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A B S T R A C T

Machine Learning (ML) is increasingly accessible to users with limited knowledge of its theoretical foundations.
However, misapplying it can lead to negative consequences. This paper reports on a qualitative study designed
to reveal challenges that novices encounter when learning about basic ML concepts and building their
first models. Twenty participants were introduced to fundamental ML concepts for classification through
an interactive tutorial involving an off-the-shelf GUI application, built their own ML model for a shape
gesture dataset, and participated in a semi-structured interview. A thematic analysis revealed insights into
these challenges, particularly around problem selection and multi-dimensionality, but also around what
constitutes ML, algorithm selection, cross-validation, and interpreting visualizations. Despite these and other
misconceptions, participants reflected on good model building practices, discussing that algorithm selection
might require knowledge and context and that input features may introduce bias. We discuss the findings’
implications for the design of ML tools for novices.
1. Introduction

Machine Learning (ML) is being used in an increasing number of
domains, such as cyber-security, diagnosing disease, document clas-
sification, and language translation (Mitchell, 2019; Barreno et al.,
2010; Koller and Sahami, 1997; Srividya et al., 2018). The proliferation
of AutoML tools and GUI’s such as KNIME (Berthold et al., 2009),
RapidMiner (Hofmann and Klinkenberg, 2016), and Orange (Demšar
et al., 2013) allow novices to apply their own models even with limited
theoretical knowledge of ML (Carney et al., 2020). This opens them up
to the risks of misapplying ML, for example, through building models
with biased outcomes for marginalized groups (Angwin et al., 2016;
Noble, 2018; Keyes, 2018). Although programs built by experienced
ML practitioners can also fall foul of such outcomes, those without any
formal training in ML are more likely to experience challenges when
designing or using ML applications, as they have limited knowledge of
the theoretical foundations and the practical implications of using these
techniques (Patel et al., 2008a; Amershi et al., 2014; Yang et al., 2018).

We therefore present a qualitative study designed to shine light
on the challenges novices in ML encounter when applying ML in
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an interactive environment, with implications to the design of ML
tools for novices. Prior research investigating ML challenges identified
challenges that more experienced ML users face (Patel et al., 2008b,a;
Amershi et al., 2019; Yang et al., 2018; Veale et al., 2018), the difficul-
ties a lay user might face when interacting with ML applications (Rader
and Gray, 2015; Sanchez et al., 2021; Oh et al., 2020), or around
children’s understanding of ML concepts (Hitron et al., 2019; Touretzky
et al., 2019). Instead, this work aims to introduce fundamental concepts
required for building classification models to novice ML users.2 It also
examines the difficulties that these novices encounter as they learn
about ML.

Twenty volunteers interested in learning and applying ML took part
in our study. They were introduced to ML concepts through a take-
home tutorial designed to be completed within two hours. The tutorial
was iteratively designed and centered around a widely used graphical
user interface (GUI) application for ML. This application served as a
tool to uncover insights related to the practical implementation of ML
concepts and provided interactivity. Participants demonstrated under-
standing through a series of questions and exercises; by building their
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own ML model for a shape gesture dataset; and through a subsequent
semi-structured interview that introduced participants to a real-world
bike sharing scheme dataset. The researchers then analyzed participant
responses using thematic analysis techniques to identify the difficulties
encountered by participants. Specifically, we address the following
research question: what challenges do ML novices encounter when
learning and applying ML?

The thematic analysis revealed insights into ML challenges partici-
ants experienced, such as problem selection and multi-dimensionality

of both algorithms and data, but also around what constitutes ML,
algorithm selection, cross-validation, and interpreting visualizations.

espite challenges and misconceptions, participants reflected on good
odel building practices, discussing how algorithm selection requires

nowledge and context, input features can introduce bias, and the
mportance of trust in an algorithm. We offer three key contributions.
ur first contribution is a series of findings that illustrate the various
hallenges that novices in ML face when learning and applying ML.
econdly, a series of misconceptions of what ML can do, showing the
isks of misapplying ML. For example, participants misunderstood ML
odels to be less biased than humans, or they stumbled on problem

election, expecting ML to solve hard problems rather than mundane,
epetitive tasks. Our third contribution is a series of implications for
he design of ML tools for novices. This includes guiding novices
o solve simpler problems using simpler algorithms that can achieve
imilar performance to more complex algorithms, while being easier to
nderstand and providing explainable outputs.

2. Related work

Relevant research exists on understanding the challenges faced by
L users, on how novice users engage with ML through interactive ML

IML) tools and on ML explanations that facilitate model building. We
review this work below.

2.1. Understanding the challenges of ML for users

Previous studies on the use of ML by researchers identified three
major challenges both when creating models and when interacting with
them (Patel et al., 2008a,b; Amershi et al., 2019): (1) a difficulty in un-
derstanding and applying iterative exploration processes when creating
models; (2) a lack of understanding of ML concepts, especially for those

ho are not mathematically trained; and (3), a difficulty in evaluating
model performance. In addition, prior work has investigated the current
approach of algorithmic fairness for ML practitioners in public sector
ecision-making, finding a disconnect between organizational needs
nd current ML building practices, such as how domain experts should
e modifying their ML models to account for changes in the data over
ime (Veale et al., 2018). While this previous research focused on
oftware developers already experienced with applying ML, our work
ims to identify the challenges, both similar and different, that novice
sers without any hands-on ML experience face when learning and
pplying ML.

Substantial research has investigated the challenges faced by less
xperienced users when interacting with ML applications, such as how

a general lay audience understands the Facebook news feed algo-
rithm (Rader and Gray, 2015). Research conducted by Oh et al. (2020)
ooked at how different kinds of users (ML experts, domain experts

and lay users) reason about AI algorithm results, showing that their
understanding of the model depended on their own field of knowledge,
and when users struggled to understand the steps of the algorithm,
there was a wider gap between how users think the AI will predict and
how it actually predicts (Oh et al., 2020). Work by Sulmont et al. (2019)
ound that novices could be taught how algorithms function, but that

they struggled with higher-level design decisions when constructing
odels. However, the ML novices in these studies did not get to build

heir own models, therefore having no agency in the training process.
2 
Another challenge identified by prior work is that novices rely solely
n accuracy measures of output to determine whether the selected

algorithm is a good fit for the dataset (Krause et al., 2016; Yang et al.,
2018), leading to the deployment of problematic models (Yang et al.,
2018). This is partly due to the ease of using summary accuracy statis-
tics that often obscure important information about a model’s behavior,

hich creates a dissociation between performance and data, leading to
ractitioners taking a trial-and-error approach to model building (Ren

et al., 2016). A proposed solution to debugging models beyond sum-
ary statistics is to visualize the error distributions, as it can reveal
isleadingly high accuracies in skewed datasets (Ren et al., 2016). For

instance, a practitioner can use a visualization from Squares (Ren et al.,
2016) to observe that although a naive Bayes model and a random
orest model both achieve the same accuracy, the random forest model
ay produce many predictions with nearly equal probabilities across
ultiple classes. This means a small change in the input could cause
 true prediction to become false, suggesting the naive Bayes model
ay be more robust in this case. Sanchez et al. (2021) investigated lay

users’ fine-tuning of a neural network for classifying sketches, finding
hat participants adopted diverse strategies, but that understanding the

fundamental properties of neural networks was a challenge. In contrast,
our work exposes novice users to a wider array of ML concepts, such
as train/test split, cross-validation and parameter selection. These users
are then guided through the model building process using four com-

only employed simple classification algorithms (Yang, 2018). This
approach is taken because simpler algorithms often achieve comparable
performance to more complex algorithms on structured data (Rudin,
2019).

2.2. Interactive ML and machine teaching

IML tools enable users to create their own ML models without
requiring any programming knowledge or understanding of ML algo-
ithms, thereby making ML accessible to novice users (Amershi et al.,

2011). Fails and Olsen asserted the importance of human involvement
in providing training data and proposed an interactive system that
allows users to train, classify, and correct classifications in a real-
time iterative loop (Fails and Olsen, 2003), known as IML (Interactive
ML). Some examples of IML tools and research that have emerged
in recent years include: Weka, which provides a GUI for ML (Hall
et al., 2009); Wekinator (Fiebrink and Cook, 2010), an application that
lets users record music gestures as input to an ML model; TensorFlow
Playground, designed to teach novices about neural network behavior
through hands-on interaction (Hohman et al., 2018); platforms like
Lobe (Microsoft, 2020) and Elements of AI (Heintz and Roos, 2021),

hich are interactive tools enabling ML novices to create basic models;
imple ML for Sheets (Guillame-Bert et al., 2022), which integrates

ML capabilities into Google Sheets without requiring ML knowledge
or coding; the Teachable Machine project (Carney et al., 2020), which
xplains ML concepts to users as they build models and has been
ffective in teaching ML to children (Vartiainen et al., 2020); Mar-

celle (Françoise et al., 2021), a tool for creating IML toolkits; and
isualization tools such as CNN Explainer for understanding neural
etworks (Wang et al., 2020), visualizations showing how recurrent

neural networks store information (Madsen, 2019), and AI-designed
user interfaces (Carter and Nielsen, 2017). We chose Weka’s GUI (Hall
et al., 2009) as a way to investigate the needs and challenges of ML
novices in our study. This decision allowed us to create a tutorial
introducing essential ML concepts, whilst Weka’ interactive interface
nabled participants to practically build models without requiring any
rogramming knowledge.

Prior research has leveraged IML tools and GUIs to study user
nteraction with ML, providing insights for the design of these tools.
iebrink et al. used Wekinator (Fiebrink and Cook, 2010) to explore
ow musicians train a model through recording audio samples and

other gestures as input (Fiebrink et al., 2009). After manually labeling
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a few input samples, the user-selected algorithm classified the rest
of the inputs using the model trained on the training set created by
participants. This research demonstrated the practical advantages of
IML tools, such as the automated classification of audio samples which
can save musicians significant time. While this study explores model
building by novices, its topical focus on the transcription of musical
sounds resulted in many fundamental ML concepts being left out, whilst
the training set was small, given that it was manually created by
participants. Researchers have used IML tools to observe how children
engage with ML, with work by Touretzky et al. proposing five key ML
concepts that children should understand as they interact with ML,
including maintaining simple representations of the world and that ML
algorithms learn from data (Touretzky et al., 2019). A study involving
the widely used Scratch platform (Resnick et al., 2009) had children
se the GUI to build their own applications. The researchers found
hat equipping users with data science skills enabled them to create
nalyses that better suited their needs (Dasgupta and Hill, 2017), as

a significant portion of building ML models involves data processing.
Another study around children’s interaction with an IML tool found
that the best understanding comes from direct experience in interacting
with the system and that black-boxing too many processes is like black-
boxing all of them (Hitron et al., 2019). There is also research being
conducted around interactive machine teaching, which permits lay
users or domain experts to build their own ML models by directly
involving and guiding them in the process (Ramos et al., 2020). For
xample, Ramos et al. (2020) built an integrated teaching environment
esigned to observe how novice users can build an image recognition
odel for postal addresses, finding that employing intrinsic human

apabilities (judgment, insight, foresight, and sensemaking) within the
nteractive machine teaching process helps domain experts build ML
odels. Similarly, work by Martins and Von Wangenheim (2023) found

that high school students were able to successfully apply basic ML
concepts using a hands-on approach to learning, confirming the benefits
of IML tools for teaching. Our work explores learning by doing (Schank
t al., 1999) with adult novices, observing how they apply core ML
oncepts using an IML tool, without abstracting key model building
teps, to identify the challenges they face.

2.3. ML explanations

There is a significant body of work in explainable AI that focuses
on providing users with interpretable outputs that help them improve
a system’s performance, and explanations that help users understand
why they are getting a specific output. The widening gap between
theory and practice in XAI, due to the diversity of methods and tech-
niques, complicates method selection for novice users, as highlighted
by Retzlaff et al. (2024), who provide design guidelines for method
selection in their study. Prior research into the efficacy of explanations
that help users understand a model’s output has shown that answering
why and why not questions can improve intelligibility for the end-
user (Lim et al., 2009). Researchers tested how to provide explanations
with Laksa (location, activity, connectivity, social awareness) (Lim and

ey, 2011), a context-aware mobile app that uses various features
e.g., calendar data, phone sensor data) to determine whether a work
olleague is available for a meeting. The authors also found that, to
educe users’ frustration, it was important to only provide explanations
f users can leverage that information and change their behavior (Lim
nd Dey, 2011), a finding confirmed by Kulesza et al. (2015). However,

Laksa itself is non-interactive: users are unable to modify any parts
f the data pipeline, such as the algorithms used, the inputs, and the

outputs. Past research has looked at the effect on mental model sound-
ness of how an intelligent agent works when users are provided ML
explanations in the form of a training program (Kulesza et al., 2012).
The authors found a strong link between mental model soundness and
user understanding, and that even a short training program helped
improve participants’ mental models of how the system works.
3 
3. Study design

To address the research question on the challenges faced by ML
novices when learning about ML, a remote qualitative study was de-
igned. The method is outlined below.

3.1. Participants

The study recruited twenty participants using a two-pronged ap-
proach: an initial recruitment was done by distributing a call for
participants through mailing lists in departments where learning and
applying ML might be of interest, such as Information Studies, Geog-
raphy, and Psychology. To recruit novices, departments where ML is a
prominent topic were intentionally avoided. The participant pool was
then expanded through snowball sampling, leveraging word-of-mouth
referrals from previous study participants. In a bid to attract partic-
ipants who were genuinely interested in learning about ML, we did
not offer compensation. Given our recruitment strategy, we attracted
participants who wanted to learn the basics of ML, and who wanted
to apply ML to their own work. To ensure we recruited participants
who were novices of ML, the consent form asked participants to con-
firm they did not fall under the exclusion criteria of the study. This
meant participants could not have any hands-on experience with ML,
including the use of GUI’s like Weka that help build ML solutions.
Specifically, participants had to confirm they had not taken any for-
credit courses in ML, or had experience in applying ML algorithms,
whether in a workplace setting or for personal use. Please refer to
Table 1 for a summary of participants, including their education level,
technical background and current occupation.

This cohort, though highly educated, had no prior knowledge of
ML according to our exclusion criteria, whilst possessing relevant skills
e.g., within statistics and data analysis) that would make them suitable
o learn and apply ML within a study of two hours. While the mathe-
atical concepts covered in the tutorial were designed for individuals
ith a high school-level understanding, six participants discussed how

heir familiarity with statistical concepts like probability distributions,
uclidean distances, and false positives/negatives provided them with

a grounding that eased their learning of ML in the study. Another two
articipants discussed how their prior work as data scientists meant

they were familiar with analyzing data, allowing them to focus on
understanding the ML algorithms presented in the study. However, not
ll participants had relevant backgrounds. Four participants mentioned

that their non-mathematical backgrounds (such as social sciences and
multimedia design) did not aid them in completing the study. For
instance, two of these participants noted that the terminology used to
explain the concepts differed from what they were accustomed to in
their respective fields.

Referring back to our definition of novices in ML as described in
he introduction, the exclusion criteria identified ML novices who did

not have any prior knowledge of the fundamentals of ML, whilst the
ecruitment strategy attracted those interested in learning and applying
L, most of whom had backgrounds that would ease this learning

rocess. Although the prior knowledge possessed by some participants
ay have given them an advantage in completing the study, this group

s also more likely to recognize the potential of ML and incorporate it
nto their own work-related domains.

3.2. Apparatus

The study provided participants with a static tutorial that explained
he fundamental components required to build ML classification mod-

els. Participants engaged with a series of inquisitive questions and
exercises that required participants to try things practically in Weka’s
GUI, which were subsequently discussed in the follow-up interview.
Some exercises were designed to encourage reflection on ML principles,

while others aimed to facilitate practical experimentation and assess
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Table 1
Information about the participants involved in the study, identified by their participant ID number, including details
such as occupation, background, sex, education, and time spent completing the tutorial and interview.
ID Occupation Background Sex Education Tutorial Interview

duration duration

01 Researcher in Data Visualization Data Science M PhD 2 h 54 m
02 Researcher in Creativity Tools HCI F PhD 4 h 40 m
03 Researcher in Digital Interruptions HCI F PhD 2.5 h 65 m
04 Researcher in Virtual Reality HCI M PhD 2 h 60 m
05 Psychology Student Social Sciences F UG 2 h 49 m
06 HCI Student Multimedia Design F M 3 h 47 m
07 Researcher in Autonomous Driving Electrical Engineering M M 4 h 63 m
08 Researcher in Cyber Security Electrical Engineering F M 2 h 59 m
09 Psychology Student Social Sciences F M 3 h 58 m
10 Product Manager Data Science M MBA 2 h 59 m
11 Researcher in Accessibility HCI M PhD 3 h 51 m
12 Researcher in Cyber Security Computer Science F PhD 1.5 h 40 m
13 Researcher in Information Studies Archivist F PhD 2 h 75 m
14 Archivist Social Sciences F UG 2 h 43 m
15 Researcher in Waste Management Biotechnology F PhD 1 h 40 m
16 Information Studies Student Law F M 2 h 65 m
17 Archivist Conservation Science F PhD 2.5 h 54 m
18 Psychology Student Social Sciences F M 2 h 46 m
19 Software Engineer Computer Science M UG 2 h 61 m
20 Archives Student Digital Marketing M M 4 h 42 m
participants’ understanding of concepts through binary right-or-wrong
tasks. A list of these exercises is presented in Table 2. The rationale
ehind the design of these exercises was to assess understanding and
ncourage participants to reflect on ML. Both the tutorial and exercises
ere developed iteratively, incorporating feedback from students and
ilot participants, some of whom were experienced ML users. Taking
nspiration from Rosson et al. (1990), the study employed a minimal-
st instructional approach (Carroll, 1990), which has been shown to

help participants understand difficult concepts in a short amount of
time (Rosson et al., 1990), by: (1) introducing all concepts through a
imple use case (the Iris dataset Dua and Graff, 2017), (2) minimizing

upfront instruction and using a spiral approach to incrementally reveal
more complexity, (3) supporting reasoning and improvising by pro-
viding incomplete explanations and exercises that require the learner
to figure things out on their own, (4) supporting error recognition
and recovery by anticipating common errors, and (5) leveraging prior
knowledge on statistics that participants may possess to aid in the
explanation of ML concepts.

The iteratively designed tutorial contained four simple classification
algorithms: kNN (Keller et al., 1985), naive Bayes (Joachims, 1998),
decision trees (Dietterich, 2000), and random forests (Pal, 2005). These
algorithms were chosen because their outputs directly correlate with
inputs, the notion of discrete features is easily conveyed, and the
results can be visualized using a classification output boundary visu-
alizer. While neural networks constitute a classification approach with
widespread adoption, their introduction was avoided in the tutorial as
they necessitate extensive datasets and are frequently linked to deep
learning, a subject intentionally omitted to maintain the tutorial’s con-
ciseness. Classification also provides real-world use-cases relevant to
our participants, such as intrusion detection in cyber-security (e.g., clas-
sification of threats Barreno et al., 2010), document classification in
rchival research (e.g., classifying documents based on topic Koller and
ahami, 1997), and within psychology (e.g., predicting the onset of
ental health conditions using classifiers such as decision trees, naive
ayes and kNN Srividya et al., 2018). A summary of the concepts
overed in the tutorial is presented below, while the full material as
resented in this study is available as supplementary material.

1. Familiarizing with and loading the Iris dataset (Dua and Graff,
2017) into Weka. This dataset contains 150 flower samples,
four features (sepal length, sepal width, petal length, and petal
width) and was split equally among the three output classes:
Iris Setosa, Iris Versicolor, and Iris Virginica. This dataset was
chosen due to the low number of input features and samples,
4 
Table 2
A list of questions that participants were asked in the tutorial.

Tutorial questions

Q1: How would you describe what ML is?
Q2: How would you use ML technology in your work?
Q3: Are there cases where we should not use ML?
Q4: Given this scatter plot of sepal width vs sepal length, could you define rules to
classify new data items as belonging to either of these 3 classes?
Q5: Now click on the petal width vs petal length plot. How does this compare?
Q6: Based on the visualizations of features in the previous section, why do you
think these features are most important?
Q7: Why is it useful to have a train and test set?
Q8: Do you understand how the kNN algorithm works?
Q9: Please briefly write about the algorithm’s accuracy. Do you think the accuracy
achieved is good? What would you say the threshold would be?
Q10: Please have a look at the confusion matrix and write down how you think it
conveys information on the model accuracy.
Q11: Why is it better to run the model using cross-validation?
Q12: In terms of the dataset, imagine that fewer data points had been collected.
What would you expect to change and why?
Q13: Can you think what happens to the training as the value of k in kNN is
changed? What happens when k=1? What about when k is very large?
Q14: How does the accuracy change as you vary k?
Q15: Do you understand how the naïve Bayes algorithm works?
Q16: What observations can you make about the decision tree algorithm?
Q17: Why do you think a random forest performs better than a decision tree?
Q18: Please look back at the scatter plots you generated earlier for the Iris dataset.
Where would you manually draw boundaries to separate the classes?
Q19: After running the boundary visualization for different algorithms and
different features, please comment on the decision boundaries.
Q20: For the shapes dataset exercise, discuss the levels of misclassified samples.
Q21: What was the best performing algorithm?
Q22: Why do you think this algorithm performed best?
Q23: Do you think this model is ‘good enough’ to deploy for the application?

given that simplification is commonly used in introductory ML
material (Witten and James, 2013; Chollet, 2021; Géron, 2022).

2. Plotting flower features (e.g., petal length against petal width)
on scatter plots so participants could visually identify rules that
can separate the output into the three output classes. An example
of a plotted scatter plot is shown in Fig. 1. This step was
designed to prompt participants to reflect on how a classification
algorithm might separate the output.

3. Learning about the process of feature selection and its impor-
tance. This concept was introduced to spur participants to reflect
about possible sources of bias in the inputs.
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Fig. 1. An example of a scatter plot visualization that was used so that participants can think of ‘rules‘ that would separate the outputs into 3 distinct classes. This visualization
represents petal length against petal width, and the coloring of individual samples represents the output class.
Fig. 2. An example of a simple decision tree visualization that participants computed themselves. This example only uses two features to separate the output classes, petal length
and petal width.
,

4. Splitting the Iris dataset into two subsets: one for training a
classifier, and the other one for testing it. This was needed for
participants to evaluate model performance later on.

5. Understanding and training the k-Nearest Neighbor (kNN) al-
gorithm (Keller et al., 1985), and evaluating its performance
using accuracy. Participants began with kNN for the Iris dataset
because the algorithm’s outputs exhibit a clear relationship with
the discrete input features, and was relatable to the previous task
of charting the input features on a scatter plot.

6. Understanding and visualizing confusion matrices, and as a way
of evaluating model performance, in addition to accuracy. An
example of a confusion matrix can be seen in Fig. 3.

7. Introducing the concept of k-fold cross-validation (Refaeilzadeh
et al., 2009), as a way for participants to ensure that a model is
generalizable and not overfitting the training set.

8. Selecting parameters: introducing the parameter k for the kNN
algorithm, a parameter used to determine the number of sam-
ples used to predict the output of a test sample. Participants
were then invited to run the model multiple times, each time
with different parameter values for k, as a way of tuning the
model and improving performance. The effect of changing the
parameter is described in the tutorial through the visualization
shown in Fig. 5, and was employed as a way to introduce some
additional complexity to model building.

9. Considering a small number of alternative classifiers, and com-
paring them in terms of performance. Participants were intro-
duced to naive Bayes (Joachims, 1998), decision trees (Dietterich
2000) and random forests (Pal, 2005). These were explained
5 
through short text snippets and visualizations such as the de-
cision tree visualization in Fig. 2. The Iris dataset is commonly
used to demonstrate decision tree algorithms, as the tree outputs
align directly with the discrete input features. Random forests
were chosen to add complexity to its simpler variant, the de-
cision tree. Naive Bayes was added as an additional commonly
employed yet simple classification algorithm (Yang, 2018).

10. Comparing and discussing the visual representations of different
classifiers’ output. Participants visualized classification outputs
using the feature space boundary visualizer shown in Fig. 4. This
was needed for random forests, which pose difficulties for direct
visualization owing to their high-dimensional nature, unlike the
relative ease of visualizing decision trees.

Prior work has shown that working with large, real-life datasets is
challenging for ML practitioners (Rojas et al., 2017). As a result, we also
tasked participants with building their own classification model for a
shape gesture dataset that was much larger than the Iris dataset, to test
knowledge acquired in the tutorial and provide a potential real-world
application of ML. Drawing inspiration from Wekinator’s gesture recog-
nition toolkit (Fiebrink and Cook, 2010), shape gestures could provide
a viable approach for users to execute commands on smartphones (for
example, drawing a square gesture to instruct the phone to set an alarm
for 8:00). This 10,000-sample dataset included ten different shape clas-
sifications as the output along with eight input features that measured
coordinate positions of corners and their interior angle. The shapes
used included several types of quadrilaterals and triangles, circles, and
pentagons. The dataset was artificially generated, allowing for con-
trolled design, while incorporating added noise to emulate real-world
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Fig. 3. A confusion matrix for a random forest model on the shapes dataset shows it struggles to distinguish triangles and quadrilaterals but correctly predicts circles and pentagons.
Fig. 4. An example of a boundary visualization of the kNN algorithm. The different
colors represent the predicted output of the classifier, given an X (petal length) and Y
(petal width) value. The blurred boundaries indicate a blend of predictive outputs.

Fig. 5. The tutorial’s illustration of kNN, aimed at demonstrating the impact of
adjusting the parameter k, proved helpful to some participants but caused confusion
for others. Sketch by Antti Ajanki [Public domain], via Wikimedia Commons (https:
//commons.wikimedia.org/wiki/File:KnnClassification.svg).
6 
conditions, resulting in imprecise shape measurements. In addition,
although participants still had access to the tutorial when building the
gesture classifier, this dataset was much larger than the Iris dataset
that participants had been experimenting with, both in terms of feature
count and sample size, creating an extra challenge for participants as
the results were more difficult to interpret. The aim of the exercise was
for participants to use the concepts that they learnt during the tutorial
to develop an accurate model that successfully classified shape gestures,
encouraging participants to engage in self-directed exploration and
problem-solving. Though practical applications often involve greater
intricacy and broader scope than the examples employed by the tu-
torial, simplification is a common pedagogical approach employed in
introductory ML resources like textbooks (Witten and James, 2013;
Chollet, 2021; Géron, 2022), with previous research finding that low-
dimensional examples are more effective at explaining ML concepts as
it is challenging for users to conceptualize high-dimensional data (Liu
et al., 2016). The tutorial was designed to cover key ML model building
process using classical ML algorithms (kNN, naive Bayes, decision
trees, random forests) in about two hours. In line with the minimalist
instructional approach (Rosson et al., 1990; Carroll, 1990), ML concepts
in the tutorial were contextualized around the Iris dataset due to the
short period of time to run the study, and to improve participant
engagement by making the study less theoretical. Although employing
an alternative tutorial could potentially generate a different set of
participant challenges and reflections, our selected tutorial served as
a means to extract a series of insights and observations within the
constraints of a two-hour session.

3.3. Study procedure

Participants devoted around two hours to the take-home tutorial
detailed in Section 3.2, with no enforced time limit permitting them to
spend longer if they wanted. After completing the tutorial, participants
participated in a semi-structured interview that lasted approximately
one hour. Table 1 shows the time participants spent being interviewed.
To boost completion rates and ensure the interview took place within a
week of the tutorial, keeping the material fresh in participants’ minds,
the interview was scheduled before the study material was released.
Most participants completed the tutorial on the day of the interview,
or a few days before. Participants were asked to share their answers in
advance of the interview.

In the interview, participants were asked questions on their ex-
periences with the tutorial and their understanding of ML concepts,
specifically discussing and reflecting on some of the answers they
gave to exercises, and whether any of the answers have changed since
completing the tutorial. Participants were allowed to refer back to
the tutorial and their written responses to the tutorial exercises. To
further assess participants’ comprehension and reflections on ML model
construction, participants were tasked with describing their approach
for building a model using a real-world bike sharing dataset. This was

https://commons.wikimedia.org/wiki/File:KnnClassification.svg
https://commons.wikimedia.org/wiki/File:KnnClassification.svg
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a much larger dataset than the two datasets presented in the tutorial
nd was sent to participants during the interview in the form of two
SV files. Due to time constraints and the need to pre-process the
ataset – an aspect beyond the scope of our study – we did not ask

participants to build a model during the interview. Instead, we asked
them to think aloud and describe the steps they would take to build a
model for this more complex dataset, which contained 62,809 unique
data samples and 46 features. Finally, participants were asked a series
of questions around their own experiences with ML, including if they
ave interacted with end-user applications of ML and how they would

apply ML to their own interests and domains. The full interview guide
is available in the supplementary material.

3.4. Analysis

The interviews were audio-recorded, fully transcribed, and analyzed
sing inductive thematic analysis (Braun and Clarke, 2006), following

the six-step data analysis process outlined by Braun and Clarke (Clarke
and Braun, 2013). Once familiarized with the transcripts, the primary
esearcher generated an initial set of codes through open coding,

with sample checks performed by the other researchers to ensure that
codes were suitable in addressing the research question. Inter-coder
reliability metrics were not applied because the open-ended nature of
the responses suggests that there is no single ‘‘correct’’ way to interpret
the data. The open coding approach involved condensing participant
statements into a set of concise, representative keywords, with the goal
of organizing the data into tags that could help address the research
question. A combination of descriptive and interpretive codes was
applied. For instance, descriptive codes like ‘‘accuracy’’ and ‘‘output’’
were used to summarize participants’ comments on the performance
of ML models, while interpretive codes such as ‘‘challenge’’ and ‘‘con-
fusion’’ sought to capture the emotional responses participants had,
particularly their difficulties in understanding ML. These codes were
added to an expanding list of used codes, which was employed to help
the researcher maintain consistency in the coding process. Even so, an
initial list of codes was whittled down to 72 codes (full list available
in the paper supplementary material), based on merging codes that
were misspelled or that had the same meaning. Codes that had fewer
than five quotes were checked for novelty, and whether they were
entirely covered by other codes. The final list of codes was deliberated
among the researchers, who then independently searched for themes
by identifying patterns across the codes and data, clustering the codes
into groupings of four to eight categories. These were then reviewed
and discussed, resulting in a collective decision to define four themes,
which are outlined in the findings.

4. Findings

Participants were motivated by the study’s hands-on approach,
which involved applying learnt knowledge using the graphical tool
and completing a series of short exercises. As shown in Table 1, eight
articipants spent longer than the required two hours, with three of
hese participants allocating approximately four hours. These eight
articipants were highly motivated; they all successfully completed the

study’s exercises and provided valuable insights. Twelve participants
spent up to the recommended time on completing exercises, with seven
f them either unable to move further and stopping, or not managing
o finish all the exercises within the allocated time. Overall, thirteen
articipants completed the tutorial in its entirety, including all the
xercises, and were able to explain how they would build their own
L models. Of those who did not finish, two participants had technical

ssues, including problems installing the tool or their computer being
oo slow. The other five participants faced challenges grasping ML
oncepts; three of them discontinued the study after two hours, while
he remaining two became completely stuck and abandoned the study

midway. Table 3 presents a summary of participants’ responses to the
practical questions in the tutorial, highlighting that some exercises were
more challenging than others. The findings were grouped into four
themes, each presented in one of the following subsections.
7 
4.1. Understanding ML algorithms

This theme arose from participants’ understanding of specific al-
gorithms presented in the tutorial. Codes also emerged from their
eflections on the bigger picture, including doubts and challenges re-
arding what constitutes ML. This section focuses on participants’
emonstrated understanding of ML, as evidenced by measurable exer-
ises and questions from the tutorial and interview, rather than their
elf-reported understanding.

4.1.1. Specific algorithms
Participants valued learning about ML algorithms and demonstrated

an understanding of what is often considered an abstract concept: ‘‘an
algorithm is just a way of building something, it is just a series of steps that
you go through, it’s not alchemy, it’s not magic, and I think I find that quite
eassuring ’’ [P13]. Participants found some algorithm concepts easier to
nderstand if they already had a mental model of how it might work,
 finding consistent with prior research on mental models (Lim et al.,

2009). A number of participants’ comments were specific to the four
different classification algorithms that were introduced in the tutorial,
namely kNN (Keller et al., 1985), naive Bayes (Joachims, 1998), de-
cision trees (Dietterich, 2000) and random forests (Pal, 2005). With
kNN, seven participants were unsure whether the algorithm bases its
output on input samples within a certain distance (incorrect) or simply
everal sample points that are deemed closest (correct). Meanwhile,
articipants with a recent statistical background found naive Bayes
ntuitive due to how a Gaussian naive Bayes classifier will model the
robability distribution of the input features to follow a normal proba-
ility distribution. Other participants, especially those less familiar with

statistics, preferred the more visual explanation of naive Bayes using
istogram sketches of the input data: ‘‘it was very useful to have the
raph and be able to see that OK at five Sepal length it is definitely Setosa
ecause you can see that the blue line is a lot bigger so that kind of helps
ou process how the algorithm works’’ [P02]. This shows the importance
f explanatory visualizations for understanding ML algorithms.

Unsurprisingly, the decision tree algorithm was the most intuitive
algorithm for most participants, as they felt that it was similar to how
 human would approach the problem: ‘‘the decision tree is easy because
t’s more how we would work [...]. It’s more rules based, you have definite
ules, and you say if it’s X, go this way, if it’s Y, then go that way ’’ [P13].
fter being given a visualization of a scatter plot, as seen in Fig. 1, and

a decision tree visualization, as seen in Fig. 2, participants saw a direct
link between the exercise that asked them how they would split the
data on a scatter plot and the way the decision tree algorithm works:
‘‘I really like the decision tree because I answered one of the first questions
where I stated that if this width was less than that and was greater than this,
[...] kind of like an explanation of how a computer classifies this dataset ’’
P06].

Regarding random forests, participants provided several reasons in
their written responses during the take-home tutorial for why a random
forest outperforms a decision tree. Table 4 provides a list of participant
responses, ordered by the frequency of the answer. However, challenges
persisted, as eight participants in the follow-up interview had difficulty
nderstanding how the random forest algorithm works, struggling to
isualize its multi-dimensional nature due to its composition of multiple
ecision trees. In summary, ML algorithms that are easily visualized or
esemble a novice’s approach to the problem were easier to understand,
hilst more advanced ML algorithms were not, even if they were based
n the simpler ones.

Three participants questioned whether understanding the theoret-
ical details of ML algorithms is even needed, if one can easily apply
them using trial-and-error: ‘‘if the cost of testing out each algorithm would
have been much higher, like an hour, then probably I would have stepped
back and thought, maybe I need to understand what I’m doing, but because
for me the cost is just clicking on an algorithm like clicking on a button then

I thought well I can work out which one is the most accurate just by trying it
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Table 3
Accuracy and completion rates analyzed by individual questions and participants.

Question Accuracy P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Q4 78 1 1 1 0.5 1 1 1 0.5 1 0 0.5 1 1 0 – – 1 1 0.5 1
Q5 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – 1 1 1 1
Q6 84 1 1 1 0 1 1 1 1 – – 1 1 0.5 1 – – 1 0.5 1 0.5
Q7 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 1 1 1
Q8 47 0.5 0.5 0.5 0.5 0.5 0 – 1 0.5 0.5 0.5 – 0.5 0 – 0 1 0 1 0.5
Q9 86 1 1 1 1 0.5 1 1 1 1 1 1 0.5 0.5 0.5 – – 1 0.5 1 1
Q10 68 1 1 1 1 1 1 0 1 1 0 0.5 1 0 0 – – 0 – 1 1
Q11 76 0.5 1 1 1 0.5 0.5 1 – 0.5 – 0.5 0.5 0.5 1 – 1 1 1 0.5 1
Q12 75 – – – – 1 1 0.5 – 1 1 1 1 0 0.5 – 1 1 1 0.5 0
Q13 62 0.5 1 0.5 0.5 0 0.5 1 – 1 – 1 0 0.5 0.5 – 0.5 1 1 0.5 0.5
Q14 97 1 1 1 1 1 1 1 – 1 0.5 1 – 1 1 – – 1 1 1 1
Q15 83 0.5 1 1 1 0.5 1 0.5 – 0.5 – 0.5 – 1 1 – 1 1 – 1 1
Q16 93 1 1 1 1 1 1 1 – 1 – 1 – 1 0.5 – 0.5 1 – 1 1
Q17 80 1 1 0.5 0.5 0.5 0.5 1 – 1 – 1 – 0.5 0.5 – 1 1 – 1 1
Q18 83 1 1 0.5 1 1 0.5 0 – 1 – 1 – 1 1 – 0.5 1 – 1 1
Q19 92 0.5 1 0.5 1 1 1 1 – 1 – 1 – 1 – – – 1 – 1 1
Q20 81 1 1 – 1 1 0 1 – 1 – 0 – 1 – – 0.5 1 – 1 1
Q21 92 1 1 1 1 1 1 1 – 1 – 1 – 0 – – – 1 – 1 1
Q22 68 0.5 – 1 0.5 – 1 1 – 1 – 0 – 0.5 – – – 1 – 0 1
Q23 89 1 1 1 1 1 0.5 0.5 – 1 – 1 – 0.5 – – 1 1 – 1 1

Score 16 17.5 15.5 15.5 15.5 15.5 15.5 6.5 17.5 5 15.5 7 13 9.5 – 8 19 8 17 17.5
Score % 84 97 86 82 82 78 82 93 92 63 78 78 65 63 – 73 95 80 85 88
o
o
b
p
M

Table 4
Participants’ written explanations for why random forests outperform decision trees.

Why does a random forest perform better than a decision tree? Participants

Average of many trees 6
Greater amount of data 4
Looks at the problem in many different ways 3
It can take more complex variability into account because it
simplifies less

3

Uses decision trees and probability 1
More branches to allow for more fine-grained rules 1

really ’’ [P04]. This implies that novices might believe they do not need
o grasp the algorithms if they can experiment with them practically.
et, this poses another risk: novices might unknowingly introduce
iases if they assume they can apply ML without comprehending the

theoretical foundations. For instance, they might not thoroughly test
their model, especially regarding edge cases. Even more worryingly,
some participants proposed excluding outliers from the model if they
affect performance, even though they may not be anomalies, but rather
valid input samples: ‘‘the outliers, you should always exclude them because
then that would really mess your dataset ’’ [P06]. On the other hand, one
participant did acknowledge the risk of misclassifying edge cases: ‘‘my
concern is that when I come up with a set of algorithms or formulas, what
if there are outliers and the machine actually does not know how to detect
he alliance?’’ [P15].

4.1.2. Reflecting on what constitutes ML
This sub-theme focuses on participants’ reflections of ML after com-

leting the tutorial. Participants broadly characterized ML as a system
hat recognizes patterns in the data and learns rules to make decisions:
‘in order to create artificial intelligence, you have to train this machine to
ee the patterns of the data’’ [P06], and ‘‘learning the rules to making some
ecisions on their own’’ [P05]. Participants also described the notion
f feeding the model new data to predict an output: ‘‘give it new data
hat I haven’t fed it with yet, for the computer to make decisions based on
hat it knows, based on the information it has, based on the structures it
as built ’’ [P09]. Table 5 presents the written responses participants
 o

8 
Table 5
Summary of participants’ written responses to what constitutes ML.

How would you describe what ML is? Participants

Inferring information from input data 3
Recognizing patterns 3
Automatic learning of rules on a dataset, applied to new data 3
Machines that try to behave like humans 2
Training a system using data 2
Combines statistical and programming concepts together 1
Aiding decision making by providing data 1
Method of using data to make predictions on unseen data 1
Method of processing data to automate routine tasks 1

provided about what ML is before completing the tutorial, indicating
that their understanding of ML remained largely unchanged. To thir-
teen participants, it was challenging to conceptualize the concepts of
models and algorithms, and what constitutes ML. For example, three
participants were unsure how classification relates to the definition of
ML, whilst five participants were unsure how to even define it, giving
vague responses: ‘‘it’s using data to make human lives easier. Functions
that speed up processes that are long-winded’’ [P16]. One participant
erroneously thought that ML was able to adapt beyond learning from
the data, without human input: ‘‘it can adapt and change itself if it needs
too, so it’s more like if it finds that it’s not working, what it’s trying to solve,
then it would try to find a way to adapt and change’’ [P03]. P15 had the
erroneous view that models which incorporate ML will perform better
than humans, which is not necessarily the case. As P16 pointed out,
this viewpoint might be reasonable in practice, as an ML model is more
likely to be employed if the accuracy matches or even exceeds that of
a human.

Two participants tried to differentiate between ML algorithms and
ther types of algorithms: ‘‘With respect to ML you’re training a model in
rder to be as accurate as possible. Whereas a normal algorithm you may not
e training a model, it is just to perform routine activities’’ [P10]. However,
articipants were often unsure whether a real-world application uses
L, struggling to differentiate between normal computer programs and

nes that use ML: ‘‘I’ve done some Watson, natural language learning
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stuff like that kind of stuff. That was an API, but is that an AI? Or is it
just using the computing power of Watson?’’ [P01]. Many participants’
impression was that ML is more complex than what was shown in the
study: ‘‘it’s complicated concepts and it explained it in a really clear and
easy way, almost too easy, like I was a bit suspicious, like what are they
not telling me?’’ [P05]. This can be partially attributed to the study’s
lack of in-depth coverage of the mathematics behind the algorithms.
However, it may also stem from the common perception among non-
ML experts that ML is challenging (Yang et al., 2020; Amershi et al.,
2019). Indeed, most participants believed that ML is primarily designed
to tackle complex problems.

The results in this section indicate that while most participants
ould outline ML in general terms, they struggled with grasping the
bstract concepts of models and algorithms. This hindered their ability

to understand the capabilities of ML and its most effective applications.

4.2. Applying ML within and beyond the study

This theme encapsulates participants’ reflections of applying ML,
ither in the study or externally. It also describes how participants
eflected on the ethical ramifications of applying ML.

4.2.1. Applying ML
During the interview, participants were introduced to a real-world

ike sharing scheme dataset. Similarly to the shape dataset intro-
duced at the end of the tutorial, this dataset was large, containing
2,809 unique data samples and 46 features. Participants were asked
o describe how they would build their own model on this dataset,
pplying knowledge learnt in the tutorial. The model’s goal was to
redict whether a trip will be short, medium, or long. Overall, fifteen
articipants were able to successfully complete this task by describing
 sound model building process, thus demonstrating an ability to apply
oncepts from the study. A model building process was considered
ound if it touched across all of the following points: dataset size and
deas to clean it; selecting relevant features, including ones to avoid;
plitting the data into test and train sets; running the training with
ross-validation; experimenting with different algorithms; optimizing
lgorithm parameters; and comparing the evaluation metrics of differ-
nt algorithms to determine the best model. Only three participants
id not complete the task, struggling to apply learnt concepts, whilst
wo participants were partially able to explain what they would do.
s part of the data collection process, two participants suggested that

hey might want to collect different types of data: ‘‘have you got the right
ataset here to make the comparisons with, that’s what I would be question-
ng ’’ [P16]. Other participants talked about data processing techniques,
uch as joining the bike sharing scheme dataset comprising of separate
ables of bike and weather data on a column and possibly creating new
eatures from the raw features. This shows that participants thought
f the whole model building process when discussing the bike sharing
cheme, applying concepts they had learnt in the study along with their
wn reflections on what data is needed for building a good model.

In addition to the bike-sharing dataset exercise, an intriguing aspect
hat emerged was how participants perceived applying ML and whether
heir experiences with ML had been influenced by the tutorial. Overall,
ourteen participants reported gaining a better understanding of what
L is about: ‘‘It doesn’t seem as scary, I guess. It is complicated, but I think
he way you’ve explained it’s really clear, so it doesn’t seem as complicated,
s scarily complicated’’ [P14]. Participants were prompted to recall their
nteractions with ML-driven applications. They cited various examples,
ncluding medical diagnosis for cancer, image recognition, and rec-
mmender systems like those found in Netflix and Spotify. The study
eightened participants’ awareness of real-world ML applications, with
wo participants reflecting on how social media platforms might em-
loy ML to retain users. This indicates that education and training that
onceptualize ML’s capabilities does change novices’ perception of the
ield. In addition, almost all participants mentioned how, beyond the
 e

9 
study, they would want to apply ML to their own work, or how it could
be applied. One participant viewed incorporating ML to make their
work more time-efficient, allowing them to focus on more engaging
tasks like interpreting results [P17]. Six participants discussed how they
now want to apply ML to their own domain-specific datasets, discussing
potential difficulties: P16 mentioned that for classifying documents, it
might be difficult to distinguish between nuances of certain words, or
ontextual information might be lacking. Other types of applications
ithin participants’ own work that could or do implement ML include:

ntrusion detection in a system; object recognition; driverless cars;
redictive forecasting; and re-categorizing mental health diseases. In

terms of problem selection, only P20 shows an understanding of where
ML is most useful: ‘‘you could use it to automate some mundane repetitive
tasks that require a large volume of data’’ [P20]. This is contrast to other
participants, who thought ML was designed to solve difficult problems.

4.2.2. Ethical ramifications
Most participants spoke of the ethical ramifications of ML, including

airness, accountability and transparency. For example, participants’
rust in a model is strongly linked to accuracy: the higher a model’s

accuracy, the more it was trusted by participants: ‘‘if it is consistently
wrong and people would start using it, that may affect their confidence in
using the system’’ [P20]. Three participants mentioned the importance
of explainability from a matter of transparency, as it aims to provide
information about how and why an ML algorithm produced its output,
suggesting that higher transparency might lead them to place higher
trust in the algorithm: ‘‘I certainly think that my faith in such a system
would increase if it was possible to see an audit trail around this, if there
had been some testing or evaluation over time that demonstrated to me
that the algorithm mostly got it right over time, and then there was this
constant process of flagging up where it got it wrong ’’ [P13]. This confirms
prior research that found that higher accuracy and transparency both
increase trust (Tintarev and Masthoff, 2011). In terms of accountability,
an issue brought up by participants is the risk that ML systems are
over-promising what they can do. Participants queried what happens
when real-world models get things wrong: ‘‘From what I saw [in the
tutorial] it looks like the models can be really accurate, but you still you
wouldn’t want to be that [incorrectly predicted] 1%, would you?’’ [P14].
This raises an interesting ethical concern: at what level of accuracy
can one deploy a ML model? Along the same lines, P04 suggested that
the explainability of algorithms would show users what ML can and
cannot do, thus creating better-defined uses and limitations of ML, and
avoiding issues of over-promising what ML can do.

Participants showed a sensitivity towards bias, considering ethical
considerations when designing a ML system, including questions of
accuracy, bias, and confidence. Participants suggested that one way to
avoid bias is to use a ML model: ‘‘it kind of makes it more objective as well,
ecause if you have a person and maybe they like someone more but not for
he reason they should like someone more’’ [P02]. In reality, ML models
an still have biases and participants highlighted the importance of
rying to avoid introducing biases to the model, such as data bias: ‘‘I
hink that’s the limitation that we need a good at reliable dataset to start
with. Because if we introduce biases or mistakes then they might get magni-
fied by the analysis and give a completely wrong answer ’’ [P17]. Even so,
participants mentioned that biases may still be inevitable due to human
input in the model building process: ‘‘I think at the end of day, it’s being
trained in a certain way. There are going to be biases in it and errors that
ill come up’’ [P14]. Through the study participants became aware that
atasets can contain proxy features, promoting bias unintentionally.
articipants mentioned issues like racial or gender bias that need to be
onsidered in relation to the bike sharing scheme dataset:‘‘I just wouldn’t
ant to make any gender based assumptions, you know, in terms of looking
t bike trips, because I feel like I’d be building in some biases into it or
omething ’’ [P01] and ‘‘even if you don’t tell it race, there’s going to be like
ther variables that might be connected to race’’ [P05]. Eight participants
mphasized the significance of having a large dataset with reliable data.
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They noted that if this isn’t the case, the model might exhibit lower
accuracy and could potentially introduce biases: ‘‘we need a good and
reliable dataset to start with. Because if we introduce biases or mistakes
then they might get magnified by the analysis and give a completely wrong
answer ’’ [P17]. One participant even suggested that ML models should
be built to reflect an idealized version of society, rather than promoting
underlying biases: ‘‘maybe consult with some liberal social psychologists
and see what could help build a future that we like [P05]. This vision
mplies counterfactual fairness, which states that outcomes are fair for

individuals if they would receive the same outcome if they belonged to
a different cohort in a counterfactual world (Kusner et al., 2017)’’.

4.3. Visualization

Visualizations were integral to the study, with many codes relating
to the various visuals in the tutorial. Participants readily interpreted
these visualizations, except for the histogram used to describe the naive
Bayes algorithm, as three participants had not come across this type of
visualization before. In some cases, the availability of a visualization for
a specific algorithm, such as the decision tree algorithm, was reported
as a reason to choose it for a model [P14]. Scatter plots were used
to familiarize participants with the data and get them to think about
how ML algorithms might separate the data in a 2-dimensional feature
space (an example of this can be seen in Fig. 1). This process helped
participants understand that some features are more important than
others. Participants also linked the rules to separate classes on a scatter
plot to how the decision tree algorithm works: ‘‘I think I put my own set
of rules in one of the first questions. Later on, when I saw that with the
tree it kind of made sense to me, I kind of linked it. Like it’s something
I kind of did before that, and I understood why the computer did that ’’
[P06]. Two participants correctly noted that the scatter plot is useful in
isualizing two features at a time (in two dimensions), but the model

may use more features than that, a limitation for this kind of visual-
ization. The study incorporated confusion matrices, a popular way of
visually identifying false positives and false negatives in the output. An
example of a confusion matrix derived from the shape dataset can be
een in Fig. 3. While the visualization effectively conveyed where the

algorithm faltered, many participants emphasized that the confusion
atrix lacked insights into the underlying reasons behind incorrect
redictions and guidance on enhancing the algorithm’s performance: ‘‘I
hink it’s definitely useful. However, it doesn’t explain why [...] the system
ot it wrong ’’ [P17]. Indeed, prior work on intelligibility has found that
sers want to know why an application behaved in a certain way and
ow to modify it (Lim et al., 2009; Lim and Dey, 2010).

One of the tutorial sections introduced the notion of classifica-
tion boundaries: participants were able to visualize this on a two-
dimensional feature space within the graphical tool (an example of this
isualization can be seen in Fig. 4). The aim of this visualization was
o show participants how the algorithms might have different output
oundaries. Overall, participants enjoyed this visualization, referring
o it as a way to ‘‘see inside’’ the algorithm: ‘‘I like the boundary
isualizer as well, because it gives you a sense of how the algorithm actually
orks’’ [P04]. One participant made the link between the boundary
isualization and the data points on the scatter plot: ‘‘in the scatter plot
here was this one little part that overlapped a bit between the two flowers:
hat green part (in the boundary visualization) is just a really detailed
isualization of that overlapping with the best way to split it up’’ [P05].
imilarly to the confusion matrix, the boundary visualization does not
rovide participants with explanations regarding the type of output, nor
oes it show users how to action on the output, something that prior
ork has shown to frustrate users (Lim and Dey, 2011). As a result, the

boundary visualization did not help participants understand complex
lgorithms such as random forests. Unlike the decision tree visualiza-
ion, participants understood that visualizing the implementation of the
andom forest model as a collection of trees would be impractical due
o its multi-dimensional design, hence they could only see an output
10 
of a random forest model through the boundary visualizer. This might
explain why eight participants struggled to understand random forests
when shown a visualization of its output through the classification
boundaries of the Iris dataset: ‘‘even though I can see exactly what’s going
on, it doesn’t make the same sort of sense that the decision tree made to me
visually ’’ [P16]. Participants became aware that visualizing features in
a multi-dimensional space is not possible, making it hard for them to
conceptualize how multi-dimensional features interact with each other:
‘‘I think it’s also because it’s all happening in geometric space almost and that
is quite hard to sort of visualize, particularly when it’s a multi-dimensional
geometric space that I find quite hard to comprehend’’ [P13].

In summary, although participants found visualizations helpful for
explaining concepts, they did not find them particularly helpful in
etermining how to enhance a model. In addition, understanding multi-

dimensional data and algorithms proved to be difficult.

4.4. ML process

A final theme emerged regarding fundamental model-building prac-
ices. The following sub-sections outline the findings within this theme.

4.4.1. Feature selection
After loading the Iris dataset and observing the data, the next

odel-building step for participants was feature selection: ‘‘a good next
tep would be to identify the relevant features. The ones that are most
iscriminating. So, you would go through a feature selection phase’’ [P19].

Participants were intuitively aware that some features are more useful
than others. At a rudimentary level, participants based their feature
selection on their own intuition: ‘‘first of all, I would try and eliminate the
features that I think are useless from a qualitative or high-level idea’’ [P08].
Some participants took a more rigorous approach by plotting pairs of
features against each other on a scatter plot. Other participants, when
employing Weka’s feature selection algorithm, were perplexed as it
frequently pinpointed different key features than they had anticipated.
However, four participants brought arguments against performing fea-
ture selection. Firstly, they did not see feature selection as a step that
ML practitioners would undertake, as to them this concept would be
abstracted away in an ML algorithm’s logic, in that the algorithm does
the feature selection instead by assigning different weights to different
features. Secondly, some of these participants expressed doubt around
the feature selection process: namely which features to keep in the
model and why the model sometimes performed better when using all
the features, instead of the just the ones recommended by the feature
selection algorithm: ‘‘When I’m applying these seven attributes, my random
forest algorithm is not working as well as it was working with 30 attributes
when no selection was done’’ [P07].

4.4.2. Algorithm selection
Most participants had the right approach to algorithm selection

in ML: a process of trying different algorithms and comparing the
evaluation metrics to decide on the best algorithm. However, algorithm
selection was described as a challenge by many participants: ‘‘having
to make that decision towards the end of choosing which algorithm are
you going to go for, that’s where I was a bit, you know, confused what
would be best ’’ [P06]. Participants thought there was more to the
process of choosing an algorithm than just trial-and-error and accuracy
comparison. They thought that context and knowledge on how the
lgorithm works dictates why one algorithm might be better suited over
nother. Participants felt like they did not know enough about algo-
ithm differences to know which one is best suited in which situation.
he tutorial does not cover direct comparisons between algorithms.
ather, participants are left to discover this themselves by trying out

the different classifiers covered in the study and observing the out-
ut both through visualizations and evaluation metrics. In addition,

eight participants would have liked a more detailed explanation of
the algorithms, with three participants resorting to external resources
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for further guidance when they completed the tutorial. These three
participants were searching for why something was not working when
completing the tutorial [P13], or to get further clarification on ML
concepts [P09, P12]. These participants felt that by having a more in-
depth understanding, they would be better equipped at selecting which
algorithm is most suitable, beyond relying only on accuracy: ‘‘in my
mind, there are some reasons as to why you would choose an algorithm
over the other one based on how it suits the data itself. I imagine that the
accuracy would be good, and it would also be a suitable algorithm for this
type of data’’ [P03].

4.4.3. Parameter optimization
The only example of parameter optimization covered in the study

was for the parameter k in kNN. This parameter, defined by the
user, instructs the algorithm on how many of the closest training
data points’ outputs to consider when predicting the output of an
unclassified input sample. Participants liked the combination of short
explanations followed by the practical nature of parameter selection
(i.e., the minimalist explanation model Rosson et al., 1990), helping
hem develop a mental model of how the kNN algorithm worked. In
he exercises, most participants found a value for k that optimized the
ccuracy of kNN, reflecting on the practical nature of the exercise: ‘‘to
ee what happens when you change the k factor that was very interesting, to
nderstand that actually there is an optimal range, and if your k is too low
r too high, you won’t get as good results’’ [P17]. The visualization, shown
n Fig. 5, helped four participants understand the effect of changing the

parameter. However, there were seven other participants who were not
sure what k referred to, thinking that it refers to a fixed distance rather
than the number of points that the algorithm should consider.

4.4.4. Model evaluation
In the final stage of the ML process, participants evaluated the

model’s output. They assessed model performance by considering the
percentage of correctly classified instances and by examining the con-
fusion matrix, which was viewed as a visual tool for interpreting
model evaluation. During their evaluation of models, participants sim-
ply chose the model that provided the highest accuracy, despite their
prior reflections on bias risks in Section 4.2.2. In the interview, partici-
ants were asked to reflect on the accuracy of the models they created.

P12 acknowledged that there might be limits to how high the accuracy
an be, whilst P01 suggested a minimum accuracy threshold on their
ersonal opinion: ‘‘maybe the 80/20 rule, you can say that if it’s right
our times out of five, that is good’’ [P01]. Reflecting on the datasets
sed in the study, eleven participants suggested that the acceptable
hreshold might depend on the context. For example, they related it to
he bike sharing exercise introduced during the interview: a bike hiring
cheme does not require high accuracy because it is not perceived as
ife changing. Finally, P07 mentioned that their confidence in model
uilding was based not only on the accuracy of the results but also
n the systematic process of model building, which suggests that a
horough ML process increases trust in what has been built.

5. Discussion

From the findings, we have identified three main discussion points:
(1) (mis)understanding ML and what it can do, (2) ML challenges for
novices, and (3) broader reflections on ML.

5.1. (Mis)understanding ML and what it can do

Our findings in Sections 4.1.2, 4.2.1, and 4.4.1 show that most
articipants had exaggerated expectations of what ML could do. Due
o this discrepancy in how participants viewed problem formulation
n ML, participants questioned whether the content presented in our
tudy can be considered ML, as they found it easier than expected.
his finding supports previous research that identified a widespread
 t

11 
perception in society that ML is challenging and intended to solve
difficult problems (Yang et al., 2020; Amershi et al., 2019; Kozyrkov,
2018), even though ML is best suited for simpler, repetitive applica-
tions (Weiner, 2020). In fact, one of the main reasons attributed to why
87% of ML projects never get released (Venture Beat Staff, 2019) is that
project managers ask for applications that are too complex (Weiner,
2020).

Our findings in Section 4.1.2 show that although most participants
were able to anecdotally define ML as learning a set of rules ‘‘to see the
atterns of the data’’, they struggled to grasp the abstract concepts of

models and algorithms, often using the terms interchangeably despite
heir distinct meanings. Not only did participants frequently struggle

to distinguish between ML models and other types of algorithms, but
they also found it challenging to understand what constitutes ML, and
what ML can and cannot do. For example, in Section 4.1.2, participants’
expectations were that a ML model would be able to ‘‘update itself’’
and ‘‘adapt on their own, without human input’’, which is not the
ase in current ML model building practices. This corroborates findings
y Sulmont et al. (2019), where ML instructors described higher-level
esign decisions as the biggest challenge when teaching novices about
L. Previous research has identified strong connections between the

obustness of mental models and user understanding (Kulesza et al.,
2012, 2013). Our findings, such as those in Sections 4.1 and 4.3,
support this, revealing that participants without a recent mathematical
background struggled with abstract ML concepts due to their lack of a
foundational mental model for such concepts. This finding corroborates
prior work by Patel et al. on software engineers that have applied ML
in their work (Patel et al., 2008b), which found a lack of understanding
f ML concepts among those who are not mathematically trained and

extends these prior findings to novices, implying that despite additional
experience of working with ML, it remains difficult to use and apply ML
without a formal background and training in the field.

A related challenge, highlighted in our findings (e.g., in
Sections 4.1.1, 4.1.2 and 4.2.1), is the risk of novices misapplying
ML. Some participants who successfully completed the study and
found ML easier than expected misinterpreted certain ML concepts.
or example, Section 4.1.1 highlighted that instead of wanting to

actively include edge cases, or to collect more data around edge cases,
some participants wanted to remove anomalies as they can ‘‘mess your
dataset’’. In addition, our findings in Section 4.1.2 show participants’
misconceptions around the performance of ML models, with novices
expecting ML to outperform humans, which is not always the case in
practice. These misconceptions and superficial attitudes can lead to the
deployment of flawed models. Indeed, prior research found that novice
users often deploy problematic models, such as by relying solely on
accuracy measures when selecting models (Yang et al., 2018).

In summary, despite most participants having completed the tuto-
rial, they still had misunderstandings on the capabilities of ML that
were resilient to the learning, including problem selection, under-
standing abstract concepts, and the risk of misapplying ML. These
misunderstandings around the capabilities of ML and where it can
be applied could be problematic if users bring them into the process
of building their own models. As suggested by P20 in Section 4.2.1,
and extending prior work on ML problem formulation (Weiner, 2020;
Kozyrkov, 2018), these challenges imply a need for ML tools and appli-
ations to encourage novices to employ ML on simpler problems, such

as automating repetitive tasks on large datasets, and to employ simpler
algorithms, such as decision trees, as they are inherently explainable.
Prior work has shown that simpler algorithms often perform similarly
to more complex algorithms on structured data, despite popular belief
that more complex models are more accurate (Rudin, 2019).

5.2. ML challenges for novices

Participants experienced difficulties with ML concepts throughout
he study, such as algorithm selection (e.g., in Sections 4.1.1 and 4.4.2).
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Although participants successfully selected algorithms solely on the
etrics, confirming prior research (Yang et al., 2018) on ML experts

and extending it to novices, they did, however, question whether
algorithm selection also relied on context and knowledge, beyond the
use of metrics, demonstrating a broader reflection on ML. The degree to
which an ML algorithm should be made transparent has been a subject
of interest (Hamilton et al., 2014). Previous studies on lay users suggest
hat a comprehensive grasp of an algorithm’s underlying mechanisms is
ot essential for effective interaction with models that incorporate such
lgorithms (Rader and Gray, 2015). Our findings in Sections 4.1.1 and

4.4.2 support such a claim, showing that participants were able to select
algorithms for a model, with participants reflecting that they may not
need context and algorithmic knowledge if they can just empirically
test them. This finding aligns with common ML practices: although
the study did not provide an in-depth mathematical understanding of
classification algorithms, practitioners often use empirical approaches
to algorithm selection when tuning a model (Ali and Smith, 2006), with

any IML tools (e.g., Fails and Olsen, 2003; Fiebrink and Cook, 2010;
Demšar et al., 2013) abstracting the model building process altogether.
We believe this might go against novices’ expectations concerning the
practice of ML: in other domains there might be a prescribed way of
oing things, which may have led to them questioning the potential

need for context and further knowledge. For example, in statistical
hypothesis testing, there are clear boundaries for when to use a para-
metric or non-parametric test (Harwell, 1988). In terms of algorithm
election based on the output’s context, there have been growing calls

to identify ways for lay users to measure model performance beyond
accuracy (Veale et al., 2018) and reduce novices’ over-reliance of
ummary statistics such as accuracy (Krause et al., 2016), echoing
ur participants’ desire for context around the output. Our findings
e.g., in Section 4.1.1) also confirm this need, as another pitfall was
dentified: participants would exclude outliers from the training dataset
imply because they lower overall performance. However, when the
tudy presented participants with context around the model output
hrough the confusion matrix, participants found it frustrating that the

matrix did not show them why the model reached an output or how
o modify the model to change the output, confirming prior research
hich found that explanations addressing users’ questions to why and
ow to supports intelligibility (Lim and Dey, 2010; Lim et al., 2009).

This implies a need for novice ML tools to not only provide more
context around the output, but to provide actionable explanations
which help novices understand why the model reached a certain output
and how to improve on this outcome.

Our findings in Section 4.3 show that although participants found
visualizations helpful, these were sometimes misinterpreted. For ex-
mple, participants described the kNN visualization (shown in Fig. 5)
s helpful with explaining the algorithm, but our findings in Sec-

tion 4.4.3 show that some participants misinterpreted the role of the
parameter k, thinking that it refers to a fixed distance, rather than
a fixed number of points. This finding implies that although there is
potential for leveraging visualizations in ML tools for novices, there
is a need to design them in ways that avoid multiple interpretations,
erhaps using focus techniques (Ajani et al., 2021), which are shown

to enhance clarity and improve memory retention, may help in the
redesign of this common depiction of kNN (Witten and James, 2013).
An alternative reason for the confusion could be linked to the concept of
arameters and their optimization process, as participants in the study
ere tasked with tuning the value of k in kNN. This is corroborated

by prior research conducted by Fiebrink et al. (2009), which found
that novices were confused by parameter tuning, with the researchers
uggesting an abstraction of parameter selection through a slider con-

trol from ‘‘very fast training’’ to ‘‘very accurate training’’. However,
this would at the expense of a novice user’s ability to fine-tune their
models, which may frustrate them if they are not able to leverage
new information to change the output (Lim and Dey, 2011; Kulesza
t al., 2015). Indeed, participants did not find visualizations useful if
12 
they could not leverage the information to modify and improve the
odel, echoing our findings on model output. This finding resonates
ith prior research on designing explanations, where Tintarev and

Masthoff (2011) found that users prefer explanations that describe what
might help the system learn faster, and iterates our implication that
xplanations, whether visual or textual, need to be actionable. The
esults presented in Sections 4.3 and 4.1.1 indicate that participants

who struggled to comprehend the functioning of the random forest due
to its high dimensionality also exhibited difficulties understanding its
predictions, as observed through the output displayed on the boundary
visualizer. This finding corroborates previous research by Oh et al.
(2020), which revealed a mismatch between users’ expectations and a
model’s actual output when users lacked understanding of the underly-
ng algorithm. This disconnect persisted even though the algorithm was
ased on the principles of lower-dimensional decision trees—a concept
he participants had grasped, as evidenced by their ability to directly
isualize the algorithm. One implication from participants’ experiences
ith random forests is that novices may struggle to understand more

omplex algorithms simply by building on their foundational knowl-
dge of simpler ones, as the lack of transparency and the difficulty of
xplaining these algorithms due to their highly dimensional data hin-
ers comprehension (Abdul et al., 2018; Lipton, 2018). This challenges

the common approach of using simplified examples in introductory ML
aterial (Witten and James, 2013; Chollet, 2021; Géron, 2022).

Despite the challenges of algorithm selection, parameter selection,
nd dimensionality, our findings (e.g., from Sections 4.1, 4.2, and 4.4)

indicate that it is possible for novices to apply basic ML concepts on
their own, as evidenced by thirteen participants completing the study
xercises and building a model from scratch on a shape dataset. This
ligns with findings by Martins and Von Wangenheim (2023), who

discovered that high school students could apply basic ML concepts
using active learning strategies, with our study extending this finding
to an adult novice population. For instance, our findings (e.g., in Sec-
tion 4.2.1) indicate that participants, despite being complete novices
to ML, could describe a sound model-building process, including ex-
perimenting with different algorithms and feature combinations. This
contrasts with prior work which found that participants’ reasoning
about a model’s expected output using various examples did not always
lead to them developing a clear mental model of the system (Oh
et al., 2020), and that even more experienced ML users struggled

ith understanding and applying iterative exploration processes when
reating models (Patel et al., 2008a,b; Amershi et al., 2019). Although

primarily used to extract insights, the tutorial highlights that brief,
ands-on training can effectively help novices create mental models

of ML. This aligns with prior findings showing that a short amount of
ML training enabled novices to build models comparable to those of
experts (Ramos et al., 2020). The implication, then, is that there is a
case for training and education about ML to reach a broader audience.
Earlier research has advocated for educating children about key ML
concepts (Touretzky et al., 2019): our work extends this call to all
ovices who want to apply ML.

5.3. Broader reflections on ML

Although the study offered a brief introduction to classical ML
concepts and applications, participants’ written answers to the exercises
nd subsequent interviews revealed that they considered algorithm
election beyond statistical measures (e.g., in Section 5.2), however,
indings in Section 4.4.4 show that they still selected models based

on the highest accuracy. Findings in Section 4.2.2 illustrate how par-
ticipants responded to bias concerns, linking these issues to the input
features of the three study datasets (Iris, shapes, and bike sharing) and
considering the impact on their own domains. Regarding input features,
participants emphasized the importance of avoiding bias by excluding
gender or age when building an ML model on the bike-sharing dataset.
This aligns with the fairness through unawareness definition, which
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posits that a model is fair if it does not use sensitive features (Grgic-
laca et al., 2016). By completing the tutorial exercises, participants
ecame aware that biases could arise from using sensitive features in

the dataset and could also be introduced by ML practitioners through
the way they build and validate their models, such as through human
evaluation biases (Srinivasan and Chander, 2021). Participants also
discussed the abstract concept of trust. Findings in Sections 4.2.2 and
4.4.4 indicate that participants were more likely to trust models with
higher accuracy and better explainability. This confirms prior research
showing that users have higher acceptance of results when accuracy is
high and accompanied by explanations (Tintarev and Masthoff, 2011),
and extends this understanding to novice ML users. However, these
iscussions included some misconceptions. For instance, Section 4.2.2

found that participants believed trust could be increased by using ML
algorithms instead of human judgment, perceiving them as ‘‘more ob-
jective’’ based on the tutorial. They also suggested that bias must stem
from the underlying data or from practitioners’ biases when building
the model. This impression is not entirely correct: models can suffer
from algorithmic bias (Danks and London, 2017), where the bias is
added purely by the algorithm (Baeza-Yates, 2018). This perception
among novices that ML models can be trusted poses a challenge for
hem, confirming prior research which found that novices are more
ikely to trust models than ML experts (Yang et al., 2018), as it increases

the risk of inadvertently developing biased models (Yang et al., 2018).

6. Implications

The findings and discussion have implications for designing ML
ools for novices. Prior research in explainable AI suggests that ML tools
eed to be designed in a way that is understandable to novices and
elps them avoid common pitfalls (Abdul et al., 2018). Our findings
e.g., Section 4.1.1) and discussion (e.g., Section 5.2) support such

a call, suggesting that novices need ML tools that encourage them
o thoroughly test their models on a variety of datasets and subsets
f given datasets. For example, it might be helpful to include fea-
ures that visualize and characterize subsets of data where models
ail and examine edge cases. Participants’ comments suggest a risk
or novices to misapply ML by removing anomalous values or over-
elying on the ‘‘trial-and-error’’ testing of ML algorithms offered by such
ools. Perhaps a checklist for novices to follow during model-building
ould reduce the risk of deploying problematic models. Prior work has
emonstrated the effectiveness of such a simple job aid in reducing
rrors due to the limitations of human memory (Hales and Pronovost,

2006), and it could help bridge the gap in novices’ awareness of what
is needed for a successful ML model.

Further, our findings (e.g., Sections 4.1.1, 4.2.1 and 4.4.1) and
iscussion (e.g., Section 5.1) suggest that ML tools for novices should
ncourage the application of simpler models to straightforward, repet-
tive tasks. Our discussion in Section 5.2 highlights that novices pre-

dominantly viewed ML as useful for solving difficult problems, whereas
ML can also be effective in automating repetitive tasks (Weiner, 2020;
Kozyrkov, 2018). Improving access to ML by designing ML tools that
uide novices towards automating simpler, mundane, yet valuable
asks could alleviate their fear of using it. This approach could also

enhance novices’ success in implementing ML models that meet stake-
holders’ needs while minimizing the risks of bias and other unwanted
consequences (Kozyrkov, 2018; Hume, 2017; Mitchell, 2019).

Our discussion (e.g., Section 5.2) also highlights the need for ac-
tionable visual and textual explanations for novices. Tools designed
or ML practitioners that provide actionable context around model

outputs already exist, with a few examples spanning different parts of
the model building process given below. Squares (Ren et al., 2016)
s an example of a ML tool for experts that enhances confusion ma-

trices, helping practitioners understand model outputs and compare
algorithms. INFUSE (Krause et al., 2014) ranks predictive features
cross algorithms, folds, and classifiers, enabling domain experts to
 o
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identify key features for model selection. IForest (Zhao et al., 2018)
is a tool for interpreting random forests through visual explanations.
However, these visualizations may not be suitable for novices, as they
ssume prior knowledge of fundamental ML concepts such as cross-

validation (Berrar, 2019) and confusion matrices (Susmaga, 2004),
nless supplemented by additional training.

In our discussion (e.g., Section 5.2), we emphasize the need for
actionable visual and textual explanations tailored for novices. While
there are existing tools designed for ML practitioners that provide
ctionable context around model outputs, a few examples covering
ifferent stages of the model-building process are listed below:

1. Squares (Ren et al., 2016) enhances confusion matrices, helping
experts understand model outputs and compare algorithms.

2. INFUSE (Krause et al., 2014) ranks predictive features across
algorithms, folds, and classifiers, aiding domain experts in iden-
tifying important features for model selection.

3. IForest (Zhao et al., 2018) offers visual explanations for inter-
preting random forests, such as allowing users to trace how
individual predictions are made by the forest and displaying the
relative importance of features in the decision-making process.

However, although these visualizations aim to simplify ML concepts
through intuitive interfaces, they may still be unsuitable for novices
without additional training, as they assume prior knowledge of fun-
amental ML concepts, such as cross-validation (Berrar, 2019) and

confusion matrices (Susmaga, 2004).

7. Limitations and future work

It is likely that participants’ high level of education made them more
apable of understanding the ML content presented in the study. Some
articipants’ familiarity with statistics may have better equipped them
o grasp concepts. To broaden the range of individuals represented, al-
ernative recruitment strategies, such as using online research platforms
r organizing community workshops, could be implemented to help

diversify the participant pool. Even so, ML is clearly a challenging topic
that cannot be mastered in a few hours: our findings Sections 5.1 and
5.2 revealed a series of challenges and misconceptions which persisted
ven after participants completed the take-home tutorial. Additionally,
e believe that this participant pool, with its diverse backgrounds
nd expertise ranging from Electrical Engineering to Social Sciences
nd Multimedia Design, is representative of individuals who are both
illing and realistically capable of applying ML within the context of
 two-hour study.

8. Conclusion

This paper presented a qualitative study designed to understand
he challenges ML novices encounter when building simple ML mod-
ls for classifications problems. The study included twenty partici-
ants who engaged with fundamental ML concepts through an in-
eractive take-home tutorial, completed various exercises, and were
ubsequently interviewed. Our findings indicated that although partic-
pants reflected on good model building practices, discussing how ML
hould be applied, they encountered a variety of conceptual challenges,
uch as interpreting visualizations, problem selection and the multi-
imensionality of both algorithms and data. Finally, based on these
indings, we have identified a series of implications for designing
ffective ML tools for novices, including providing actionable insights
nd directing novices towards simpler problems. The growing interest
n ML by novices raises challenges in developing tools that help them
orrectly and efficiently apply ML whilst helping them avoid pitfalls.
his is a timely challenge for the HCI community, as the misapplication

f ML might potentially lead to biased or unfair results.
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