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ABSTRACT
Traditional middleware primitives offer very elementary informa-
tion dissemination mechanisms, which, in the case of a decentral-
ized and dynamic network such as a mobile ad hoc network, do not
offer the ability to control the information spreading. Control over
information dissemination could instead be very critical especially
in terms of lifetime of the network. Gossip-based communication
and epidemic-style algorithms, which are based on a store and for-
ward approach, have been proposed to obtain message dissemina-
tion with probabilistic guarantees and lower overheads. However,
epidemic algorithms have never been used to allow designers to
control the spreading of the information depending on the desired
reliability and the network structure.

In this paper, we present a middleware for ad hoc networking,
which uses epidemic-style information dissemination techniques
to tune the reliability of the communication in mobile ad hoc net-
works. The approach is based on recent results of complex net-
works theory; the novelty of our idea resides in the evaluation and
the exploitation of the structure of the underlying network for the
automatic tuning of the dissemination process and its use in the de-
sign of the API offered by the middleware. We present a detailed
analytical model supported by several simulation results.

1. INTRODUCTION
Traditional middleware primitives for information dissemina-

tion fail to offer the right abstractions to the programmer of mobile
applications, especially if these are targeted to very decentralized
systems such as mobile ad hoc networks [18]. One of the main ca-
pabilities which is missed is the ability to control the information
spreading from the application program. Examples of applications
in which this feature is essential are emergency and rescue oper-
ations in possibly crowded public areas (such as inside stations,
airports or shopping centers) or during events that involve a large
number of people gathered together (such as in occasion of major
sport events in stadiums or arenas). If the network infrastructure
has failed, firefighters and other helpers might want to relying on
device to device connectivity of the people in the area: the spread-
ing of messages might need to be controlled so to preserve the
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lifetime of the network for future messages. For example, it may
be sufficient to send the messages only to a percentage of the res-
cue team members (e.g., 50% of the doctors). In other situations,
there might be a need to reach all the deployed emergency per-
sonnel. Up to our knowledge, no solutions exploiting the minimal
necessary and sufficient number of replicated messages given the
emergent network structure to guarantee a desired level of reliabil-
ity exist. This lack of ability to control message dissemination at
the application level is partly due to the poor APIs offered by the
middleware but also to the lack of algorithms that can implement
this tuning over the network.

Mobile ad hoc networks can be frequently and temporarily par-
titioned and the traditional routing protocols, including the ba-
sic flooding, fail to offer any sort of reliability when this hap-
pens. Epidemic-style protocols, instead, being store and forward
approaches, allow for communication in dynamic and mobile net-
works, also in presence of temporary disconnections or network
partitions. The analogy between information dissemination in mo-
bile systems and epidemics transmission in communities is evident
and a host can be referred to as infected when it receives a piece of
information and stores it, and susceptible (i.e, it could be infected)
otherwise.

Epidemics-inspired techniques have received huge attention in
recent years from the distributed systems community [11]. These
algorithms and protocols rely on probabilistic message replication
and redundancy to ensure reliable communication. Epidemic tech-
niques were firstly applied to guarantee consistency in distributed
databases [10]. A few attemps have been made to employ epi-
demic based techniques for information dissemination in mobile
ad hoc networks [20, 9, 3]. However, existing epidemic algorithms
do not permit to control the spreading of the information depend-
ing on the wanted reliability and the network conditions such as
in the needed scenario depicted above. In fact, these approaches
are fundamentally based on empirical experiments and not on an-
alytical models: the input parameters that control the dissemina-
tion process are selected by using experimental results and are not
based on any mathematical model. This implies that the message
replication process cannot be tuned with accuracy in a dynamic
way: for instance, it is not possible to set the parameters of the
dissemination process in order to reach only a certain desired per-
centage of the hosts. Furthermore, these algorithms do not exploit
the information on the underlying network topology. This is due
to the fact that many interesting works on epidemic modelling in
complex networked systems are very recent [1].

The use of these recent complex network theories allows us to
devise a more precise model of the dissemination and to control
the reliability level that can be imposed on message delivery, by
evaluating the distribution of the degree of connectivity of nodes.



In other words, the number of the replicas in the network and their
persistence can be controlled to support a delivery process that
is characterised by the reliability specified by developers. More-
over, by using these results we designed algorithms that are able
to adapt dynamically to possibly variable degrees of connectivity
of the hosts.

The contribution of this paper can be summarised as follows:
• We design a dissemination algorithm for mobile ad hoc net-

works that relies on epidemic models taking into account
the structure of the underlying network and using recent re-
sults in complex networks theory concerning the modelling
of epidemics spreading;

• we define a middleware interface for probabilistic commu-
nication and information dissemination in mobile systems
that allows the programmers to set the reliability for unicas-
ting and anycasting based on these theoretical results with a
high degree of accuracy, also in presence of failures.

Complex networks are usually classified in two main groups de-
pending on the distribution of the degree of connectivity of the
nodes (i.e., the number of the links of the hosts): exponential net-
works and scale free networks. The formers are characterised by
a connectivity distribution P (k) peaked at an average value 〈k〉.
Typical examples are random graph model [7] and the small-world
model proposed by Watts and Strogatz [1]. Scale free networks are
characterised by fluctuations of the degree k that any given node
may have. Exponential networks are characterised by very small
fluctuations (i.e., the degree of every vertex can be approximated
as k ≈ 〈k〉); for this reason, they are also identified as homoge-
neous networks. On the other hand, for the inherent fluctuations
of the degree of connectivity, scale-free networks are classified as
heterogeneous networks. We will first assume a mobile system
with homogeneous network structure. This structure is realistic
for a number of typical of scenarios characterised by a high den-
sity of hosts and where the movements of the hosts can be approx-
imately modelled as random, such as in large outdoor spaces (i.e.,
squares, stations, airports or around sport venues) [14]. Then, we
will discuss a generalization of the model to heterogeneous net-
works. This is the case of scenarios with the presence of groups
of hosts and solitary individuals. In other words, we prove that
the middleware has a general applicability, since it can be used in
presence of both homogeneous and heterogeneous networks.

This paper is structured as follows. Section 2 introduces the
middleware interfaces for controlled information dissemination.
Section 3 provides a brief introduction to epidemic spreading mod-
els proposed in the recent complex networks studies and discusses
the design of possible information dissemination strategies based
on them. The implementation of our algorithm supporting he mid-
dleware primitives is described in Section 4. Section 5 shows an
analytical study of our approach and presents several simulation
results that confirm the validity of the theoretical model. In Sec-
tion 6 we compare our approach to existing work, underlining its
novelty and possible extensions of the model to heterogeneous net-
works scenarios. Section 7 concludes the paper, summarising its
contribution.

2. MIDDLEWARE PRIMITIVES FOR CON-
TROLLED EPIDEMIC DISSEMINATION

Our goal is to provide a set of primitives that allows develop-
ers to tune information dissemination in mobile ad hoc networks
according to their specific application requirements. This prob-
lem can be evaluated from two different perspectives. In fact, the
spreading of information from a source A to a certain percentage
Ψ of the mobile hosts of the system can be seen as the problem of

sending a message from host A to another randomly chosen host
B with a certain probability Ψ. This probability can be interpreted
as the reliability of the delivery mechanism.

We designed two primitives to support controlled communica-
tion in mobile systems that capture these two complementary per-
spectives. First of all, we design a primitive for probabilistic uni-
cast communication:

epsend(message,recipient,reliability,time)

where message is the message that has to be sent to the recipient
with a certain probability measured by the value reliability
(that has to be chosen in the range [0, 1]) in a bounded time interval
defined by the time field. The field reliability is used to set
the value of Ψ. The validity of the message corresponding to the
interval of time during which the infection will spread is specified
by the field time.

Similarly, we introduce a primitive for probabilistic anycast com-
munication as follows:

epcast(message,percentageOfHosts,time)

where message is the message that has to be sent to a certain per-
centage of hosts equal to the value defined in percentageOfHosts
in a bounded time interval equal to time. In this case the field
percentageOfHosts is used to set the value of Ψ.

The infectivity of the epidemics (i.e., the probability of being in-
fected by a host that is in the same radio range, like in human dis-
eases spreading) can be used to control the reliability of the unicast
probabilistic communication mechanism. In other words, given an
expected reliability (or percentage of hosts that has to be infected)
equal to Ψ, we are able to accurately calculate the value of the in-
fectivity in order to obtain an infection rate equal to a proportion
of the total number of the hosts in the network. It is also worth
noting that, as we will discuss in the next section, these primitives
rely on a probabilistic algorithm based on the transmission of a
minimal, and, at the same time, sufficient, number of messages.
In other words, the energy consumption due to transmissions is
minimized.

The applications of these middleware primitives are many. For
example, these can be used to reach only a percentage of hosts in a
network. Using these primitives, a member of an emergency squad
finding a person in relatively critical conditions while exploring a
disaster area, can alert a fraction of his/her colleagues, so to let
others attend other patients.

3. DISSEMINATION TECHNIQUES BASED
ON EPIDEMIC MODELS

In this section, we discuss our application of mathematical mod-
els of epidemic spreading to the problem of probabilistic commu-
nication and information dissemination in mobile ad hoc networks.
We consider a system composed of nodes characterised by a finite
buffer size, which is a realistic assumption. The communication in
the system is message passing based. Messages are composed of
a header, containing information that is used to perform the ship-
ment and a body, containing the data that has to be sent to a specific
host. Every message is characterised by a unique identifier. An
expiration time field is used to specify its validity. Given the lim-
ited buffer size, every node can store a finite number of messages.
These are inserted in the buffer only if not already present.

We now briefly introduce the mathematical models that we ex-
ploit to design the dissemination algorithms. These are at the basis
of the design of the middleware API presented in Section 2. In
order to model the replication mechanisms for the messages, we
exploit mathematical models that have been devised to describe



the dynamics of infections in human populations [13]. The study
of mathematical models of biological phenomena has been pio-
neered by Kermack and McKendrick in the first half of the last
century. In the following decades, their work has been consider-
ably extended and, nowadays, the study of epidemiology from a
mathematical point of view is a mature scientific discipline. In
particular, mathematical models of infection spreading of human
diseases have been developed and successfully exploited to pre-
dict the evolution of the epidemics with the aim of finding effec-
tive countermeasures [2]. Very recently, researchers in the area of
complex networks theory have focused their attention on the prob-
lem of modeling epidemics spreading in networks characterised by
well-defined structures [4].

According to the Kermack and McKendrick model, an individ-
ual can be in three states: infected, (i.e., an individual is infected
with the disease) susceptible (i.e., an individual is prone to be in-
fected) and removed (i.e., an individual is immune, as it recovered
from the disease). This kind of model is usually referred to as the
Susceptible-Infective-Removed (SIR) model [2]. In this paper we
use a simplified version of the model, according to which individ-
uals can exist in only two possible states, infected and susceptible.
In the literature, this model is usually referred to as Susceptible-
Infective-Susceptible (SIS) model [2]. We now map this model
onto a mobile network of communicating hosts, where messages
are disseminated. In the remainder of this paper we will substitute
the term individual, used by epidemiologists, with the term host.
A host is considered infected, if it holds the message and suscepti-
ble if it does not. If the message is deleted from the host, the host
becomes susceptible again.

The main assumptions of our model are the following:
• all susceptibles in the population are equally at risk of infec-

tion from any infected host (this hypothesis is usually de-
fined by epidemiologists as homogeneous mixing);

• the infectivity of a single host, per message, is constant1;
• every host collaborates to the delivery process and no mali-

cious nodes are present;
• each node has a buffer of the same size;
• the initial number of hosts and the host failure rate are known

a priori by each host2;
• the host failure rate can be approximated as a stationary pro-

cess within the time interval of infection spreading (i.e., the
number of hosts is considered constant during the spreading
of the infection)3;

• the failures of the nodes are uniformly random distributed
and permanent.

Under the assumptions above, the dynamics of the infectives
and susceptibles in the case of a scenario composed of N(t) active
hosts (i.e., not failed) can be approximately4 described by means
of a system of differential equations which we refined from [2] as

1Note that the infectivity per single message (i.e., a disease) is
constant, but not per single host. In other words, a host usually
stores messages characterised by different infectivities in its buffer.
2The initial number of hosts can be usually estimated in occasion
of sport events, rallies, etc. for example by evaluating the seating
capacity of the venues or the size of the area when the event takes
place. Statistical data are also usually available for many appli-
cation scenarios, such as number of passengers that uses a station
or an airport in a certain time of the day, etc. Alternatively, this
number can be estimated using distributed algorithms for the cal-
culation of the approximated network size such as [15].
3This is a realistic assumption, since users usually require that the
information will be disseminated in a limited time.
4This is rigorously justifiable only for complete graphs in large
population limit. However, the model provides a good approxima-
tion also in scenarios composed of a limited number of hosts.

follows: 8>>>>>><>>>>>>:

dS(t)

dt
= −βS(t)I(t) + γ(t)I(t)

dI(t)

dt
= βS(t)I(t)− γ(t)I(t)

dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(1)

where I(t) is the number of infected hosts at time t, S(t) is the
number of susceptible hosts at time t, β is the average number of
contacts with susceptible hosts that leads to a new infected host per
unit of time per infective in the population, γ is the average rate of
removal of infectives from circulation per unit of time per infec-
tives in the population and φ is the failure rate (i.e., the probability
that one host fails per unit of time).

The equations of the system state that the decaying rate of sus-
ceptibles and the growth rate of infectives are calculated by con-
sidering two competing effects: the former, proportional to the
infectivity β, the number of susceptibles S(t) and the number of
infectives I(t); the latter, proportional to the removal rate γ and
the number of infectives I(t). The third equation is a consequence
of the hypothesis of closed system (i.e., the nodes are the same and
the number of hosts is constant over the interval of time taken into
consideration).

If we solve the system by using the initial condition I(t) = I0

(where I0 is the number of initial hosts infected), we obtain that
the number of infectives at time t is described by the following
equation:

I(t) =
I0e

αβt

1 +
I0

α
(eαβt − 1)

(2)

with α = N(t) − γ

β
. N(t) is considered approximately constant

during the entire epidemic process described by the system 1, since
we assume that the failure process is stationary considering the in-
terval of time during which the epidemics spreading happens (i.e.,
we assume N(t) ≈ N∗ with N∗ equal to the number of hosts
present in the system at the beginning of the epidemics). In our
case the initial condition is I0 = 1: this represents the first copy of
the message that is inserted in its buffer by the sender. This result
can be used to calculate the number of infectives at instant t with
a given infectivity β and a given removal rate γ, or, more inter-
estingly for our purposes, β and γ can be tuned in order to obtain
a certain epidemics spreading, after a specific length of time has
passed. The infectivity β is the fundamental parameter of the mes-
sage replication algorithm. In fact, a certain infectivity β can be
selected in order to obtain, at time t∗, a number of infectives (i.e.,
hosts that have received the message) equal to I(t∗) or, in other
words, a percentage of infectives5 equal to I(t∗)/N(t∗). The pa-
rameter γ can be interpreted as the deletion rate of the messages
from the buffer of the hosts. In fact, since the message buffers
have limited size, it may be necessary to delete some messages ac-
cording to a certain policy. Thus, from the average removal rate
of messages from buffer, it is possible to derive the infectivity that
is necessary and sufficient to spread the infection. In case the ab-
sence of overflow phenomena (i.e., in the case of sufficiently large
buffers) can be assumed, the model can be simplified with γ = 0.

In order to effectively exploit the model just described, the ac-
tual connectivity of each host should be kept into account. As

5Note that β = f(I(t)) is not defined for I(t) = N(t). Therefore,
from a practical point of view, in the case of a message sent to all
the hosts of the system, we will use the approximation I(t) =
N(t)− ε, with ε > 0, in the expression used to calculate β.



discussed in Section 1, the node degree k for each node can be ap-
proximated quite precisely with the average degree of connectivity
〈k〉 of the network. Therefore, in case of homogeneous networks,
in order to take into account the effect of the connectivity, it is

possible to rewrite the system (1), substituting β with λ
〈k〉
N

as fol-
lows, as discussed in [4]:8>>>>>><>>>>>>:

dS(t)

dt
= −λ

〈k〉
N

S(t)I(t) + γ(t)I(t)

dI(t)

dt
= λ

〈k〉
N

S(t)I(t)− γ(t)I(t)

dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(3)

λ represents the probability of infecting a neighbouring host. 〈k〉
N

gives the probability of being in contact with a certain host. In
other words, in this model, by substituting β with λ 〈k〉

N
, we have

separated, in a sense, the event of being connected to a certain host
and the infective process [4].

The solution of this system is similar to (2) (i.e., it is sufficient
to substitute β with λ 〈k〉

N
). Thus, it is possible to calculate λ as

function of I(t∗) and 〈k〉. Finally, it is interesting to note that
in homogeneous networks, every host knows its value of k and,
consequently, of 〈k〉. We will exploit this property to tune the
spreading of message replicas in the system.

4. IMPLEMENTING THE MIDDLEWARE
INTERFACE

Every time one of the two middleware primitives defined in Sec-
tion 2 is invoked, the middleware calculates the value of the infec-
tivity λ that is necessary and sufficient to spread the information
with the desired reliability in the specified time interval, by eval-
uating the current average degree of connectivity and the current
removal rate of messages from the buffer. The message identifiers,
the value of the calculated infectivity, the timestamp containing
the value specified in time expressing its temporal validity are
inserted in the corresponding headers of the message in the infec-
tivity field. Then, the message is inserted in the local buffer.

avDegreeOfConnectivity=System.getAvDegreeOfConn();
deletionRate=System.getDeletionRate();
infectivity=
calculateInfectivity(reliability,deletionRate,
avDegreeOfConnectivity, time);

basicReproductiveNumber=System.getBasicReprNumber();
if (basicReproductiveNumber>1) {

m=new Message();
m.setMessageId(System.generateMessageId());
m.setRecipient(recipient);
m.setContent(messageContent);
m.setInfectivity(infectivity);
m.setTimeStamp(time);
System.addToBuffer(m);

} else throw new deliveryException();

Program 1: Calculation of the parameters of the message.

A fundamental parameter in epidemiology is the basic repro-
ductive number R0 [2]. This can be interpreted as the number
of secondary infected hosts generated by one primary infective.
In epidemiology, this is generally used to evaluate the conditions
which give rise an epidemic outbreak in a population. Under the
given assumptions, the basic reproductive number is intuitively de-
fined as:

R0 =
λ〈k〉

γ
(4)

It can be deduced that the epidemics will spread only if R0 >
1 [4]. In this case, in fact, the epidemics will be able to generate
a number of infected hosts (represented by the numerator) larger
than those which have become susceptibles again (represented by
the denominator) per unit of time, leading to a monotonic increase
of the number of infectives I(t). By evaluating the basic repro-
ductive number, if it is not possible to ensure the specified relia-
bility (i.e., the basic reproductive number is less than 1), an excep-
tion is thrown. The conditions under which R0 is greater than 1
are discussed in Section 5.1.1 A possible implementation using an
object-oriented programming style is presented in Program 1.

Program 2 contains the epidemic spreading algorithm. This pro-
cedure is executed periodically with a period equal to τ . With re-
spect to the calculation of the message infectivity, it is possible to
assume τ as time unit in the formulae presented in Section 3. In
other words, assuming, for example, τ = 10, a timestamp equal
to one minute corresponds to six time units. The value of τ can be
set by the application developer during the deployment of the plat-
form. Clearly, the choice of the values of τ influences the accuracy
of the model, since it relies on a probabilistic process. For this rea-
son, given a minimum value of timestamp equal to tMIN , devel-
opers should ensure τ << tMIN . The number of rounds will be
equal to t∗/τ . For the Law of the Large Numbers, we obtain a bet-
ter accuracy of the estimation of the evolution of the epidemics as
the number of rounds (i.e., from a probabilistic point of view, the
number of trials) increases. We implemented the epidemic algo-

for (int i=0;i<numberOfMessagesStored;i++) {
m=System.getMessageAtPosition(i);
infectivity=m.getInfectivity();
for (int k=0;k<numberOfHostsInReach;k++) {
rValue=random(0,1);
if (rValue<=infectivity)
System.sendMessage(m,k);

}
}

Program 2: Epidemic Spreading Algorithm.

rithm and the middleware interface using Java SDK and we tested
the functionalities of the framework with laptops connected by a
wireless ad hoc network. However, in order to validate the epi-
demic algorithm, we studied its properties from an analytical point
of view and we tested it in more realistic large-scale scenarios by
means of simulations as described in the next section.

5. EVALUATION
We now present the evaluation of the proposed approach based

on the analytical derivation of some characterizing properties of
the system and on simulation results that confirm the theoretical
model. We do not show and compare the results obtained with
existing epidemic protocols and spanning-tree based multicast al-
gorithms, since the goal of our work is different. The main aim of
those protocols is to achieve 100% reliability communication with
all of the participating hosts, whereas we are interested in achiev-
ing an accurate tuning of the dissemination process given the net-
work structure in order to be able to reach only a percentage of the
nodes.

5.1 Analytical Study of Properties of the Sys-
tem

5.1.1 Spreading and Persistence of Messages
It is interesting to derive under which conditions the reproduc-

tive number R0 (defined in Section 4) is greater than 1. In this
case, we will be sure that the epidemics will propagate until the



expiration time6. With Preplacement we indicate the probability
that a message will have to be deleted from the buffer in order to
free space when it is full. This will happen when a message is re-
ceived, which is not already in the (full) buffer. With Phit(t) we
indicate the probability of receiving from a neighbour a message
that is already in the buffer (with a size equal to BufferSize) at time
t. Therefore, the probability that a message in a full buffer will be
deleted and replaced is equal to:

Preplacement = 1− Phit (5)

γ represents the deletion rate from the buffer that is proportional to
the arrival rate of a new message and the probability that this mes-
sage is already in the buffer (represented by Preplacement). Since
the arrival rate of new messages from any link is proportional to
the spreading rate λ and the average number of connections 〈k〉,
we re-write (4) as follows:

R0 =
λ〈k〉

γ
=

λ〈k〉
λ〈k〉Preplacement

=
1

Preplacement
(6)

Thus, R0 will be greater than 1 if and only if Preplacement < 1. In
other words, if the buffer is large enough to ensure that the average
removal rate is less than 1, the messages will remain in the system
until their expiration time.

If the removal rate is higher than this threshold, the system will
not be able to guarantee the persistence of the messages. It is pos-
sible to use this result to design a mechanism for determining when
a notification that the message cannot be disseminated needs to be
issued to the application. In general, the value of Preplacement

is dependent on the number of types of messages, their infectiv-
ities and the different stages of the dissemination processes (i.e.,
infections) that are present in the system. However, if the traffic
behaviour in terms of quantity and types of messages is homoge-
neous, the replacement rate observed at local level can be taken as
a reasonable indicator of the average global replacement rate.

5.1.2 Number of Messages in the Network
Another interesting quantitative parameter is the total number

of messages needed to disseminate messages to a certain percent-
age of hosts. In particular, we now estimate the number of repli-
cas sent, per message, in the case of infinite buffers (i.e., γ =
0). This is the case of systems which are characterised by well-
dimensioned buffers or where the traffic is low so the buffers are
able to store all the incoming messages without the necessity of
freeing space for them.

Considering an infection process repeated for a number of times
equal to r number of rounds, indicating with tr the time length
of the rth round, the total number of replicas per single type of
message can be estimated as follows:

NumberOfReplicas =

Z t=tr

t=0

λ〈k〉I(t)dt (7)

By substituting the value of I(t) (obtained by solving the system
(3)), we solve the integral obtaining the following estimation for
the number of replicas:

NumberOfReplicas = Nln(1 +
1

N
(eλ〈k〉tr − 1)) (8)

This can be approximated as follows:

NumberOfReplicas = O(N〈k〉) (9)
6It is interesting to note that, in theory, the message dissemination
would continue also after the expiration time. However, since the
replicas are deleted from the buffer after the expiration time, the
epidemic process terminates.

It is interesting to note that in the case of a fully meshed network
(i.e., all the hosts are in the transmission range), we obtain the
worst case approximation:

NumberOfReplicas = O(N2) (10)

Another interesting case is when 〈k〉 ≈ lnN . In this case the
number of replicas is approximately linear:

NumberOfReplicas = O(N) (11)

Finally, if 〈k〉 is not dependent from N 7, the number of messages
remains approximately constant as N increases8.

5.2 Simulation Results
We evaluated the proposed system and model by considering the

case of unicast communication with a given reliability specified by
the user (i.e., the delivery mechanisms that are at the basis of the
epsend() primitive). We do not consider the case of anycast
communication, since, as discussed, it relies on the same delivery
process.

5.2.1 Description of the Simulation
In order to test the performance of these techniques we consid-

ered a mobile scenarios composed of a realistic number of hosts
and we implemented and ran a series of simulations by using the
popular open source discrete-event simulator OMNeT++ [21]. We
defined a square simulation area with a side of 1 km and a trans-
mission range equal to 200 m. The simulation was set to run sev-
eral replicates for each mobile scenario in order to obtain a statis-
tically meaningful set of results (with a maximum 5% error).

The intervals between each message are modelled as a Poisson
process. We studied scenarios characterised by different number
of hosts (more precisely 32, 64, 96, 128). These input parameters
model typical deployment settings of mobile ad hoc networked
systems. We do not model explicitly the failures in the system,
since we assume that during the infection process, the number of
hosts remains constant.

All the messages are sent in the first 20 seconds in order to cre-
ate enough traffic to saturate the buffer. The sender and receiver
of each message are chosen randomly. We tested the algorithm
with both finite and infinite (i.e. equal to 100) buffer size. The
buffer for each node is set to 100 messages (i.e, infinite buffer),
unless otherwise specified. The execution interval of the epidemic
spreading procedure (presented in the box Program 2) is 10 sec-
onds. The expiration time (i.e., the value of time) is equal to 10
minutes. Therefore, the number of rounds is 60. We simulated
only the cases with the basic reproductive ratio R0 greater than 1,
since the middleware primitives simply return an exception if this
value does not reach the threshold.

The movements of the hosts are generated by using a Random
Way-Point mobility model [8]; every host moves at a speed that is
randomly generated by using a uniform distribution. The range of
the possible speeds is [1, 6]m/s. We selected this mobility model,
since as discussed in [14], its emergent topology has an exponen-
tial structures, with Poisson-like distributions. Therefore, in this
scenario, the properties of the network can be studied with a good
approximation by assuming a homogeneous networks model. The
accuracy of the approximation increases as the density of popula-
tion increases, since, considering the finite and limited simulated

7This is the case of scenarios where the hosts occupy a larger area
as the population increases, so that the density of population and,
consequently, 〈k〉 remain approximately constant.
8This result can be directly derived by applying L’Hospital’s rule
to calculate the limit.



time, we obtain a scenario characterised by a time series of de-
gree of connectivity values characterised by lower variance. More-
over, the so-called border effects, due to the host that moves at the
boundaries of the simulated scenarios, have less influence as the
density of population increases. This also means that as the num-
ber of failures in the system increases, the accuracy of the model
decreases. In fact, considering uniformly randomly distributed
failures, a scenario composed of 32 nodes can be used to model
the case of a scenario with an initial number of 64 nodes, where
half of them have failed. Figure 1 shows the distribution of the
degree of connectivity in the simulated scenarios composed of dif-
ferent numbers of hosts.

5.2.2 Analysis of Simulation Results
In this subsection we will analyse the results of our simulations,

discussing the performance of the proposed techniques. We will
study the variations of some performance indicators, such as the
delivery ratio and the number of messages sent as functions of the
density of hosts (i.e., the number of the hosts in the simulation
area), considering different buffer size (and consequently different
removal rates).

Figure 2 shows a comparison with the estimated epidemic spread-
ing (i.e., the number of infectives I(t∗)) and the data obtained
from the simulation of a mobile scenario composed of 128 nodes,
with t∗ = 10min and γ = 0. It is interesting to note that the val-
ues of the theoretical curve are higher than the experimental ones.
This is due to the fact that the degree of connectivity is not per-
fectly homogeneous in the simulated scenarios. For example, if a
message is sent by a host that has a degree of connectivity k > 〈k〉,
the value of β will be lower than the infectivity associated to the
average degree of connectivity 〈k〉9.

Figure 3 and 4 show the delivery ratio in terms of population
density, for the case of a desired reliability equal to 100 and 50,
respectively, with t∗ = 10min and γ = 0. The obtained deliv-
ery ratios are really close to the values expected from our model
analysis. Also in this case, the better approximation of the as-
sumption of homogeneous network, obtained when the density of
population increases, leads to better results (i.e., a more accurate
estimation) for the case of 128 nodes. Figure 5 and 6 show the
number of messages as function of population density. This con-
firms the analytical results presented in Section 5.1.2. In fact, the
curve is approximately linear, as justified by the fact that, in our
simulations 〈k〉 � N . The number of replicas per host per mes-
sage are plotted in Figure 8 and 8. These diagrams illustrate the
scalability of our approach, since the number of replicas per host
per message can be approximated as O(〈k〉). The influence of the
buffer size is presented in Figure 9 and Figure 10. The first shows
the comparison between the cases of infinite and limited (with a
size equal to 20) buffers. The effect of the non perfect network
homogeneity is present also here and is more evident for the sce-
narios composed of a lower number of hosts. In fact, if the actual
degree of connectivity is higher than the assumed 〈k〉 the proba-
bility of deletion of messages from the buffer increases. In this
case, the assumptions at the basis of the model in (3) are not valid.
Figure 10 shows that the number of messages is greater than in the
case of infinite buffers. In fact, an increased infectivity is needed
in order to spread the messages also in presence of the removal

9From a practical point of view, in order to cope with this issue,
it is sufficient to increase β, for example by adding a correction
equal to a percentage of the value calculated by using the theo-
retical model. However, for illustration purposes, in the simula-
tions presented in the remainder of this paper, we used values of
β derived directly from the model presented in Section 3 without
corrections.

phenomena, due to the limited buffer size.
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simulation data of infection spreading in the 128 hosts scenario
with desired reliability equal to 100, t∗ = 10min and γ = 0.

6. RELATED WORK AND DISCUSSION
In this section, we compare our solution with existing work,

discussing possible extensions and applications of the proposed
model (for example by relaxing the assumption of homogeneous
networks) and outlining our current research directions.

6.1 Comparison with the State of the Art
As far as mobile systems are concerned, a first study of the pos-

sible application of epidemic techniques in MANETs is presented
in [20] by Vahdat and Becker. Many refinements of this approach
have been proposed. A study of the information dissemination
based on epidemic models in mobile ad hoc networks is presented
in [16]. However, the authors discuss only a theoretical frame-
work, without proposing concrete implementation of the model.
Moreover, they do not take into account the influence of the struc-
ture of the network in the dissemination process.

Epidemic-style techniques have been applied to the design of
publish-subscribe systems for highly dynamic environments; two
recent interesting examples of such systems are presented in [9]
and [3]. Our approach can be used to improve the performance
of this class of systems in terms of resource consumption, since it
allows for a precise tuning of the dissemination process.

Some interesting analytical studies have been carried out on the
connectivity of ad hoc networks with respect to complex networks
theory; for example, Glauche et alii in [14] discuss some emerg-
ing network properties for different mobility models, using per-
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Figure 4: Delivery ratio Vs population density with desired
reliability equal to 50 and γ = 0.

colation theory. However, there are no available studies on the
emerging structure of real mobile ad hoc networks.

In terms of more general distributed systems, the seminal paper
on the application of epidemic techniques is [10], where these al-
gorithms are used to maintain consistency in replicated databases.
A general introduction to epidemic algorithms for information dis-
semination in distributed systems can be found in [11]. Much work
addressing different faces of the problem have been proposed, in-
cluding the remarkable contributions presented in [6, 12]. In gen-
eral, in these works, the authors consider the structure of the un-
derlying network topology only marginally, or from empirical and
experimental perspectives. A notable exception is [17], where the
authors discuss the application of the Harari graphs to the design
of protocols for broadcasting in fixed networks.

With respect to these works, the novelty of this paper resides
in the evaluation of the structure of the network by using accurate
models to control and tune the dissemination process according
to a desired reliability. We also underline that the design of our
system is based on theoretical results confirmed by experimental
evidence, whereas in some the existing works, mathematical mod-
els are only used to understand the emergent behaviour of the sys-
tem a posteriori. Moreover, up to our knowledge, this work can
be considered the first concrete application of the recent results on
epidemics spreading in complex networks [4].

We believe that these epidemic techniques should be applied
only in the cases where useful context information cannot be in-
ferred. In another work [19], we have in fact applied prediction
techniques to adapt and to optimise the communication mecha-
nism by evaluating the evolution of the mobile scenarios.
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Figure 5: Number of messages Vs population densFity with
desired reliability equal to 100 and γ = 0.
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Figure 6: Number of messages Vs population density with de-
sired reliability equal to 50, t∗ = 10min and γ = 0.

6.2 Relaxing the Assumption of Homogeneous
Networks

The results and the solutions discussed in this paper rely on the
assumption of homogeneous networks, that are emerging from the
random movements of the nodes. We now show that the proposed
approach can be generalised extended to the general case of het-
erogeneous networks. These structures are emerging in presence
of small clusters of people or communities. The results that we are
going to present for the case of heterogeneous networks are also
valid for homogeneous network, since the latter can be treated as
a particular case of the former.

For heterogeneous networks the approximation k ≈ 〈k〉 is not
valid. However, the same probabilistic communication primitives
introduced in Section 4 could be used, with a different semantics.
This relies on the following observations: given k fluctuating in
the range [kMIN , kMAX ], we observe that for a value of the in-
fectivity corresponding to k = kMIN , the obtained spreading of
the infection I(t∗, kMIN ) will satisfy the following property:

I(t∗, k) > I(t∗, kMIN ) ∀k ∈]kMIN , kMAX ] (12)

In other words, if kMIN is selected in the calculation of the value
of the infectivity, the value of Reliability can be considered
approximately as a guaranteed lower bound of the reliability level.
The value of kMIN can be dynamically retrieved and set by the
middleware by monitoring the connectivity of the host in mobile
systems. We plan to investigate these adaptive mechanisms further
in the future.

7. CONCLUDING REMARKS
In this paper, we have introduced middleware primitives for
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Figure 7: Number of replicas per host per message Vs popula-
tion density with desired reliability equal to 100, t∗ = 10min
and γ = 0.
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Figure 8: Number of replicas per host per message Vs popula-
tion density with desired reliability equal to 50 and γ = 0.

controlled information dissemination in mobile ad hoc networks,
which relies on optimised epidemic-style techniques. With respect
to unicast communication, we have showed that protocols that sta-
tistically ensure the desired reliability level for the case of homoge-
neous networks can be designed. We have also showed that these
results may be applied to the case of anycast and multicast com-
munication to tune and optimise the replication process. We have
evaluated our approach through simulation and have presented a
possible generalisation of the model discussing the relaxation of
the assumption of homogeneous networks.
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