like) of mobile entities, along with other issues we discuss next.
In our paper, we saw algorithms as a necessary element enabling
the coordination mechanisms we envisioned mobile applications
to be built on. Since coordination has still a relatively marginal
role, their algorithms are not as central as we speculated. How-
ever, this is not to say that algorithms at large lost importance: on
the contrary, they are becoming key, but above and below the “sys-
tem waist” represented by middleware. Below it, algorithms for
optimizing low-level system concerns (e.g., power consumption),
possibly in concert with the application goals, are more and more
important, as we further elaborate later in this section. Above it,
algorithms for automatically mining and exploiting the wealth of
“big data” harvested by mobile users are rapidly becoming one of
the most exciting challenges of future computing, as discussed in
Section 4.
What did we overemphasize? Looking back at the focus of the
research community at that time, mirrored in our paper, it is evi-
dent that the emphasis we placed on models has not been matched
by a corresponding impact. Formal models of mobility were def-
initely a popular topic when we wrote our paper, and there was a
lot of expectation about their contribution to elucidating the under-
pinnings of mobility and consequently guiding the design of the
corresponding systems. As we already mentioned, not all of these
efforts are in vain, and some challenges (e.g., proper modeling of
context) are still standing. Nevertheless, one reason why models
did not have an impact is that they were detached from reality and
practical use. For instance, the vast majority of models (e.g., Mo-
bile ambients [12] and other derivatives of π-calculus) assumed the
process or thread as the unit of mobility. This admittedly rather nat-
ural modeling decision leads to nice and elegant theories. However,
on one hand it does not directly model the independent relocation
of code and state, e.g., typical of the (successful) code on demand
paradigm. On the other hand, these theories assumed movement
in a logical space, ruling out the gory complexity stemming from
fluid topology of wireless communications, and therefore preclud-
ing a direct application to physical mobility. Therefore, in practice

these theories were useful only to model mobile agents; since this
paradigm is today relegated to irrelevance, so are the corresponding
models.

The last statement also brings us to comment about logical mo-
bility, which was also a very active topic at the time, especially
concerning mobile agents. In 2000, the census in the Mobile Agent
List, maintained by Fritz Hohl at the University of Stüttgart, con-
tained 72 systems. As noted elsewhere [3], if one assumes 1994—
when Telescript [13], the first mobile agent, and Java appeared—as
the birth year for mobile agents, this means that these systems were
produced at the rate of one per month! Interestingly, the vast major-
ity of the implementations relied on Java, which natively supports
only a very constrained incarnation of mobile agents, supporting
weak mobility, and therefore only very few systems were a real ad-
vance to the state of the art. As a result, the relative ease with which
mobile agents could be implemented, combined with the aforemen-
tioned popularity and slant of mobility models, fueled each other
and ultimately spiraled both into oblivion.

While it is true that logical mobility is no longer a hot topic, this
does not necessarily mean that it is irrelevant. On the contrary, the
code on demand design paradigm is very much alive, to the point
that it is such a consolidated reality that it no longer deserves a
place at the forefront of research. A great deal of today’s dynamic
Web content technology revolves around this paradigm, enabling
dynamic loading and extension of applications. Mainstream mid-
dleware has support for some form of code on demand, e.g., the
class loading mechanism in Java (e.g., in RMI and OSGi) and as-
sembly loading in .NET. Therefore, in a sense, we overemphasized
mobile agents because we did not predict their demise, and code on
demand because we did not predict its success.

Finally, despite our emphasis on applications, those we envi-
sioned were obviously constrained by the dominating scenarios at
the time, which are not necessarily those that emerged. For in-
stance, we put a great deal of emphasis on mobile ad hoc networks
(MANETs), a very popular topic of research at the time. This radi-
cal form of mobility was particularly intriguing due to the uncom-
promising role of decentralization. This vision also implied a key
role for managing disconnection—a fact of life in the fluid and dy-
namic topologies defined by these networks. For better or worse,
the world evolved in a different direction, as we further elaborate
upon in Section 3. Ubiquitous (and cheap) connectivity is now a re-
ality, which relegates MANETs to the niche where they were orig-
inally conceived, i.e., military applications and disaster recovery.
Similarly, without the continuously changing context of MANETs,
the complexity of dealing with disconnection is nowadays reduced
to the problem of “synchronizing” data with some server “in the
cloud”, accessible while on the move.
What did we underemphasize? On the other hand, there are a
number of issues that we overlooked in our paper, and that prob-
ably we could have already anticipated at the time. In hindsight,
some aspects of mobile computing should have been included in
our original vision in 2000; we discuss those here before Section 3
discusses the more radical and largely surprising “game changers”
that have occurred since.

One aspect we barely touched is the one of security. In relation
to logical mobility, mobile code poses an intrinsic security con-
cern. However, the degree of complexity security introduces varies
greatly among the various design paradigms, and ultimately deter-
mined their fate [3]. At one extreme, the challenges posed by code
on demand could be solved by and large by existing, well-known
techniques, such as certificate-based schemes and sandboxing, and
that is one reason why this paradigm still thrives today. At the
other extreme, the security challenges posed by mobile agents were

unprecedented, and the solutions often limited the very flexibility
provided by this paradigm. Combined with the intrinsically higher
implementation complexity and the absence of a clear, far-reaching
application case, the security challenge eventually relegated mobile
agents into irrelevance. As for physical mobility, security, and es-
pecially, privacy are very important challenges today. Interestingly,
these issues can be cast into the “model” of our original paper by
observing that the threats to privacy are generated by the location
and context associated with the unit of mobility (the mobile user in
this case) and the ability to control when and how they are shared
with others. The tradeoff between the degree of control retained
by the user and the effort necessary to exert such control is still a
largely unresolved challenge, whose burden ultimately percolates
to application design and therefore to software engineers.

Another angle we definitely overlooked is the importance of sys-
tem concerns and algorithms. While we touched upon the impor-
tance of power management and similar issues, we also somewhat
dismissed them as not essential:

Some of the work, however, reflects what one might
consider short-term technological limitations that will
eventually be overcome or do not enjoy universal ap-
plicability. Power consumption falls in this category.
Research on energy efficient algorithms is interesting
but not necessarily fundamental.

It is indeed ironic that all of the authors of this paper had subse-
quent experience with wireless sensor networks, smartphones, and
other power-constrained systems, and learned the hard way that en-
ergy constraints are essentially inescapable. Technology did not
progress as we expected and, on the other hand, miniaturization
continuously pushes the envelope of what one can do with only
a minimal energy supply. Energy is only one of the system issues
one should consider: the vagaries of wireless connectivity—the key
enabler of mobile computing—is another aspect that can only par-
tially be dismissed as a low-level issue, germane to other commu-
nities. The truth is, we believe that this attitude (which we shared
at the time) is one of the reasons why mobile and pervasive com-
puting, in all their nuances, have progressively disappeared from
software engineering venues, as we further elaborate in Section 5.

3. GAME CHANGERS
Several aspects from the original paper did not unfold as we had

foreseen for reasons that were largely unexpected. These disruptive
events have in many ways dramatically changed both the perspec-
tive and direction of software engineering for mobile computing. In
this section, we identify and explore the most significant of these
events before turning our eyes in the next section to peer ahead
once again at what may be just around the bend, including how
these game changers may impact the future course of the field.
Omnipresence of smart devices. In our original paper, we played
down elemental aspects of the devices comprising the mobile com-
puting space. While we foresaw the extreme miniaturization of
computing elements (to the point that they would be integrated in
clothing, buildings, and vehicles), our focus was on the mobility
abstractions for these components. What we did not foresee at
the time was the degree to which the nature of the devices them-
selves would influence what mobile computing ultimately entailed.
In 2000, mobile computing focused largely on the physical mobil-
ity of traditional computing devices (bulky laptops and first gen-
eration PDAs). Not many predicted the explosion in smartphone
penetration; in fact through the year 2005, smartphone penetration
globally remained at or below 1% and, in 2005, only the West-

ern European region exceeded this figure with a 4% penetration2.
The smartphone markets have since exploded, with major ones tip-
ping past 50% penetration3 in 2013 and global penetration near-
ing 30%. While mobile tablets lag smartphones in time, the initial
growth rates for tablet penetration are even steeper than the ini-
tial growth rates for smartphones. The rapid growth of these de-
vices has resulted in an associated explosion in software tailored to
these devices and a plethora of new software engineering concerns
brought about by these platforms, from the need for applications to
be energy-aware and energy-conserving to novel modes of human-
device interaction to the need for expressive approaches to context-
and situation-awareness.
Sensing on the small and cheap. Alongside this explosion in the
availability of highly capable devices in ordinary users’ hands came
a raft of advances in the hardware technologies they embed and in-
teract with. While our first paper did foresee the emergence and
importance of miniaturized sensing [14], a divergence from our
expectations in 2000 was the degree of integration of these capa-
bilities with everyday technology, i.e., smartphones. Significant
advances in manufacturing processes for micro-electro-mechanical
systems (MEMS) have resulted in reduced costs and increased qual-
ity; today, mobile computing devices are a driving factor for the
MEMS market4. The traditional use of MEMS in smartphones
has been for accelerometers and gyroscopes, allowing detection
of shakes, rotations, and navigation. However, MEMS have also
become essential for supporting other types of on-device sensing
(e.g., humidity and thermal sensing), improved sound and video
quality, better communication performance, and increased battery
lifetime. These new hardware advances demand a commensurate
shift in support for integrating these new capabilities into applica-
tions, and recent research in software engineering for these spaces
has shown an increased focus on handling these capabilities. Dan-
delion [15], for example, connects smartphone applications to wire-
less body sensors through programming abstractions called sense-
lets, while Open Data Kit Sensors [16] provides Android program-
ming abstractions for integrating data from both sensors internal
and external to the smartphone.

This miniaturization of computation, communication, and sens-
ing also gave rise to remarkable developments in the interconnec-
tion of tiny sensing and actuating devices, dispersed in the envi-
ronment. Wireless sensor networks are arguably the most promi-
nent technology in this respect, born at approximately the same
time as we were writing our original paper. Although wireless sen-
sor networks received little attention from the software engineering
community [17], they are nowadays the cornerstone of pervasive
computing at large, including recent popular trends like the Inter-
net of Things and cyber-physical systems. The connection with
mobility is provided not only by the many scenarios where sensing
and actuating nodes are themselves mobile (e.g., placed on humans,
animals, robots, or vehicles) but also by the scenarios where these
nodes, albeit fixed in the environment, provide key information to
a user’s personal devices.
Ubiquitous connectivity. All of these device innovations have
given users the availability and expectation of ubiquitous and per-
sistent connectivity to the Internet. Even more recently, the advent
and popularity of cloud resources have connected this “always on”
mentality to one of virtually unlimited remote storage and computa-
tional resources. In just a few years time, we have arrived at a point
where we no longer even consider whether a resource we are using

2Source: Gartner IT Hardware Survey, 2000-2010.
3Source: eMarketer, May 2013.
4Source: Yolé MEMS Market Report.

is “local” to our machine or resident in some amorphous “cloud”
that we assume is persistently available. The notion of being “dis-
connected” from such resources has gone from a fundamental con-
cern in 2000 to something that we rarely even consider. The key
point is that the advent of the cloud fundamentally changed the way
we think about the architectural structure of applications, enabling
innovations in how we engineer systems that integrate mobile de-
vices with the cloud and in how we engineer systems that integrate
mobile devices with each other.
A social world. Finally, no discussion of the game changers in
mobile computing over the last decade would be complete without
a mention of social networks.

In our 2000 paper, we discussed social connectivity somewhat
obliquely, connecting coordination protocols with the requirement
to support open mechanisms to make mobile users aware of the
physical presence of others. Clearly, social networking has evolved
way beyond this simple awareness, inserting itself into every facet
of our mobile interactions. In the applications available today,
our mobile devices use social network information to connect us
to locally present friends and acquaintances. At the same time,
sharing of information mainly happens through a remote server
and not through ad hoc connectivity. For example, Facebook had5

874 million monthly active users that used mobile products as of
September 30, 2013. Therefore, social connectivity is no longer
concerned solely with physical contacts, but also—and, actually,
predominately—with distant connections. Nonetheless, the role
of location is still fundamental. Users are increasingly sharing
location-aware information and data (such as geo-tagged photos)
with people not co-located with them, leading to an increasing in-
terest into geo-social systems [18], which combine features related
to social connections and geographic information.

4. PEERING AT THE FUTURE
This section takes the context of the game changers in the pre-

vious section and attempts, once again, to look forward, both at
current and emerging trends and our expectations for the future.
In today’s world, mobile computing is simply a fact of our every-
day lives. We use our mobile phones to access services (e.g., mass
transit trip planners) and to generate content (e.g., taking photos
or writing tweets). Through our mobile devices, we further gen-
erate a sort of “digital breadcrumbs,” which can be exploited to
build applications and systems that were unthinkable just 10 years
ago. In this section, an important cross-cutting theme is the need
to deal with the increasing complexity of the technological scenar-
ios; for this reason, the middle of this section rallies around some
specific emerging scenarios, highlighting their connections to tradi-
tional and fundamentally new challenges in software engineering.

4.1 Trends
Here we discuss the trends that are shaping the future of mobile

computing, outlining the challenges for the software engineering
community.
Mobile sensing. Enabled by the sensing on the small and cheap,
developments in mobile sensing have been tremendous in recent
years [19]. Stemming as a natural evolution of the last decade of
work in wireless sensor networks [20] and smart spaces [21], efforts
to personalize mobile sensing and bring it to commodity mobile
devices are only a handful of years old [22–24]. This availability
of mobile sensing capability has already engendered powerful and
readily available libraries that are part of standard software devel-
opment kits for common mobile platforms [25].
5Source: Facebook: http://newsroom.fb.com/Key-Facts.

Advances in mobile sensing have deep impacts and implications
on software engineering, both in terms of the novel capabilities en-
abled and in the complexities created. These capabilities and com-
plexities are perhaps most obvious in the area of digital behavior in-
tervention systems [26]. These applications “close the loop” by not
only collecting data from mobile phones but also providing effec-
tive feedback to the user according to his current personal state and
social context. Middleware, algorithms, and software architectures
for supporting the flexible development of these context-aware and
adaptive systems are emerging as interesting research challenges.
This new complexity intimately intertwines novel software engi-
neering contributions with human-computer interaction concerns,
control theory, and machine learning.

Building software that integrates mobile sensing retains existing
mobile software concerns, including those related to resource con-
straints and intermittent connectivity. However, as the capabilities
of our mobile devices increase, processing power and memory are
no longer critical issues. On the other hand, energy resources are
still a critical concern, especially given today’s energy-hungry de-
vices with their large, high-definition screens and powerful proces-
sors. These energy concerns are rapidly creeping into the software
engineering process [27, 28].

As capable and effective as our mobile sensors are becoming, the
data is often messy. Another current focus in this space, therefore,
is the development of algorithms and components that help appli-
cations and their developers to process noisy data in a robust way.
These approaches commonly apply machine learning algorithms,
whose outputs are characterized by a degree of uncertainty. Soft-
ware that incorporates this sort of result cannot be deterministic in
the classic sense. This has strong implications on the software test-
ing community, as new methods are needed that can account for
these uncertainties. In this context, the recent advent of probabilis-
tic programming [29] may hold promise.
Mining of mobile “big data”. Given the pervasiveness of mobile
and sensing devices and the fact that these devices are almost al-
ways on, it is possible to collect vast amounts of data from and
about mobile devices (and their users) in real-time [30]. Analyz-
ing this data can give detailed information about people’s behavior,
either individually or collectively [31, 32]. The potential uses for
this data are many, with wide reaching implications on everyday
aspects of the lives of millions of people. A typical case is the
use of mobile data for improving transportation [33]. Using mo-
bile phone data, we can reconstruct and quantify social interactions
in groups and communities, leading to new fields of computational
social science [34] and social computing [35]. Systems for mining
big data from mobile devices may play a particularly important role
in developing countries, where no governmental and health infras-
tructures are present. In these countries, systems based on mobile
phone data analysis can be used to improve basic services, such as
mass transit planning [36] and disease prevention [37].

The implications of this trend on software engineering are more
open-ended and range from the emerging new needs for defining
the requirements of these applications to testing such a highly de-
centralized system whose emergent behavior is difficult to charac-
terize a priori. The data amount is on a scale that existing software
engineering techniques have not yet tackled. The software engi-
neering process must allow for flexible extensions as new types
of data become available. Another requirement is the support for
managing relations and links in data, like in the case of the Seman-
tic Web [38]. Privacy is clearly a fundamental issue, and software
design techniques must consider the problem of data privacy. One
possible approach is based on the privacy-by-design principle [39].

Location, location, location. Thanks to the availability of inex-
pensive GPS receiver chipsets, the vast majority of today’s mobile
devices seamlessly enable outdoor localization. Current efforts fo-
cus on robust technologies and techniques for supporting indoor
positioning [40], enabling new classes of applications, e.g., in re-
tail and in the assistance and care of the elderly or people with
disabilities [41]. Interestingly, even applications that do not exploit
location directly (e.g., games) collect location information for an-
alyzing and/or re-selling the data for marketing and advertisement
purposes. More generally, location is an essential component in al-
most all of today’s mobile applications [42–44], as we anticipated
in our original paper.

Nevertheless, a principled approach to the design, implementa-
tion, and validation of location-aware systems is still missing. Ap-
plications must be able to deal with location values at different lev-
els of precision (e.g., due to the quality of the GPS signal) or gran-
ularity (e.g., due hardware limitations or to intentionally protect the
user’s privacy).
Off-loading and opportunism. As described previously, the per-
sistent availability of the “cloud” has fundamentally changed mo-
bile computing. While precursors to computational clouds have
existed since the beginning of computing, the integration of this
cloud with persistent connectivity has given rise to many opportu-
nities in offloading, most commonly moving heavy computational
loads from lightweight mobile devices to the cloud [45–47], but
also in offloading sensing tasks to a persistently connected ambient
infrastructure [28]. These directions have even come full circle to
offloading to opportunistically available mobile partners [48], hear-
kening back to some of our original predictions regarding uses of
mobile ad hoc networks. These trends are a current focus of the
mobile and pervasive computing communities; we expect attention
to continue focus on how to intelligently and adaptively merge local
and infrastructure resources for the maximal benefit of applications.
Wearable computing goes mainstream. In recent months, wear-
able computing has gone from a mostly niche science fiction vi-
sion to a commercial reality. Highly capable smart watches (e.g.,
the Samsung Galaxy Gear6) are available on the market and sev-
eral companies are exploring opportunities in the space, including
e-textiles [49] and smart fabrics [50]. One of the most famous ex-
amples is indeed represented by Google Glass7, a device with an
optical head-mounted display connected to the Internet and able to
process natural language voice commands.

Although designing for heterogeneity has been a recurrent re-
search theme for the software engineering community, the emer-
gence of this new class of systems makes the need for principled
techniques for development of cross-platform and cross-device soft-
ware increasingly urgent. For example, there is a real need for ef-
fective Integrated Development Environment (IDE) support for the
development of applications that can be seamlessly ported to differ-
ent platforms and devices. Wearable computing systems push the
envelope of hardware/software co-design (discussed next) as these
systems must be aware of both the environment and user simulta-
neously. Further, the extremely limited form factor of wearable de-
vices renders their capabilities quite constrained, emphasizing the
aforementioned need for an efficient and effective balance between
offloading and local computation.

Further, the context in which applications will operate is nearly
impossible to completely predict a priori, in terms of connectivity,
user activities, and social interactions. This poses significant chal-

6http://www.samsung.com/uk/consumer/mobile-devices/
galaxy-gear/
7http://www.google.com/glass/start/

lenges, especially for applications that are based on sensing and
processing contextual information, such as those based on activity
recognition algorithms. For these reasons, software engineers have
to deal with truly open systems, which must be at the same time
aware of, and robust against, the unpredictability of both the users
and the environment.
Blurring the boundary between hardware and software. While
perhaps not specific to mobile computing, the current trend to make
the distinction between software functionality and hardware func-
tionality transparent has significant impact on the landscape of mo-
bile computing. Increasingly, functions that were obviously in the
realm of software are being pushed to (potentially specialized) hard-
ware components. This is particularly true for computationally de-
manding algorithms such as those for learning and signal process-
ing (e.g., for activity recognition). The implementation of these
functionalities in hardware enables better performance in terms of
power consumption and processing speed.

Exciting emerging efforts are taking advantage of these blurred
lines both within mobile applications and within supporting capa-
bilities for developing these applications. One interesting example
is Consia8, which learns when to switch on and off sensors and ra-
dio interfaces by learning user behavior. Looking forward, applica-
tions that can creatively navigate this new and murky boundary may
be able to provide richer functionality more efficiently, offering up
new challenges in the space of tools and techniques to support their
entire software life-cycles.
Mobile first, then desktop (maybe). We are witnessing a remark-
able economic (and, in a sense, cultural) change in the development
process of mobile applications. Until very recently, applications
were developed first for desktop computers and then “ported” to
mobile devices. Now, the opposite is increasingly common; mo-
bile applications come first and are sometimes never even followed
by desktop applications. This is particularly true, obviously, for
location-aware applications. Sometimes, a Web portal comple-
ments the mobile app, but it does not provide all functionalities
of the mobile version, as for instance in Foursquare9.

Further, a platform-agnostic approach to applications is being
increasingly pursued, where good software engineering fundamen-
tals enable an application’s code base to be largely ignorant of the
target device. This trend is particularly visible in the development
of Web-based applications, where the end user may not even ob-
serve the natural, behind-the-scenes application adaptations that
occur to map the Web application to the target platform or browser.
HTML5, the most recent version of the standard, offers features
that foster the natural integration of mobile application develop-
ment, such as support for offline Web storage [51] and a Geolo-
cation API [52]. HTML5 has also been regarded as an enabler of
interoperability, as one of the major issues in mobile applications
today is supporting cross-platform development [53, 54].
A market for your app. Perhaps one of the most surprising cur-
rent trends is the emergence of online marketplaces (e.g., the Apple
App Store, Google Play, and the Microsoft Store) for distributing
mobile software. For the first time in the history of software de-
velopment, single developers or small companies can access distri-
bution infrastructures that allows them to sell (mobile) applications
to millions of potential customers at the tap of a finger. This is
also driving new economic models, also in relation to the pricing
of applications [55]. Prices can usually be kept very low (a few dol-
lars) given the economy of scale enabled by these online distribu-
tion platforms. Marketplaces also allow pushing updates to mobile
8http://www.qualcomm.com/media/videos/consia
9http://www.foursquare.com

applications in a seamless way, which enables a fast deployment
cycle and a tendency to release applications that are frequently up-
dated, following comments and requests of users sometimes made
through the “stores” themselves. Another interesting trend is the
release of free applications that provide a set of basic functionali-
ties, which can be enhanced or expanded through a subscription, in
the so-called freemium model. As these trends evolve, we can eas-
ily envision macro applications that assemble smaller components
into specialized functional units (e.g., a home entertainment con-
trol center, assembled out various home automation components or
a hospital service application, assembled out of multiple vendors’
device-specific apps). This trend, combined with the previous one
about mobile development, are essentially disrupting, once again,
what we know “by-the-book” in terms of software development
practices and software economics.

4.2 Challenges (and Opportunities) Ahead
The considerations in our original paper revolved around a delin-

eation between theory and systems. Today, we see a more blurred
view, where sytems and applications issues have become predomi-
nant, and models have only a supporting role, if any.

Indeed, the future of mobility will be characterized by an increas-
ing mixing with other fields both inside computer science (e.g.,
machine learning, data mining, human-computer interaction) and
outside of it (e.g., cognitive science, psychology, sociology). Fur-
ther, as we already mentioned several times, it is likely to be dom-
inated, once more, by the flavor of applications that will emerge.
Therefore, we chose to cherry-pick some of the application sce-
narios that, in our opinion, are most representative of challenges
and opportunities that lay ahead of us. Although these scenarios
are already discussed here through a software engineering lens, in
Section 4.3 we distill some more general considerations on the im-
pact the challenges we outline here have on software engineering
at large.
Anticipatory computing: Using your mobile as a crystal ball.
Anticipatory mobile computing [56] builds on our current capa-
bilities to sense, model, and even predict context to construct al-
gorithms and mechanisms that enable automated decision making
processes based on these sensing and prediction capabilities. An-
ticipatory computing applications have long been the holy grail of
mobile and pervasive computing.

As you prepare at home for your morning run before
work, your smart glasses provide you with a weather
forecast for the next hour. An accurate training plan is
also automatically generated for you, based on your es-
timated performance (extracted from the logs of your
previous runs and competitions in the previous month)
and physical indicators collected by wearable biomed-
ical sensors. Since the readings of the sensors show
that the previous training sessions were rather stress-
ful for you, the planner indicates a very flat running
course for today’s run. Since a friend of yours who
lives nearby is also headed out for a run at the same
time, a message is displayed in your glass, and the de-
vice asks you if you want to call him to meet and run
together.

Anticipatory mobile computing is not limited to personal assis-
tants like this one but also includes visions related to smart health-
care and smart cities. Anticipatory computing scenarios are com-
monly used to motivate research contributions or services that gen-
erally solve a very specific piece of the puzzle, for example pre-
dicting relevant apps [57,58], prefetching relevant information [59]

mining personal context, or context-adaptive route planning. While
such application scenarios seemed like science fiction in 2000, the
components are largely realized in today’s landscape. The potential
of the combinations have even been envisioned, for example as the
cognitive phone [60]. Yet the integrated applications remain unreal-
ized at any real scale. Anticipatory mobile computing at scale will
require supporting collective sensing and prediction, further exac-
erbating concerns related to privacy and resource constraints. How-
ever, the trends in big data described in the previous section are a
major enabler of these anticipatory applications, and we expect that
this availability will continue to drive their evolution. Given the
current state of the art in the supporting research, realizing antici-
patory mobile computing has reached a critical stage that demands
principled software engineering.

These anticipatory mobile applications must take advantage of a
wide array of potentially intensely personal information, including
behavior patterns and intents, emotions and moods, interpersonal
relationships, etc. While much focus in mobile computing has re-
cently promoted off-loading computation to a highly available in-
frastructure, enabling privacy-preserving computation may require
an intelligent approach to on-loading [61] computation from sur-
rounding and wearable sensing devices on our mobile personal ones
(e.g., our smartphone), demanding a reinvestigation of the co-design
of their hardware and software platforms.

Anticipatory mobile systems must integrate both on-device hard-
ware and software capabilities with infrastructure hardware and
software capabilities in a manner that is fluid, flexible, and aware
of resource limitations. Many existing middleware for mobile com-
puting focus on context-awareness and reflection as adaptation-
enablers. However, the needs of anticipatory mobile computing
applications are well beyond the mainstream of today’s software
engineering visions for self-adaptation [62]. We contend that an-
ticipatory mobile computing will be a defining disruptive technol-
ogy for the engineering of software systems that dynamically adjust
their architectures in response to a wide variety of context factors.

Testing anticipatory mobile computing applications demands no-
vel approaches that function in situ based on an individual user’s
execution. Application function is tailored to an individual user
and his context; not only some of their combinations may not have
been part of the testing suite, but they may not have even been en-
visioned or possible during testing. Further, the true anticipatory
mobile computing vision is not one of multiple siloed apps but one
of a single integrated system with varied functionalities that share
data, resources, and tasks and ultimately work together to provide
a complete experience tailored to an individual user. From a tradi-
tional software engineering perspective, such a vision is frightening
and necessitates an ecosystem with a myriad diverse players, from
the device and software developers through the functionality and
content distributors to the user and his data.
I, Mobile: Mobile systems for robotics. The past few years have
witnessed an explosion in autonomous robotics, although still ei-
ther in the hands of tinkerers or in very specific (mostly industrial)
applications. Given the maturing hardware and control capabilities,
software now stands between these niche applications and a more
wide ranging vision of mobile robotics systems.

As the site supervisor for a busy urban construction
site arrives in the morning, one of the site’s fleet of
quadcopters delivers his morning cup of coffee (with-
out spilling it!), which he drinks as he reviews the pro-
ject’s progress on his smartphone. The quadcopter is
quickly summoned away, however, as it is needed to
provide aerial views as a crane is shifted from one lo-

cation to another. Quadcopters also coordinate with
each other, with sensors embedded on the site, and
with devices carried by workers to determine where,
when, and how to safely deliver materials exactly when
needed. The quadcopters dynamically form teams as
the tasks demand; a single quadcopter can deliver small
items (e.g., a cup of coffee, a handheld tool), while
multiple quadcopters have to work together and with a
human team to deliver palettes of material.

This scenario may be a bit sci-fi, but while we were writing
this paper both Amazon and Deutsche Post announced their tests
and plans for package deliveries supported by quadcopter drones.
Automation, almost entirely in the form of autonomous robots, is
changing the way we live and work. It is likely that, over the next
few decades, mobile robots will take over many tasks commonly
performed by humans, from the mundane to the more intellectu-
ally taxing [63]. Fundamental research is already in place to sup-
port this, from the sophisticated hardware [64] to algorithms for
control and coordination of individual robots [65] and groups of
robots [66]. Today’s solutions and demonstrations, however, are
almost entirely custom built, while the revolution that we antici-
pate will require general-purpose components and approaches that
enable rapid development and assembly of complete systems. Fur-
ther, while the fundamentals in artificial intelligence that underpin
many robotic coordination and control algorithms can be very so-
phisticated and are often successfully demonstrated in simulation
using large number of autonomous components [67], moving these
same algorithms into real robotic systems brings significant addi-
tional constraints, which result in severely constrained implemen-
tations [68].

Just as software engineers of the future will need to be able to
target applications to the smart personal mobile devices described
in the previous section, they will also need to be able to build soft-
ware that can control fleets of robotic systems. Enabling the de-
velopment of these novel applications will require new tools and
techniques supporting the complexity arising in this domain.

Coordination is clearly a basic necessity of robotic systems, both
internally, as the robots coordinate with each other, and externally,
as the robots coordinate with humans. The former was a key focus
of our vision in 2000:

Coordination is concerned primarily with the mecha-
nisms (usually supplied by the middleware or the oper-
ating system) needed to discover who is around, to ex-
change information, to synchronize actions, etc. This
is why the manner in which mobile components inter-
act with each other becomes an important differentiat-
ing feature among systems that support mobility.

Algorithms for control of fleets of mobile robots have received
significant attention over the last decade, but these efforts have not,
to date, resulted in primitives for more general purpose program-
ming of coordination activities. Coordination of robots with hu-
mans is also gaining attention; this coordination must go beyond
simple game console-style remote control to include natural and in-
tuitive interactions [69], again in ways that are simple to integrate
into a system design.

Enabling these more complex forms of coordination also requires
better representations of the various aspects of the state of the world
and the ability to adequately share these states among the coordi-
nating partners. This challenge is in fact exacerbated when consid-
ering the integration of a human in the loop; the human may make
assumptions about the state of the world that the robot could invali-
date, given the proper abstractions to communicate its accumulated

knowledge about both the state of the environment and its own in-
ternal state [69]. Indeed, another emerging trend is represented by
autonomous vehicles, such as Google self-driving cars [70], which
constitute a new class of self-adaptive systems that interact in un-
known environments with high degree of uncertainty and, at the
same time, with very strict safety requirements.

Finally, it is well-known that verifying and validating these com-
plex and interoperating robotics and, more in general, autonomous
systems in simulation or even in controlled environments is not at
all reflective of their performance “in the wild.” The unexpected
and unpredictable situations that will arise require both developing
for uncertainty and being able to learn about the correctness of the
implementation in situ. In the former case, the software (and to a
more limited extent, the hardware) present on these systems must
be able to self-organize and adapt to changing conditions with a
degree of flexibility that existing self-adaptive middleware do not
support. Recent work has headed in this direction [71], but, again,
these efforts opt for making a very specific application work instead
of investigating the design primitives and programming constructs
that will be needed to support robotic adaptation in general.
Neural interfaces: Your mobile and your brain get together.
Recent advances have enabled brain-controlled prosthetic limbs,
i.e., neural prosthetics [72], related to the previous scenario. How-
ever, more recent visions of neural interfaces go even further.

During the morning lesson at a primary school, an eight
year old boy sits quietly with his smart tablet at his
desk. His severe autism prevents him from interact-
ing with his peers and his teacher through traditional
means. An inconspicuous set of dry electrodes em-
bedded in a headband the boy wears captures EEG sig-
nals that allow him to interact with his tablet; apps on
the tablet help him form relevant conversations, and he
can respond to the teacher’s questions to the class and
his friends’ social interactions in real time. During a
particularly frenzied and active lesson, the teacher re-
ceives a quiet notification on her personal device that
the boy’s level of frustration is rapidly rising, allowing
her to naturally intervene before he loses attention or
his frustration turns into an outburst disrupting learn-
ing.

Brain Computer Interfaces (BCI) are gaining attention in a wide
variety of domains, from providing communication aid for autis-
tic people [73], to monitoring and managing an individual’s cog-
nitive load, especially in the context of dangerous working con-
ditions [74]. In both cases, the goal is enabling behavioral inter-
vention or augmentation, using a variety of computational modali-
ties available, though most often through “smart” devices. As “far
out” as these examples may sound, the technology exists to support
them. For example, using the NeuroPhone and a non-intrusive cap
made of dry electrodes, a user can “think” a smart phone through
the dialing process [75]; a similar cap can differentiate a wearer’s
emotional responses [76].

A major challenge in BCI is that the desire to perform non-
intrusive neural monitoring (for obvious reasons) results in very
low quality and low bit rate information. These signals must there-
fore be aggregated and fused with other context that characterizes
the state of the user and the environment before using it to influence
an application’s behavior. Middleware constructs are necessary to
support this acquisition and aggregation, which will span multiple
devices, both human-borne and embedded in the environment. Per-
haps more importantly, middleware must also offer constructs that
enable an application to internalize the quality of acquired data and

to tailor its responses based on the relative quality of the informa-
tion.

Cleanly and clearly specifying such systems that intertwine the
brain and mobile devices is not straightforward. Existing assets in
the software engineering toolkit are not prepared to deal with the
predominance of the non-functional requirements in these situa-
tions nor the fuzziness of requirements that this integral human ele-
ment entails. That is, even when a system has an obvious and easily
stated “goal,” exactly stating or identifying “correct” or “incorrect”
behavior may be, at best, subjective, and at worst, impossible. The
theme of “fuzziness” continues in the verification and validation of
these systems. Again, in situ approaches must prevail, but the val-
idation of a system that is so dominated by non-functional require-
ments must itself tolerate fuzzy results. Validation approaches here,
then, must match in nature to the specifications of these systems.
The future of (mobile) privacy. Privacy is a key element of the
design of any mobile system. Indeed, mobile applications increas-
ingly collect, store, and share highly personal information. In fact,
as discussed above, the recent progress in mobile sensing has en-
abled new applications that we can define as people-centric [30],
i.e., built around the daily life of people. Most of today’s appli-
cations collect privacy-sensitive information, in particular location
information [77]. Another issue is related to the fact that, increas-
ingly, sensed data are used to extract information about the future
behaviour and context of the users (such as future location) through
machine learning algorithms. Privacy issues are not just related to
the data itself, but also to the additional information that can be
extracted from it [32]. Additional concerns are related to the visu-
alisation and sharing of this privacy-sensitive information.

After cycling to your office, you sit at your desk. The
wall on your right displays information related to your
calorie consumption and your carbon footprint, col-
lected by your phone and other wearable devices. In-
formation about your average heart rate and other he-
alth indicators are also shown. When one of your col-
leagues enters the room, the data items related to your
physical activity are automatically removed from the
wall since they are considered privacy sensitive. In-
stead, the information about your carbon footprint is
displayed against that of your colleague (who came to
the office by car) in order to try to “nudge” his behav-
ior. Your activity data (in anonymized form) is also
sent to a department of your company that tries to un-
derstand the transportation patterns of the employees
to implement a series of green policies.

We believe that the aspects related to the definition of require-
ments, design and testing of privacy-preserving mobile systems
should become a major area of investigation for the software en-
gineering community in the next years. Various approaches can
be taken, such as embracing a privacy-by-design philosophy [39].
We think that an in-depth investigation of the principles at the basis
of these methodologies should be undertaken by our community,
given the fact privacy is a core issue in many mobile applications,
whose presence permeates through the entire development process.
For example, there is a need to formalize privacy requirements by
considering the trade-offs between user privacy and the need to
collect and mine the sensed data. Moreover, explicit tracking of
privacy information exposure is increasingly considered a funda-
mental aspect that should be guaranteed in the design of mobile
systems [78]. The problem is even more complex when concerns
related to differential privacy (i.e., the possibility of using auxiliary
sources for compromising the privacy of people) [79] are taken into

consideration. For example, differential privacy issues emerge in
the design of back-end systems that merge data collected from the
mobile devices and the cellular and WiFi infrastructure with other
databases. A typical example is the cross-correlation between lo-
cation information and geographic databases, which, for instance,
can be used to infer a person’s political or religious orientation.

Another key concern is related to the design of systems that are
privacy-preserving (and secure) but at the same time usable [80].
Dealing with this additional trade-off will be increasingly important
as devices are more and more seamlessly integrated in smart spaces
and pervasive infrastructures [81–84].
The Disappearing Computer—this time for real. Mark Weiser
starts his article “The Computer for the 21st Century” [85] with the
famous sentences:

The most profound technologies are those that disap-
pear. They weave themselves into the fabric of every-
day life until they are indistinguishable from it.

The next step for mobile computing will probably be the disap-
pearance of mobile devices as we know them. Devices will likely
still identify us and allow us to connect to the Internet infrastructure
but their form will be entirely different. There will be an increasing
integration and interaction with the pervasive infrastructure around
us, accompanied by increasing use of shared displays, smart envi-
ronments, and other ambient computing solutions.

You are preparing to go out to work in the morning.
You cannot find your personal universal identifier any-
where. Then, you spot a small object under the chair.
“Found!” you think, as you collect it and put it in your
pocket. And you think that maybe you should get the
bracelet version instead next time. If you lose it again,
it would be very complicated. It would be impossible
to access any of your devices, wearables and screens
at the bus stop, at work or at the gym.

So what about the software engineering challenges for the dis-
appearing computer? We believe that they will be related to the
increasing distribution, heterogeneity, scale, interoperability, or, in
a word, complexity of the existing solutions. The computer will not
really disappear and in reality will fragment into a collection of per-
vasive computing units that will rely on seamless coordination and
communication. Lightweight programming abstractions enabling
impromptu interaction among this plethora of devices will be fun-
damental. At the lower level, interoperability is a major ordeal that
will have to be overcome either through standardized interfaces or
the emergence of a mainstream, dominating solution. Robustness
and failure tolerance will be, as in the past, key elements of these
future computing systems in our opinion, combined with the afore-
mentioned privacy challenges.

4.3 Impact on Software Engineering
The trends and challenges induced by mobile computing nec-

essarily disrupt traditional views of software engineering. A sig-
nificant portion of today’s software systems have some element of
mobility, ubiquity, or sensing; many applications combine all three.
To truly address the inherent challenges that these new paradigms
bring, software engineering must, in many ways, reinvent itself to
follow (and lead) lest principled software engineering be relegated
to irrelevance in the future computing ecosystem.
Requirements and Specification. While our existing tools and
techniques for capturing and expressing artefacts in the early stages
of the software engineering lifecycle should still largely apply, they
must be augmented with new considerations. For instance, con-

sidering the domains described above, it is clear that purely deter-
ministic specifications no longer apply. Humans are such an inte-
gral piece of these systems that the requirements and specifications
must incorporate a significant degree of “fuzziness” while retaining
strong semantic meaning. For similar reasons, in many instances,
non-functional requirements may become predominant.

Traditionally “low-level” concerns will also creep into the re-
quirements and specifications process. Already there in todays pro-
cesses is security. The rise of inexpensive and effectively pervasive
sensing requires the ability to enable applications to provide flexi-
ble specifications of their dependence on sensor data and the man-
ner in which that sensor data (ideally, when available) is connected
to both functional and non-functional system requirements. As we
described in Section 2.3, device and other physical resource con-
straints (most specifically, energy) have become primary concerns.
We must be able to easily specify the desired (and achievable) re-
lationships between application behavior and energy concerns or
device lifetimes.
Design. While we posited in 2000 that disconnected operation
would be a key design element, the availability of ubiquitous con-
nectivity has changed this perspective to one of how best to lever-
age available connected resources given resource constraints. With
respect to software engineering, this demands patterns and architec-
tures that capture common approaches and best practices to address
these concerns within applications. Similarly, differently capable
devices and target environments force software engineers to con-
sider, at design time, uniform application capabilities across plat-
forms and unified user experiences across devices. Coordination
is still a relevant topic for our community, but the focus has in-
deed shifted over the last decade to more practical considerations
driven by application-level protocols. The emerging trends de-
scribed above emphasize a lack of general-purpose inter- and intra-
application coordination; future software engineering design tools
must provide support for flexible, expressive, and context-aware
coordination. Another fundamental question for the software en-
gineering community is a deep analysis of the processes that are
currently adopted by major software companies, such as Google,
Apple, and the like, and smaller ones, including startups, which
might be not completely consistent with the traditional practices
still taught in our University courses. We believe that an in-depth
reflection of these perspectives should be undertaken by researchers
working in this area.
Implementation. One piece of our original vision still holds stro-
ngly: middleware support will be critical to realizing mobile ap-
plications. Showing some similarity, the concept of a “platform
ecosystem” is emerging, and, in the end, in a sense, the iOS and
Android platforms, and some associated toolkits provide limited
middleware-like capabilities, e.g., specifically w.r.t. supporting ac-
cess to on-board sensors. Following this lead, and supporting the
trends described above, middleware for mobile computing must
emphasize support not only for communication and coordination
but also for sensing. This must go beyond the current toolkit capa-
bilities of accessing the device’s sensors to connecting to location-
dependent resources available in the immediate environment. Fu-
ture systems will also provide high-level information extracted from
the context, such as the current activity of a person or his/her friends.
Middleware is also important in its ability to aid developers in cre-
ating software for multiple platforms without having to maintain
multiple parallel native versions. This dovetails with the above mo-
tivation to unify the requirements and specifications of applications
and users’ experiences across platforms and devices.
Verification and Validation. Testing mobile computing systems

and applications in one sense has not changed at all in the past
decade and in another sense is radically different. The pervasive-
ness of mobile applications, especially in mission critical deploy-
ments, still demands rigorous approaches to verification and vali-
dation, and, at the unit level, these efforts may be well supported by
existing tools and techniques. However, at the integrated level, we
have entered an entirely new realm of software verification. Mo-
bile applications and systems of tomorrow will almost certainly
encounter situations “in the wild” that were simply unforeseeable,
whether because the human is unpredictable, unexpected sensed
values are input, or the application component encounters and co-
ordinates with new components that were not even conceived of
when the system was constructed. This is even more true as we
consider wearable or implantable devices; no two human bodies
or environments are identical, so accounting for every possible de-
ployment without actually deploying the software is impossible.
We must develop testing approaches that provide the ability to test
(and ideally fix) mobile software in situ based on an individual ex-
ecution. These test results must also be shared and applied to other
(running) instances of the same (or similar) software.

As the requirements of these systems become “fuzzy” as de-
scribed above, checking correctness in a traditional sense may not
even be possible, or desirable; we touched on this previously in
discussing that, in many emerging mobile computing domains, it
may be impossible to even clearly identify “correct” behavior ob-
jectively. This is not to say that these systems are untestable, but
our tools and techniques need new semantics that still enable rea-
soning about the desired function of the mobile system.
Maintenance and Deployment. Deployment of mobile applica-
tions in the future is likely to be driven by app stores, which en-
able software developers to make their software rapidly and widely
available. This is a boon in lowering the barrier to enter the soft-
ware market, but it exacerbates at least the previous discussion in
verifying software systems since it is difficult to guarantee the qual-
ity of the software in this distribution model. While the software
may be “safe” (and validated as such by the app store owner), it
may not perform as expected or have available the necessary re-
sources (e.g., in terms of physical device capabilities or in terms of
data or sensor information).

Sensing capabilities on a user’s device are one thing, but an-
other challenge is managing a vision of “smart spaces” in which
a plethora of sensing devices is dispersed in our environments. We
need generalized support to deploying and maintaining these capa-
bilities; these issues connect to the middleware concerns above that
will enable the myriad applications and mobile devices to access
these sensors and their data.

While we generally think in terms of individual apps, we could
also envision macro-applications that can effectively self-assemble
out of components; when a different set of components comes to-
gether, different functionality or different quality is enabled. This
demands the development of pluggable frameworks that can sup-
port these dynamic and unpredictable component connections.

Even as we discuss these issues along the traditional lines of the
software engineering lifecycle, it becomes clear that the lines are
ever more blurred when one considers the domain of mobile com-
puting. Siloed views of “areas” within software engineering may
need to be reconsidered or at least punctured to allow for these con-
cerns to seep from maintenance and deployment to middleware or
from design to verification in untraditional ways.

5. IS THE COMMUNITY INTERESTED?
We close our time travel in the past and the future of software en-

all "mobil" %
before 1995 2664 1 0.04%
1995-1997 537 4 0.74%
1998-2000 766 19 2.48%
2001-2003 853 21 2.46%
2004-2006 984 9 0.91%
2007-2009 794 8 1.01%
2010-2012 1173 5 0.43%

Table 2: Number of papers whose title contains the string
"mobil" (accounting for both "mobile" and "mobility") pub-
lished in flagship software engineering venues (TSE, TOSEM,
ICSE, ASE, ESEC/FSE).

gineering for mobility by asking ourselves an important question:
is mobility as a topic still able to capture the interest of the software
engineering community?

As we previously mentioned, mobility was definitely a popular
topic when we wrote our original paper. Nevertheless, when writ-
ing this paper we all shared the same impression that the topic had
somehow faded away.

Without the pretence to be exhaustive, here we offer a few quan-
titative facts based on a simple analysis of the papers10 published in
five flagship software engineering venues from 1975 to 2012: IEEE
Trans. on Software Engineering (TSE), ACM Trans. on Software
Engineering and Methodology (TOSEM), IEEE/ACM Int. Conf. on
Software Engineering (ICSE), IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE), and SIGSOFT Int. Symp. on Foun-
dation on Software Engineering (FSE) and the European Software
Engineering Conf. (ESEC). We determine the presence of mobil-
ity as a topic by counting the number of papers whose title con-
tains the string "mobil", thus accounting for both "mobile" and
"mobility". We focused only on the paper title because the dataset
does not contain abstracts for all papers.

Table 2 shows the results. This analysis, albeit simple and with
its own limitations, appears to confirm our aforementioned impres-
sion. Mobility was essentially unmentioned before 1995. However,
it then rapidly surged in popularity, reaching a peak in the period
1998-2003: our paper was published in the middle of this “golden
period”. After 2003, mobility became significantly less present in
these venues, both in absolute (i.e., number of papers) and relative
terms.

There are a number of potential explanations for this observa-
tion. In part, this can be ascribed to the fact that, as mentioned
in Section 2.3, the research community at large lost interest in log-
ical mobility. Digging into the dataset confirms that, after 2003,
“mobile” papers focusing on logical mobility are quite rare. Never-
theless, this alone cannot explain the dwindling numbers. After all,
the iPhone was released in 2007, and the rise of ubiquitous connec-
tivity began even before that.

One could conclude that, for whatever reason, the software engi-
neering community has not been really engaged in what may well
be one of the turning points of information technology. To add to
the negativity of this remark, we also note that mobility is not the
only casualty of this attitude. Other related topics that flourished
over the last decade (e.g., pervasive computing, wireless sensor net-
works) had an even more sparse presence at flagship software en-
gineering venues11. We do not know why the software engineering

10Many thanks to Carlo Ghezzi and Mario Sangiorgio for making
the raw publication data available to us.

11A query for pervasive OR ubiquitous OR ambient
intelligence returns 12 entries (all in 2005–2012), while a

2010 2011 2012
mobil* 1 0 4
Android 0 0 4
phone 0 0 1
Total 1 0 9

Table 3: Distribution in the last three years and for different
keywords, for papers published in the same venues as Table 2.

community did not take a more active part in these research topics.
We speculate that this may be due to the fact that many of the inher-
ent challenges in these fields entail low-level system issues, which
our community has a tendency to sweep under the rug of some
layer of abstraction—as we ourselves did, as noted in Section 2.3.
A possible confirmation for this consideration can be found by an-
alyzing the presence of papers concerned with middleware, a topic
that is arguably at the crossroads of software engineering and sys-
tems research and that constitutes one of the main challenges in
mobility as well, as noted earlier. A search for “middleware” re-
turns 18 entries in the 6-year period 2001–2006, and only 4 entries
in 2007–2012. This significant reduction could be attributed to the
software engineering community losing interest in these topics but
also to the desire of software engineering researchers to publish
into the flagship venues specific to these topics. We do not have
enough elements to concretely support either hypothesis. The bot-
tomline, however, is that the flagship software engineering venues
are increasingly losing contact not only with mobility, but also with
other system-oriented topics that are thriving in computing at large.

On the other hand, it is also possible that the analysis above tells
only one part of the story and that we may actually be on the verge
of a new golden period for mobility. Table 3 shows, for the same
venues, a “zoomed in” view of the last 3-year period, considering
additional keywords related to smartphone devices. Two observa-
tions can be made. First, after two years (2010 and 2011) in which
mobility essentially disappeared from the radar of software engi-
neering, in 2012 alone there were a total of 9 papers related to
mobility topics, which is more than in each of the two preceding
3-year periods. Second, the two additional keywords we consid-
ered, “phone” and “Android”, both appeared for the first time12 in
2012. Of course, it would be a stretch to extrapolate a long-term
trend based on such a small sample. Despite the obvious limited
statistical significance, this data points to the fact that some em-
phasis on mobility is returning, although mostly constrained to the
devices themselves, rather than their distributed interaction.

Only time will tell if indeed these are signs of a renewed interest
of the software engineering community for the topic of mobility, or
are instead nothing more than outliers. Given the challenges and
scenarios we outlined, our hopes are on the former: the stakes are
simply too high for the software engineering community to ignore
the game.

6. CONCLUSIONS
The rate of change in mobile computing and communications is

unlikely to slow down. Therefore, nowadays, making predictions
about the future of this area is even more difficult. Nevertheless, the
lessons learned by examining retrospectively why forecasts missed
the mark might provide valuable insights in terms of factors that
must be given increased significance in the future agenda of the

query for sensor returns 2 entries (in 2011–2012).
12The keyword “phone” appeared in 1993 and 1996, but in relation
to telephone switches.

research community. In an interconnected world and at a time in
history when we recognize the importance of multidisciplinary ap-
proaches in solving complex problems, we should not be surprised
by the tight integration of technology, business, social, and psy-
chological concerns that seems to characterize mobility as a field
of study. The real question is how will the software engineering
community become a major player in this exciting field.

7. REFERENCES
[1] G.-C. Roman, G.P. Picco, and A.L. Murphy. Software

Engineering for Mobility: A Roadmap. In Finkelstein [2].
[2] A. Finkelstein, editor. The Future of Software Engineering.

ACM Press, 2000.
[3] A. Carzaniga, G.P. Picco, and G. Vigna. Is Code Still

Moving Around? Looking Back at a Decade of Code
Mobility. In Proc. of ICSE, 2007.

[4] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Trans. on Software Engineering (TSE),
24(5), 1998.

[5] S. Nath. ACE: Exploiting correlation for energy-efficient and
continuous context sensing. In Proc. of MobiSys, 2012.

[6] N. Roy, A. Misra, C. Julien, S.K. Das, and J. Biswas. An
energy-efficient quality adaptive framework for multi-modal
sensor context recognition. In Proc. of PerCom, 2011.

[7] L. Mottola and G.P. Picco. Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art. ACM
Computing Surveys, 43(11), 2011.

[8] P. Costa, L. Mottola, A.L. Murphy, and G.P. Picco.
Programming Wireless Sensor Networks with the
TeenyLIME Middleware. In Proc. of Middleware, 2007.

[9] A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A
Coordination Model and Middleware Supporting Mobility of
Hosts and Agents. ACM Trans. on Software Engineering and
Methodology (TOSEM), 15(3), 2006.

[10] M. Ceriotti, L. Mottola, G.P. Picco, A.L. Murphy, S. Guna,
M. Corrà, M. Pozzi, D. Zonta, and P. Zanon. Monitoring
Heritage Buildings with Wireless Sensor Networks: The
Torre Aquila Deployment. In Proc. of IPSN, 2009.

[11] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi,
D. Facchin, S. Guna, G.P. Jesi, R. Lo Cigno, L. Mottola, A.L.
Murphy, M. Pescalli, G.P. Picco, D. Pregnolato, and
C. Torghele. Is There Light at the Ends of the Tunnel?
Wireless Sensor Networks for Adaptive Lighting in Road
Tunnels. In Proc. of IPSN, 2011.

[12] L. Cardelli and A. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1), 2000.

[13] J.E. White. Telescript Technology: Mobile Agents. In
Software Agents. AAAI Press/MIT Press, 1996.

[14] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Mobile networking
for smart dust. In Proc. of MobiCom, 1999.

[15] F. X. Lin, A. Rahmati, and L. Zhong. Dandelion: a
framework for transparently programming phone-centered
wireless body sensor applications for health. In Proc. of
Wireless Health, 2010.

[16] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone,
J. Van Orden, and G. Borriello. Open data kit sensors: a
sensor integration framework for android at the
application-level. In Proc. of MobiSys, 2012.

[17] G.P. Picco. Software Engineering and Wireless Sensor
Networks: Happy Marriage or Consensual Divorce? In Proc.
of the FSE/SDP Workshop on the Future of Software

Engineering Research (FoSER’10), co-located with the 18th

ACM Int. Symp. on the Foundations of Software Engineering
(FSE), 2010.

[18] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An
empirical study of geographic user activity patterns in
Foursquare. In Proc. of ICWSM, 2011.

[19] N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A.T. Campbell. A Survey of Mobile Phone Sensing.
IEEE Communications Magazine, 48, 2010.

[20] L. Mottola and G.P. Picco. Programming wireless sensor
networks: Fundamental concepts and state of the art. ACM
Computing Surveys (CSUR), 43(3), 2011.

[21] C. Lee, D. Nordstedt, and S. Helal. Enabling smart spaces
with osgi. IEEE Pervasive Computing, 2(3), 2003.

[22] E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S.B. Eisenman, X. Zheng, and A.T. Campbell.
Sensing meets mobile social networks: the design,
implementation and evaluation of the cenceme application.
In Proc. of SenSys. ACM, 2008.

[23] J. Kukkonen, E. Lagerspetz, P. Nurmi, and M. Andersson.
Betelgeuse: A platform for gathering and processing
situational data. IEEE Pervasive Computing, 8(2), 2009.

[24] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda. Peir, the
personal environmental impact report, as a platform for
participatory sensing systems research. In Proc. of MobiSys,
2009.

[25] Android Developers. Recognizing the user’s current activity.
http://developer.android.com/training/location/

activity-recognition.html.
[26] N. Lathia, V. Pejovic, K. Rachuri, C. Mascolo, M. Musolesi,

and P.J. Rentfrow. Smartphones for large-scale behaviour
change intervention. IEEE Pervasive Computing, 12, 2013.

[27] B. Priyantha, D. Lymberopoulos, and J. Liu. Littlerock:
Enabling energy-efficient continuous sensing on mobile
phones. IEEE Pervasive Computing, 10(2), 2011.

[28] K.K. Rachuri, C. Efstratiou, I. Leontiadis, and C. Mascolo.
METIS: Exploring mobile phone sensing offloading for
efficiently supporting social sensing applications. In Proc. of
PerCom, 2013.

[29] A. McCallum, K. Schultz, and S. Singh. Factorie:
Probabilistic programming via imperatively defined factor
graphs. In Proc. of NIPS, 2009.

[30] A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A.
Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S.
Ahn. The rise of people-centric sensing. IEEE Internet
Computing, 12(4), 2008.

[31] G. Chittaranjan, J. Blom, and D. Gatica-Perez. Mining
large-scale smartphone data for personality studies. Personal
and Ubiquitous Computing, 17(3), 2013.

[32] M. Musolesi. Big Mobile Data Mining: Good or Evil? IEEE
Internet Computing, 2014.

[33] T. Hunter, R. Herring, P. Abbeel, and A. Bayen. Path and
travel time inference from GPS probe vehicle data. NIPS
Wkshp. on Analyzing Networks and Learning with Graphs,
2009.

[34] D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabasi,
D. Brewer, N. Christakis, N. Contractor, J. Fowler,
M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and
M. Van Alstyne. Computational social science. Science,
323(5915), 2009.

[35] A. Pentland. Honest signals. MIT press, 2010.
[36] M. Berlingerio, F. Calabrese, G. Di Lorenzo, R. Nair,

F. Pinelli, and M. L. Sbodio. AllAboard: A system for
exploring urban mobility and optimizing public transport
using cellphone data. In Machine Learning and Knowledge
Discovery in Databases. Springer Berlin Heidelberg, 2013.

[37] A. Lima, M. De Domenico, V. Pejovic, and M. Musolesi.
Exploiting Cellular Data for Disease Containment and
Information Campaigns Strategies in Country-wide
Epidemics. In Proc. of NetMob, 2013.

[38] T. Berners-Lee, J. Hendler, O. Lassila, et al. The Semantic
Web. Scientific American, 284(5), 2001.

[39] M. Langheinrich. Privacy by design principles of
privacy-aware ubiquitous systems. In Proc. of UbiComp.
Springer, 2001.

[40] J. Wang and D. Katabi. Dude, where’s my card?: RFID
positioning that works with multipath and non-line of sight.
In Proc. of SIGCOMM, 2013.

[41] Y. Rogers. Moving on from Weiser’s Vision of Calm
Computing: Engaging Ubicomp Experiences. In Proc. of
UbiComp. Springer, 2006.

[42] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender Systems Handbook.
Springer, 2011.

[43] M. Hazas, J. Scott, and J. Krumm. Location-aware
computing comes of age. Computer, 37(2), 2004.

[44] J. Lindqvist, J. Cranshaw, J. Wiese, J. Hong, and
J. Zimmerman. I’m the mayor of my house: examining why
people use foursquare-a social-driven location sharing
application. In Proc. of CHI. ACM, 2011.

[45] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic execution between mobile device and
cloud. In Proc. of EuroSys, 2011.

[46] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
smartphones last longer with code offload. In Proc. of
MobiSys, 2010.

[47] K. Kumar and Y.-H. Lu. Cloud computing for mobile users:
Can offloading computation save energy? IEEE Computer,
43(4), 2010.

[48] M. Pitkänen, T. Kärkkäinen, Jörg Ott, M. Conti,
A. Passarella, S. Giordano, D. Puccinelli, F. Legendre,
S. Trifunovic, K. Hummel, M. May, N. Hegde, and
R. Spyropoulos. SCAMPI: Service platform for social aware
mobile and pervasive computing. ACM SIGCOMM
Computer Communication Review, 42(4), 2012.

[49] L. Buechley. A Construction Kit for Electronic Textiles. In
Proc. of ISWC. IEEE, 2006.

[50] M. Hamedi, R. Forchheimer, and O. Inganäs. Towards woven
logic from organic electronic fibres. Nature materials,
6(5):357–362, 2007.

[51] M. Firtman. Programming the Mobile Web. O’Reilly, 2013.
[52] A. Popescu. Geolocation API Specification. W3C Candidate

Recommendation, 2013.
[53] G. Blair and P. Grace. Emergent middleware: Tackling the

interoperability problem. IEEE Internet Computing, 16(1),
2012.

[54] A. Holzinger, P. Treitler, and W. Slany. Making apps useable
on multiple different mobile platforms: On interoperability
for business application development on smartphones. In
Multidisciplinary Research and Practice for Information

Systems. Springer, 2012.
[55] A. Holzer and J. Ondrus. Trends in mobile application

development. In Mobile Wireless Middleware, Operating
Systems, and Applications-Workshops. Springer, 2009.

[56] V. Pejovic and M. Musolesi. Anticipatory mobile computing:
A survey of the state of the art and research challenges.
arXiv:1306.2356 [cs.HC], 2013.

[57] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen,
A. Campbell, and T. Choudhury. Preference, context and
communities: A multi-faceted approach to predicting
smartphone app usage patterns. In Proc. of ISWC, 2013.

[58] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app
launching for mobile devices using predictive user context.
In Proc. of MobiSys, 2012.

[59] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas. PocketWeb: Instant web browsing for mobile
devices. In Proc. of ASPLOS, 2012.

[60] A. Campbell and T. Choudhury. From smart to cognitive
phones. IEEE Pervasive Computing, 11(3), 2012.

[61] S. Han and M. Philipose. The case for onloading continuous
high-datarate perception to the phone. In Proc. of HotOS,
2013.

[62] R. de Lemos, H. Giese, H.A. Müller, and M. Shaw. Software
engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems
II, volume 7475 of Lecture Notes in Computer Science, 2013.

[63] K. Kelly. Better than human: Why robots will—and
must—take our jobs. Wired, 2012.

[64] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter.
BigDog, the rough-terrain quadruped robot. In Proc. of
IFAC, 2008.

[65] W. Bluethmann, R. Ambrose, M. Diftler, S. Askew,
E. Huber, M. Goza, F. Rehnmark, C. Lovchik, and
D. Magruder. Robonaut: A robot designed to work with
humans in space. Autonomous Robots, 14(2–3), 2003.

[66] J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea,
F. Gramazio, and M. Kohler. Aerial robotic construction:
Towards a new field of architectural research. Int. Journal of
Architectural Computing, 10(3), 2012.

[67] K. Dresner and P. Stone. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research, 31, 2008.

[68] T.-C. Au, C.-L. Fok, S. Vishwanath, C. Julien, and P. Stone.
Evasion planning for autonomous vehicles at intersections.
In Proc. of IROS, 2012.

[69] J. Casper and R.R. Murphy. Human-robot interactions during
the robot-assisted urban search and rescue response at the
world trade center. IEEE Transactions on Systems, Man, and
Cybernetics, 33(3), 2003.

[70] E. Guizzo. How Google’s Self-driving Car Works. IEEE
Spectrum Online, 18, 2011.

[71] R. Oung and R. D’Andrea. The distributed flight array:
Design, implementation, and analysis of a modular vertical
take-off and landing vehicle. Int. Journal of Robotics
Research, 2013.

[72] A.B. Schwartz, X.T. Cui, D.J. Weber, and D.W. Moran.
Brain-controlled interfaces: Movement restoration with
neural prosthetics. Neuron, 52(1), 2006.

[73] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, and
G. Pfurtscheller T.M. Vaughan. Brain-computer interfaces
for communication and control. Clinical Neurophysiology,

113, 2002.
[74] B.S. Moon, H.C. Lee, Y.H. Lee, J.C. Park, I.S. Oh, and J.W.

Lee. Fuzzy systems to process the ECG and EEG signals for
quantification of the mental workload. Information Sciences,
142(1–4), 2002.

[75] A. Campbell, T. Choudhury, S. Hu, H. Lu, M.K. Mukerjee,
M. Rabbi, and R.D.S. Raizada. NeuroPhone: Brain-mobile
phone interface using a wireless EEG headset. In Proc. of
MobiHeld, 2010.

[76] M.K. Petersen, C. Stahlhut, A. Stopczynski, J.E. Larsen, and
L.K. Hansen. Smartphones get emotional: Mind reading
images and reconstructing the neural sources. In Proc. of
ACLI, 2011.

[77] A.R. Beresford and F. Stajano. Location privacy in pervasive
computing. Pervasive Computing, IEEE, 2(1), 2003.

[78] W. Enck, P. Gilbert, B.-G. Chun, L.P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of OSDI, 2010.

[79] C. Dwork. Differential privacy. In Automata, languages and
programming. Springer, 2006.

[80] E. Kaasinen. User needs for location-aware mobile services.
Personal and Ubiquitous computing, 7(1), 2003.

[81] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8(4), 2001.

[82] X. Jiang and J.A. Landay. Modeling privacy control in
context-aware systems. IEEE Pervasive Computing, 1(3),
2002.

[83] R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and
M.D. Mickunas. Towards security and privacy for pervasive
computing. In Software Security Theories and Systems.
Springer, 2003.

[84] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M.D.
Mickunas. Cerberus: a context-aware security scheme for
smart spaces. In Proc. of PerCom, 2003.

[85] M. Weiser. The computer for the 21st century. Scientific
American, 265(3), 1991.

