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1 Context information prediction using
the Kalman filter theory

R.E. Kalman presented in 1960 a novel approach [3] for an effi-
cient solution of the discrete-data linear filtering problem from
a computational point of view. The set of recursive equations
usually called the Kalman filter has been exploited in a large
number of application fields from automatic control systems to
weather forecasting.

We apply the Kalman filter theory to the analysis of the time
series of values that represent context information. Firstly, we
need to have a representation of the problem according a typi-
cal state space model, since we have a set of observations and
we derive a prediction model based on an inner state that is
represented by a set of vectors. In the following section, we
give a general introduction to state space models and, in the
remainder of this appendix, we present the ways in which we
have applied these concepts to the analysis and the prediction
of context information, discussing three cases according to the
different behaviour of the time series. More specifically, we
consider the cases of time series characterised by local trends
and seasonal trends [1]. Clearly, the complete model introduces
more computational overhead; however, it provides more accu-
rate results.

1.1 State space models

A state space model for a time seriesYt consists of two equa-
tions. The first one called theobservation equationis the fol-
lowing

Yt = GtXt + Wt t = 1, 2, ...

with Wt defined as1

Wt = WN(0, Rt)

This equation defines thew-dimensional observation{Yt} as
a linear function of av-dimensional state variables{Xt} and
a noise term. The second one is thestate equationdefined as

1WN stands for White Noise, a term that derives from telecommunication
engineering. A white noise is a sequence of uncorrelated random variablesXt,
each with the same mean and varianceσ2. Therefore, white noise is also an ex-
ample of stationary time series. More specifically, the notationWN(0, {Rt})
indicates white noise with zero mean and varianceRt.

follows
Xt+1 = FtXt + Vt t = 1, 2, ...

with Vt defined as

Vt = WN(0, Qt)

This equation determines the stateXt+1 at timet + 1 in terms
of the previous stateXt and a noise term. Definingw as the di-
mension ofYt andv as the dimension ofXt, {Gt} is a sequence
of w×v matrices and{Ft} is a sequence ofv×v matrices. We
assume that{Vt} is uncorrelated with{Wt}, even if a more
general form of the state space model allows for correlation be-
tween these two variables. Analytically, we can rewrite this
condition as follows

E(Wt, VT
t ) = 0 ∀ s, t

We also assume that the initial stateX1 is uncorrelated with all
of the noise terms{Vt} and{Wt}.

1.2 Kalman filter prediction

With the notation ofPt(X) we refer to the best linear predictor
(in the sense of minimum mean-square error) ofX in terms of
Y at the timet. Pt(X) is defined as follows

Pt(X) ≡
[

Pt(X1) ... Pt(Xv)
]T

where
Pt(Xi) ≡ P (Xi|Y0, Y1, ..., Yt)

P (Xi|Y0, Y1, ..., Yt) indicates the best predictor ofXi given
Y0, ..., Yt. We can also observe thatPt(X) has the following
form

Pt(X) = A0Y0 + ... + AtYt

since it is a linear function ofY0, ..., Yt. It is possible to
prove [1] for the state space model discussed in the previous
Section that the one-step predictor

X̂t ≡ Pt−1(Xt)

and their error covariance matrices

Ωt = E[(Xt − X̂t)(Xt − X̂t)T ]

1



are determined by these initial conditions

X̂1 = P (X1|Y0)

Ω1 = E[(X1 − X̂1)(X1 − X̂1)T ]

and these recursive equations

X̂t+1 = FtX̂t + Θt∆−1
t (Yt −GtX̂t)

Ωt+1 = FtΩtF
T
t + Qt −Θt∆−1

t ΘT
t

where
∆t = GtΩtG

T
t + Rt

Θt = FtΩtG
T
t

1.3 Estimation models

1.3.1 Basic model

The basic state space model is composed of the following two
scalar equations

Yt = Xt + Wt t = 1, 2, ...

with
Wt = WN(0, Qt)

and
Xt+1 = Xt + Vt t = 1, 2, ...

with
Vt = WN(0, Rt)

With respect to the Kalman filter prediction we can consider a
mono-dimensional system with

Gt = [1]

Ft = [1]

Therefore, we can derive the recursive equations of the Kalman
filter for the prediction of the values of this series. Given the
previous observed valueYt and the predicted value at timet,
X̂t, the recursive equation for the determination of the pre-
dicted value at timet + 1 is

X̂t+1 = X̂t +
Ωt

Ωt + Rt
(Yt − X̂t)

with

Ωt+1 = Ωt + Qt −
Θ2

t

Ωt + Rt

Since in this case
Ωt = Θt

we can also write

Ωt+1 = Ωt + Qt −
Ω2

t

Ωt + Rt

1.3.2 Model with trend component

A more complex model can be obtained adding a trend compo-
nent. We adopt a model composed by the following equations:

Yt = Mt + Wt

Mt+1 = Mt + Bt + Vt

Bt+1 = Bt + Ut

where
Wt = WN(0, σ2

w)

Vt = WN(0, σ2
v)

Ut = WN(0, σ2
u)

In this model the state vector is the following

Xt =
[

Mt

Bt

]
We can write[

Mt+1

Bt+1

]
=
[

1 1
0 1

] [
Mt

Bt

]
+
[

Vt

Ut

]
Setting

Vt =
[

Vt

Ut

]
we can also rewrite this equation in a more compact way

X̂t+1 =
[

1 1
0 1

]
X̂t + Vt

Using the same notation that we have adopted for the Kalman
filter, in this case we have

Ft =
[

1 1
0 1

]
Gt =

[
1 0

]
Qt =

[
σ2

V 0
0 σ2

U

]
Rt = σ2

W

Therefore, we can rewrite the Kalman filter prediction equa-
tions for this model. Firstly, we consider the initial conditions
that, in this case, can be calculated using the following formu-
lae

X̂1 = P (X1|Y0)

Ω1 = E((X1 − X̂1)(X1 − X̂1)T ) =

= E

( [
M1 − M̂1

B1 − B̂1

] [
M1 − M̂1 B1 − B̂1

] )
=

= E

(
(M1 − M̂1)(M1 − M̂1) (M1 − M̂1)(B1 − B̂1)
(M1 − M̂1)(B1 − B̂1) (B1 − B̂1)(B1 − B̂1)

)
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With respect to the recursive equations of the filter we obtain

X̂t+1 =

[
M̂t+1

B̂t+1

]
=

=
[

1 1
0 1

][
M̂t

B̂t

]
+ ∆−1

t (Yt −Mt)
[

ΘMt

ΘBt

]
=

=

[
M̂t + B̂t

B̂t

]
+ ∆−1

t (Yt −Mt)
[

ΘMt

ΘBt

]
that can be decomposed as follows

M̂t+1 = M̂t + B̂t + ∆−1
t (Yt −Mt)ΘMt

B̂t+1 = B̂t + ∆−1
t (Yt −Bt)ΘBt

with

∆t =
[

1 0
] [ Ω11 Ω12

Ω21 Ω22

] [
1
0

]
+
[
σ2

w

]
= [Ω11]+

[
σ2

w

]
1.3.3 Model with trend and seasonal components

It is possible to derive a more general model, adding another
component in order to allow consideration of possible seasonal
behaviour in the time series. Therefore, we introduce the term
St in the observation equation, which can be rewritten as fol-
lows

Yt = Mt + Bt + St + Wt

To define this seasonal component we have to analyse its prop-
erties. In general, we consider a time seriesγt representing a
seasonal component such that

γt+d = γt

and
d∑

i=1

γt = 0

Therefore, it is possible to derive the following expression for
the determination ofγt+1

γt+1 = −γt − ...− γt−d+2 t = 1, 2, ...

A more general expression of the seasonal componentSt allow-
ing for random deviations from strict periodicity is obtained by
adding a termVt to the right hand side of the previous expres-
sion

St+1 = −St − ...− St−d+2 + Vt t = 1, 2, ..

Considering only the seasonal effect, in order to obtain a state
space representation, we introduce the(d−1)-dimensional state
vectorXt

Xt =
[

St St−1 ... St−d+2

]T
The seriesSt is given by the observation equation

St =
[

1 0 0 0 ... 0
]

Xt t = 1, 2, ...

whereXt satisfies the state equation

Xt+1 = FXt + Vt t = 1, 2, ...

with
Vt =

[
Zt 0 0 0 ... 0

]T
and

F =


−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0


To derive a prediction state space model with a trend and a
seasonal components, it is sufficient to add this state equation
to that which we have discussed in the previous section. In
other words, we have to consider the following state vectors

X1
t =

[
Mt Bt

]T
X2

t =
[

St St−1 ... St−d+2

]T
Defining

Xt =
[

X1
t

X2
t

]
we can derive a general form of the state equation that can be
used to take in consideration both trend and seasonal compo-
nents as follows

Xt = FXt + Vt

with

Xt =
[

Mt Bt St St−1 ... St−d+2

]T

F =



1 1 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 −1 −1 · · · −1 −1
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0


Vt =

[
Vt Ut Zt 0 ... 0

]T
The observation equation will be the following

Yt =
[

1 0 1 0 ... 0
]

Xt + Wt

1.4 Subsequent predictions

It is also possible to make subsequent predictions, in the case
that observation values are not available, by using the same
model that we discussed previously [1, 2]. In other words, it
is possible to predicth consecutive estimationsYt+1, ..., Yt+h,
using the predictor calculated at time without exchanging new
context and routing information2. Now we derive the expres-
sion of theh-step prediction ofYt using recursive equations.

2 It is possible to evaluate the maximum numbern of predictions that it is
possible to make with a given required accuracy. However, we do not present
these results in detail, since they are outside the scope of this work.
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Observing that

X̂t = Pt(Xt+1) = FtPt−1(Xt) + Θt∆−1
t (Yt − Pt−1(Xt))

it is possible to writêXt+h as

X̂t+h = Pt(Xt+h) =
= Ft+h−1Pt(Xt+h−1) =
...
= (Ft+h−1Ft+h−2...Ft+1)Pt(Xt+1) t = 2, 3, ...

andŶt+h as

Ŷt+h = Pt(Yt+h) = Gt+hPt(Xt+h)
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