Prediction of Context Information Using Kalman Filter Theory
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1 Context information prediction using follows

the Kalman filter theory Xopr = FXe 4+ Ve 1=1,2,..
with V, defined as

R.E. Kalman presented in 1960 a novel approath [3] for an effi-
cient solution of the discrete-data linear filtering problem from V, = WN(0,Q;)
a computational point of view. The set of recursive equations
usually called the Kalman filter has been exploited in a larg&is equation determines the state,; at timet + 1 in terms
number of application fields from automatic control systemsabthe previous stat¥, and a noise term. Defining as the di-
weather forecasting. mension ofY; andv as the dimension of;, {G. } is a sequence

We apply the Kalman filter theory to the analysis of the tin@f w x v matrices and F; } is a sequence af x v matrices. We
series of values that represent context information. Firstly, wesume thafV,} is uncorrelated with{W,}, even if a more
need to have a representation of the problem according a tgsineral form of the state space model allows for correlation be-
cal state space model, since we have a set of observationstaegn these two variables. Analytically, we can rewrite this
we derive a prediction model based on an inner state tha¢@dition as follows
represented by a set of vectors. In the following section, we
give a general introduction to state space models and, in the E(W;,V{) =0 Vst
remainder of this appendix, we present the ways in which we o ) )
have applied these concepts to the analysis and the predicYMﬁqalso assume that the initial state is uncorrelated with all
of context information, discussing three cases according to Hide noise termgV, } and{w}.
different behaviour of the time series. More specifically, we
consider the cases of time series characterised by local trehdd Kalman filter prediction
and seasonal trends [1]. Clearly, the complete model introduces

more computational overhead; however, it provides more ac¥ith the notation off; (X) we refer to the best linear predictor
rate results. (in the sense of minimum mean-square errorXah terms of

Y at the timet. P,(X) is defined as follows

1.1 State space models PX) =] P(X1) .. P(X,) ]T

A state space model for a time seriésconsists of two equa-

. - . . where
tions. The first one called thebservation equatiors the fol-
o a P/(X,) = P(Xi[Yo, Y1, Yy)
g
Y: =G Xy +W; t=1,2,... P(X;|Yo,Y1,...,Y) indicates the best predictor of; given
) i Yo, ..., Y¢+. We can also observe th& (X) has the following
with W, defined af] form

Wt :WN(O,Rt) Pt(x) :AOYO+~~+Ath

since it is a linear function ofr,...,Y;. It is possible to

This equation defines the-dimensional observatiofiY:} as prove [1] for the state space model discussed in the previous
a linear function of a-dimensional state variablgX;} and Section that the one-step predictor

a noise term. The second one is 8tate equatiordefined as
Xt = Pt,l(xt)

1WN stands for White Noise, a term that derives from telecommunication
engineering. A white noise is a sequence of uncorrelated random varigples . . .
each with the same mean and variaaée Therefore, white noise is also an ex-and their error covariance matrices
ample of stationary time series. More specifically, the notatloiv (0, { R: }) . -
indicates white noise with zero mean and variaRge Q = E[(X; — X¢)(X¢ — X))



are determined by these initial conditions 1.3.2 Model with trend component

X, = P(X1]Yo) A more complex model can be obtained adding a trend compo-
nent. We adopt a model composed by the following equations:
Q1 = E[(X1 — X1)(Xy — X1)7] Y, = M, + W,

and these recursive equations
My =M+ B+ Vi

Xt-&-l = Ftit + @tAt_l(Yt — Gt)A(t)

Biy1 =B+ Uy
Qi1 = B EL -e,A;'0f
t+1 0 F 4+ Qy [ZAVIR oM where
where W, = WN(0,07,)
Ay = GuGT + Ry
O; = FtQtG;T Vi= WN(O’ 03)
1.3 Estimation models Uy = WN(0,03)
1.3.1 Basic model In this model the state vector is the following
The basic state space model is composed of the following two M,
scalar equations Xy = [ B, }
Y, =X +W, t=1,2,... We can write
e J=Lo ][5 ][]
Wy = WN(0,Q;) Biy 0 1 B, Ut
and Setting
Xep=Xi+Vi t=12. Vf_[Vt}
L Ut
with . . L
we can also rewrite this equation in a more compact way
Vi = WN(0, Ry)
With respect to the Kalman filter prediction we can consider a Xii1 = [ (1) i ] Xi 4V,

mono-dimensional system with
Using the same notation that we have adopted for the Kalman

Ge= 1] filter, in this case we have
F, =] 11
. : : = { 0 1 }
Therefore, we can derive the recursive equations of the Kalman
filter for the prediction of the values of this series. Given the Gi=[1 0]
previous observed valug; and the predicted value at tinte
X, the recursive equation for the determination of the pre- 0, = o 0
dicted value at time + 1 is ¢ 0 o?
~ ~ 9] ~ Rt = O'IQ/V
X1 =Xy + t (Y; — X4) . , -
Q + Ry Therefore, we can rewrite the Kalman filter prediction equa-
. tions for this model. Firstly, we consider the initial conditions
with S . )
2 that, in this case, can be calculated using the following formu-
Qg1 = +Q; — lae
QU+ R S
T e X1 = P(X1[Yo)
Since in this case “ S
Q =06, Oy = E((X1 = X1) (X1 = X1)7) =
M, — M — ~
we can also write =LK Bi—]§11 { M, — M, Bi—B; ] ) =
02 — M, — M, — M, - B
Oy =040y - B _p( 0 =My = M) (My = 30)(By - By

Qt+Rt (Ml —]/\4\1)(31 —Bl) (Bl —El)(Bl—El)



With respect to the recursive equations of the filter we obtairwhereX; satisfies the state equation

~ J/\Z't+1 Xt+1:FXt+Vt t:].,Q,
Xiv1 =] 5 = .
B with .
1 1 M, _ Oy, Vi=| 2 0 0 0 ... 0O
_ |: :| At +At 1(Y% o Mt) |: M, :| _ [ ]
0 1 B, Op, and
= -1 -1 - -1 -1
_ Mtht +At1(Yt—Mt)[gg"} 1 0 -~ 0 0
¢ k F=1| 0 1 0 0
that can be decomposed as follows C
— T B A o 0 0 1 0
My 1 =M+ B (Y, — M, . . .
t1 v+ Bt A7 (Ve — My)Ow, To derive a prediction state space model with a trend and a
§t+1 =B, + A7YY, — B,)Og seasonal components, it is sufficient to add this state equation
) ! ’ to that which we have discussed in the previous section. In
with other words, we have to consider the following state vectors
Q1 Q2 1 2 2 1 T
T
A X% - [ St Stfl St7d+2 }
1.3.3 Model with trend and seasonal components .
Defining
It is possible to derive a more general model, adding another X, — X}
component in order to allow consideration of possible seasonal X2

can derive a general form of the state equation that can be
Pi5ed to take in consideration both trend and seasonal compo-
nents as follows

Y;:]\/ft-f—Bt-FSt-’—Wt Xt:FXt+Vt
To define this seasonal component we have to analyse its p{pip
erties. In general, we consider a time serjgsepresenting a

behaviour in the time series. Therefore, we introduce the te\;\fg
Sy in the observation equation, which can be rewritten as fi
lows

seasonal component such that Xe=[ M, By Si Si—1 . Si—dte }T

Yi+d = Ve 1 1 0 o --- 0 0

0 1 0 o --- 0 0
and ; 0 0 -1 -1 -1 -1
_ |10 0 1 0 0 0
=0 F =

; n 00 0 1 0 0
Therefore, it is possible to derive the following expression for oono : - :
the determination of; | 0 0 O o --- 1 0 |

T
Yt+1 = =Vt — - — Vt—d+2 t= 1, 27 Vt = [ Vvt Ut Zt 0 ... 0 ]

. The observation equation will be the followin
A more general expression of the seasonal compaosieaitow- g 9

ing for random deviations from strict periodicity is obtained by Y, = [ 1 01 0 ... 0 ] X + W,
adding a terni/; to the right hand side of the previous expres-

sion 1.4 Subsequent predictions

Str1==5— .. = Sp—ay2+ Vi =12, It is also possible to make subsequent predictions, in the case

Considering only the seasonal effect, in order to obtain a stﬂ}at observation values are not available, by using the same
g only ' RiSdel that we discussed previoudly [1, 2]. In other words, it

space representation, we introduce(ithe 1)-dimensional state is possible to predick consecutive estimationd 1, ..., Y15,

vectorX, using the predictor calculated at time without exchanging new
X, — [ s g ]T context and routing informatiﬁh Now we derive the expres-
K Boooiml e Ohedd2 sion of theh-step prediction o¥; using recursive equations.
The seriesS; is given by the observation equation 2 It is possible to evaluate the maximum numbeof predictions that it is
possible to make with a given required accuracy. However, we do not present
Sy = [ 1 0 00 ... 0 ] X¢ t=1,2,.. these results in detail, since they are outside the scope of this work.



Observing that
X; = Pi(Xe41) = FyPo1(Xe) + O.A7 (Y4 — Pim1(Xy))
it is possible to writeX,,,, as

>A(t+h, =P, (X¢yn) =
=Fin1P(Xegp—1) =

= (Ft+h—1Ft+h—2--~Ft+l)Pt(Xt+1) t= 2,37
andY,,, as

Yiin = Pi(Yern) = GernPi(Xesn)
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