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Abstract

The coevolution of signalling is a complex problem within animal behaviour, and is also
central to communication between artificial agents. The Sir Philip Sidney game was
designed to model this dyadic interaction from an evolutionary biology perspective, and
was formulated to demonstrate the emergence of honest signalling. We use Multi-Agent
Reinforcement Learning (MARL) to show that in the majority of cases, the resulting
behaviour adopted by agents is not that shown in the original derivation of the model.
This paper demonstrates that MARL can be a powerful tool to study evolutionary dynam-
ics and understand the underlying mechanisms of learning over generations; particularly
advantageous is the interpretability of this type of approach, as well as the fact that it
allows us to study emergent behaviour without the need to constrain the strategy space
from the outset. Although it originally set out to exemplify honest signalling, we show that
the game provides no incentive for such behaviour. In the majority of cases, the optimal
outcome is one that does not require a signal for the resource to be given. This type of
interaction is observed within animal behaviour and is sometimes referred to as proactive
prosociality. High learning and low discount rates of the reinforcement learning model are
shown to be optimal in order to achieve the outcome that maximises both agents’ reward,
and proximity to the given threshold leads to suboptimal learning.

Author summary

When is it too costly for animals to signal that they are in need? Signalling is a crucial
part of communication in animal behaviour, and it is also central to other types of inter-
actions, such as those involving artificial agents. We study emergent dynamics in the

Sir Philip Sidney game, a game designed to show the mechanisms of honest signalling
amongst animals. Using multi-agent reinforcement learning (MARL), we replicate gen-
erational learning and show that in the majority of scenarios, the optimal outcome is
one of proactive prosociality rather than honest signalling: this is an outcome where a
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resource is given without the need for a costly signal. Such behaviour is observed within
animal behaviour, most notably among primates. Our results also establish the use-
fulness of reinforcement learning as a tool to study emergent behaviour and dynamics
within animal behaviour for instance as shown here to study behavioural changes and
learning over generations.

Introduction

Signalling is an important mechanism of information transfer between organisms [1], and

is also a central aspect of communication [2]. The study of signalling within dyadic interac-
tions, both involving conflicting or common interest, has given rise to a number of theories
surrounding the emergence of honest signalling [3,4]. Much of the literature has come from
the field of animal behaviour, where signals are crucial to interactions such as parent-offspring
begging [5], food sharing [6,7] or sexual selection [3,8]. The latter formed the basis of Zahavi’s
handicap principle [3,9], which argues that signals must be costly in order to be honest. The
handicap principle has been shown both theoretically [10], and experimentally [11]: using the
example of blue jays, honesty persisted with high signal costs, and disappeared with low costs.
Robson’s secret handshake [4] also studied the emergence of reliable signals within evolution-
ary games. Perhaps the best known game used to study signalling behaviour within biology is
the Sir Philip Sidney game [12], which set out to formalise mechanisms of honest signalling
between animals.

Interactions involving signalling have also been modelled from a computational perspec-
tive. Catteeuw and Manderick [13] used a reinforcement learning approach to study equilib-
ria in Lewis signalling games [14], where they showed how the use of this method can lead
to optimal equilibria. Focusing on prosocial human behaviour, others have identified mech-
anisms like reputation to be central to indirect reciprocity and to cooperation more widely
[15]. Reputation creates an incentive to forego short-term gains of not cooperating in order
to benefit from a good reputation in the longer-term; this argument has been demonstrated
using reinforcement learning [16,17].

Among artificial agents, communication via signals is essential in achieving coordination.
Existing mechanisms include the presence of a coordination protocol [18], or the use of a
common language [19]. Communication between agents is particularly central in the field
of Cooperative Al [20], where common ground is required to ensure agents are able to inter-
pret each other’s messages [21]. Under situations where there is no pure common interest, the
question of dishonest signals and the potential for deception arises [20,22] - this mirrors the
debate within the evolutionary biology literature. Open questions remain regarding how to
achieve prosociality among artificial agents in social dilemma-type situations [23]. When it
comes to scenarios where there is pure conflict of interest, the incentive to communicate dis-
appears [22]. Evolutionary game theory in conjunction with computational approaches has
proven fruitful in studying emergent collective behaviour more widely, although there is still
uncertainty relating to the mechanisms leading to behaviour akin to altruism [24].

Given that similar questions arise when it comes to signalling and communication within
both artificial agents and animal behaviour, insights derived using computational methods
such as reinforcement learning can effectively be applied to understand mechanisms within
evolutionary biology. Frankenhuis, Panchanathan and Barto [25] highlight the valuable
insights that can be drawn from applying reinforcement learning methods to behavioural
ecology, both across generations and within organisms, for instance to study adaptive
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behaviour based on experience. Watson et al. [26] also discuss the equivalence of evolution-
ary processes and simple learning processes, highlighting the use of past experience to make
decisions in both types of systems. The value of interactions between the disciplines of evolu-
tionary game theory and machine learning to gain new insights about evolutionary dynamics
of interacting agents has previously been discussed [27], in particular with regards to multi-
agent systems [28]. Modelling the interaction between two or more agents allows us to study
not only behaviour but also emergent strategies, providing us a deeper understanding of
decision-making. When reinforcement learning is applied to scenarios involving two or more
interacting agents, it is referred to as Multi-Agent Reinforcement Learning (MARL). This is
the approach used in this paper, as we will show that it can be a powerful tool for modelling
interactions among learning agents. As opposed to other methods, there is no need to hand-
code the set of strategies that can be learned by the agent, so we are able to observe the emer-
gence of potentially unanticipated strategies. Reinforcement learning involves a defined action
space, which are the possible actions that each agent may take, and a set of rewards that guide
the learning process, but no predefined set of strategies. Using this approach, we are able to
observe the strategies that emerge through interactions.

An alternative approach is the use of replicator dynamics, a useful method for studying
the evolution of strategies within a population. There is considerable work in this area;
previous studies have precisely looked at signalling games using replicator dynamics [1,29],
in particular at the Sir Philip Sidney game [30]. In their work, Huttegger and Zollman [30]
highlight limitations in the traditional evolutionarily stable states (ESS) methodology, and
point to the existence of a polymorphic equilibrium involving mixed strategies which, under
certain parameters, is more likely to occur than the honest signalling equilibrium. In their
work, they also discuss the exclusion in past literature of the strategy ‘donate only if no sig-
nal’ (the emergent strategy we discuss in this paper), and that they believe this to be a mistake.
An important limitation is that studying the evolution of behaviour using replicator dynam-
ics requires the use of predetermined strategies and does not allow for strategy innovation.
As mutations are not generally incorporated into the model, no new strategies can emerge.
Some have addressed this via the replicator-mutator equation [31-33], although this still
involves switching from one strategy to another within a predefined set, so the strategy space
is constrained and chosen from the outset.

Whereas replicator dynamics is generally concerned with infinite populations, some
analyses of the Sir Philip Sidney game on finite populations have also studied the evolution-
ary stability of honest signalling [34,35]. Catteeuw, Manderick and Han [34] find a lower
prevalence of honest signalling in finite populations. They observe that honest signalling is
less evolutionarily stable in smaller populations. In a later analysis, they discuss the role of
punishment as a behaviour that can foment honest signalling [35]. However, as with replica-
tor dynamics, these approaches also study a set of strategies that is defined and constrained
from the outset. The goals of MARL approaches and evolutionary computation models dif-
fer, and as such can be complementary. Methods like replicator dynamics allows us to see the
relative success and evolutionary stability of given strategies at population level, whereas rein-
forcement learning looks at individual agents and studies the optimal policy that they learn
through repeated interactions. In the latter, agents can dynamically update their strategy in
response to the environment, as animals are able to adapt to shifting conditions. Replicator
dynamics is a useful method to understand the behaviour of populations over time, whereas
reinforcement learning more closely mimics individual learning. Another distinction is that,
whereas replicator dynamics aims to study which strategies are selected from a fixed and
predefined set, reinforcement learning instead allows us to understand which strategies
emerge from a (much larger) strategy space delimited by the agent’s architectural constraints.
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This is where reinforcement learning presents an advantage for studying behavioural
dynamics. In using MARL, there is no requirement to constrain the set of possible strate-
gies that agents may learn beyond architectural constraints imposed by the agent’s design,
primarily memory length. In this way, we can observe the emergence and coevolution of
new strategies in a population, rather than the dynamics of static strategies. Some have even
proven that replicator dynamics can emerge from reinforcement learning algorithms [36-39].
Reinforcement learning has been discussed as a useful tool to study animal behaviour and
to model their learning through trial and error [25,40-42]. In the multi-agent setting, it has
been used to study animal behaviour in areas including predatory-prey dynamics [43,44] and
collective/swarm movement [45,46].

We precisely set out to study the mechanisms of signalling in the Sir Philip Sidney game
through MARL; this approach allows us to observe the coevolution of behaviour, identify
emergent strategies, and explore how the outcomes change depending on the variation of cer-
tain parameters. The use of reinforcement learning, more specifically Q-learning in this case,
only requires a defined action space, environment, and a set of learning parameters. By not
requiring the strategy space to be defined from the outset, we can observe the strategies that
emerge through repeated interactions. Agents initially explore randomly between the set of
actions available to them, and update the expected reward of a given action. In this way, rein-
forcement learning allows the agents to arrive at the optimal or near-optimal strategy. We
thus show that MARL can be a powerful tool to study evolutionary dynamics and understand
the underlying mechanisms of learning over generations. In contrast to other methods, rein-
forcement learning does not require the strategy space to be constrained beyond the set of
learnable strategies defined by the agent’s architecture, so is a powerful tool to understand
the emergence and learning of decision-making strategies - in this case, with the presence of
signalling. This approach can be widely generalised to study the inter-relationships between
signalling and the emergence of strategies in a population.

In this paper, we use reinforcement learning to study the Sir Philip Sidney game, a game in
which Maynard Smith set out to demonstrate the dynamics of honest signalling [12]. We show
that when the parameters of the model are within a given threshold, agents learn to arrive at
the optimal equilibrium where the resource is given without the need for a signal; this is akin
to Huttegger and Zollman’s [30] aforementioned ‘donate only if no signal’ strategy. In animal
behaviour, this can be assimilated to proactive prosociality, and is observed across species.
Various mechanisms may lead to this observed behaviour, including kin selection or social
learning. As the parameter values approach the threshold, the percentage of agents that learn
the optimal strategy significantly decreases, although it is still learned in the majority of cases.
High learning and low discount rates result in the agents learning the optimal strategies in the
highest proportion of runs.

Methods
The Sir Philip Sidney game

The Sir Philip Sidney game was developed by Maynard Smith as a way to model signalling
within animal behaviour [12] - in particular, the aim of the model was to illustrate the mech-
anisms of honest signalling initially proposed by Zahavi [3,9] and subsequently developed by
others [10,47]. This framework has been the subject of several studies, particularly within the
biological sciences [6,48-50]. Whereas most models assume infinite populations; it is worth
noting that an analysis of the game in finite populations found much lower prevalence of
honest signalling [34]. The game involves two agents/players: a signaller and a receiver. In

the original formulation, the players are referred to as the Beneficiary (B) and Donor (D)
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respectively. B represents an agent who may or may not be in need of an indivisible resource,
whereas D holds this resource. Taking this resource to be water, B may be in one of two states:
thirsty (with probability p) or not thirsty (with probability 1-p). B knows the state they are

in, while D can observe B’s actions but not state. Each player has two possible actions: B may
signal or not signal that they are in need of the resource, and in response D may give or keep
said resource. The set of actions .A for each player can therefore be represented as Ap = {S, N}
and Ap = {G, K}. If D keeps the resource, their chance of survival is 1; this decreases to U if
they give the resource, where 0 < U < 1. For B, the chance of survival is as follows: 1 if they
get water, regardless of their state, 0 if they are in a thirsty state and do not get water, and V if
they are in a not thirsty state and do not get water, where 0 < V < 1.

As the game was designed to model animal behaviour, and therefore simulates learning
over generations, we consider inclusive fitness rather than individual payoff; the use of inclu-
sive fitness instead of individual reward is in line with Maynard Smith’s original formulation
[12] and subsequent studies [6,30,34]. Given the relatedness coefficient (r) between both play-
ers, the inclusive fitness (F) of Player i is calculated as the sum of a player’s individual payoft P;
and the opponent j’s payoff P; multiplied by a factor of r: F; = P;+rP;. The extensive-form game
tree is presented in Fig 1, where a dashed line represents an information set. Nodes within
the same information set (filled in the same colour for clarity) represent those where Player
D does not know which of the two they are at, as they do not observe B’s state. Since its appli-
cation to animal behaviour, the Sir Philip Sidney model has been used to study other dyadic
interactions that involve a signal between the two agents; the game has also been expanded
beyond the use of discrete parameters, to a continuous form [6]. In this article, we will also
use a continuous version of the game to illustrate threshold values for each outcome.

In the original formulation of the game, Maynard Smith derived a set of evolutionarily
stable strategies [12]. For the signaller, he argued it is evolutionarily stable to signal hon-
estly (only signal if they are indeed in need of the resource), and for the receiver to give the
resource only if the other player signals. A set of inequalities were presented for the different
parameters, stating that if these are met, the aforementioned equilibrium will hold. How-
ever, it has been shown both theoretically [48] and through simulation [49] that an outcome
was overlooked: there exists an equilibrium where one agent never signals, and the other
always gives the resource regardless. Hamblin and Hurd [49] refer to this equilibrium in their

Donor Give 1—c+rU,U+7r(l—-c)
Ke
2 na.\ €p
Beneficiary Sie ,< ol

/
/

Not .
ot Signa) l' Give 14+rU,U+r
®<
' r, 1

\
\ \

\ \ Give 1—c+rU,U+r(1—-c¢)
1
! r+V(@-¢),14+rV(1—-c)

1

\

l/ Give 1+rU,U+r
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r+V,147rV

Fig 1. Extensive-form game tree: Sir Philip Sidney game.

https://doi.org/10.1371/journal.pcbi.1013302.9g001
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work as the ‘non-communicating, always-give’ set, reached by Huttegger and Zollman’s [30]
aforementioned ‘donate only if no signal strategy. This outcome would be reached if both
players try to maximise their inclusive fitness - payoffs in this equilibrium are higher than if
pursuing a strategy of dishonest signalling [49]. A full mathematical derivation of this solu-
tion is included in S1 Appendix. As Huttegger and Zollman [30] point out, this equilibrium
has been intentionally excluded from previous literature [48,51], but doing so fails to consider
emerging dynamics under certain parameters.

In some cases, it may be valid to exclude the possibility of the donor giving the resource
without the beneficiary signalling that they are in need, and so excluding the equilibrium dis-
cussed in this paper. These are cases where the resource being given is conditional on a sig-
nal, examples of which can be found in animal behaviour. In this case, we have chosen not
to assume conditionality, as there are also examples in animal behaviour of a resource being
given without the need for a signal. One example of such a strategy combination is found in
Rodriguez-Gironés et al’s [52] model of begging between offspring and parents: they find an
equilibrium where chicks do not beg for food, and parents still provide optimally. This type
of interaction is sometimes referred to in the literature as proactive prosociality, and is also
observed among primates in the form of allomaternal care, as well as in the behaviour of other
animal groups [53,54]. By not assuming conditionality on the beneficiary’s signal, we are also
including the possible action combination of {Not Signal, Give} that has been excluded in pre-
vious literature. This is not to say that the donor’s action is no longer conditional on the ben-
eficiary’s. The game remains sequential, and the donor still observes the beneficiary’s action
before taking their own. The only difference is that, whereas following previous literature the
donor would not have been able to give the resource in the absence of the signal, we do not
impose this condition.

This paper sets out to show that the expected evolutionarily stable strategies of the Sir
Philip Sidney game would be those where the resource is given without the need for a signal;
these results have previously been discussed theoretically by Bergstrom and Lachmann [48].
The methodology will be using reinforcement learning agents playing the game against each
other, and observing the resulting strategies. We will show that learning agents playing the
Sir Philip Sidney game do not learn the strategies deemed evolutionarily stable by Maynard
Smith; instead, as we expected, they learn to either not signal and give regardless, or not sig-
nal and keep the resource (depending on the parameter values). Hamblin and Hurd [49] show
a similar result through the use of a genetic algorithm. As with replicator dynamics, their
approach requires a set of predetermined strategies. By using reinforcement learning, we do
not constrain the strategy space and can instead observe the strategies that emerge from the
agents’ own learning of optimal actions. Constraints on possible learned strategies are only
imposed by the agent’s architecture, such as memory length.

The motivation behind the use of reinforcement learning is in the explanatory value of
this type of approach, as well as the fact that this approach does not require the use of pre-
determined or hand-coded strategies. Referring to the Philip Sidney game, Johnstone and
Grafen stated that “signal and response behaviour therefore co-evolve, and the outcome of
this coevolution is difficult to predict” [6, p. 215]. With the use of reinforcement learning, we
can observe this coevolution and explore how the outcomes change depending on the varia-
tion of certain parameters, allowing us to precisely study this behaviour that the authors refer
to as difficult to predict. In this way, the learning agents simulate learning over generations
and evolution: by applying reinforcement learning to animal behaviour, we can analyse the
behaviour of generations of animals that are related to each other, and look at how much the
ensuing behaviours are affected by and dependent on the behaviour of others.
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To ensure that the findings are robust to varying parameters, for each set of values we show
both the case where p = 0 and p = 1, representing the agent in need of the resource with proba-
bility 0 and 1 respectively. The value of p does not affect the results - this was demonstrated by
Maynard Smith in the original formulation of the model [12], and we find that this holds for
reinforcement learning agents.

Revised equilibria of the Philip Sidney game

As we have seen, the Philip Sidney game was originally intended to demonstrate honest
signalling; provided the parameter values met certain conditions, it was argued that the evo-
lutionarily stable strategies were for the Beneficiary to signal when they are in need (honest
signalling), and for the Donor to give the resource when the Beneficiary signals. However, the
original derivation overlooked a crucial outcome. For a majority of possible parameter values,
the evolutionarily stable strategies would be for the Beneficiary not to signal, and the Donor
to share the resource regardless [48]. When both players are choosing the actions that would
maximise the inclusive fitness, this is the resulting combination of strategies. Within animal
behaviour, this can be equated to proactive prosociality, often observed during allomater-

nal care in primates [53,55]. This observed behaviour may be caused by differing underlying
mechanisms, such as kin selection or social learning.

The alternative set of evolutionarily stable strategies can be derived from the inclusive
fitness matrices for each of the two possible states. As mentioned, B may be in one of two
states: thirsty with probability p (Table 1), or not thirsty with probability (1-p) (Table 2).

From Tables 1 and 2 we can compare B’s payofls if they choose to Signal or Not signal when
keeping D’s actions constant (so comparing B’s payoffs in the top and bottom rows of each
matrix). It is clear that there is no situation where B would prefer to signal, provided that ¢ <0
and V <0, which must be satisfied: for instance, for p = 1 (Table 1), it must always be true that
1+rU> 1-c+rU. Given that B never signals, D would choose to Give if the following condition

is met (see S1 Appendix):
1-U

—_— 1
r>1—V+pV (0

In order to analyse the emergent behaviour when the above threshold is met or not, we use
various combinations of parameters in our experiments. The values were chosen to exemplify
three different cases: the first where Eq 1 is not satisfied, so we do not expect a cooperative
outcome as other strategies of D will invade, and the second and third show two cases where
the inequalities are satisfied. However, the third case (U =0.95, V= 0.75,r = 0.9) exemplifies a

Table 1. Matrix of inclusive fitness given p = 1. B is the row player and D is the column player.

Keep Give
Signal ! 1-c+rU, U+r(l-¢)
Not signal r, 1 1+rU, U+r

https://doi.org/10.1371/journal.pchi.1013302.t001

Table 2. Matrix of inclusive fitness given p = 0. B is the row player and D is the column player.

Keep Give
Signal r+V(l-¢),1+rV(1-c¢) 1-c+1U,U+r(1-¢c)
Not signal r+V,1+1rV 1+rU,U+r

https://doi.org/10.1371/journal.pcbi.1013302.t002
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scenario where the values lie close to the limits. We included this to explore how proximity to
the threshold affects the learned strategies of Player D in particular - as the parameter values
lie close to the limit, we expect to see the optimal strategy being learned a lower proportion of
the time. This is because the difference in inclusive fitness from playing G or K will be smaller
in absolute terms, therefore there will be less difference between the learned Q-values. It is
worth emphasising that throughout this analysis we are considering inclusive fitness; were we
to look at individual payoft, there would be no scenario where it is evolutionarily stable for D
to give the resource.

Table 3 illustrates the parameter values that we will use in our simulation, whether or
not they satisfy inequality Eq 1, and the strategies that we expect the reinforcement learning
agents to learn (assuming each player is maximising their inclusive fitness). For the example
where U= 0.9, V=0.1 and p = 0.5, Fig 2 shows the parameter values in relation to the thresh-
old inequality presented above. From the graph, we can see that r = 0.8 lies within the shaded
area with both low and high signal costs, whereas for high signal costs (c = 0.75), lower values
of r would no longer satisfy this condition.

Table 3. Alternative categorisation of example parameter values that satisfy each set of inequalities. For
expectation, {N, K} means the Beneficiary does not signal, and the Donor keeps the resource. Valid for any

value of p.

r \%4 U Eq I satisfied Expectation
0.5 0.2 0.2 No {N,K}

0.8 0.1 0.9 Yes {N,G}

0.9 0.75 0.95 Yes {N,G}

https://doi.org/10.1371/journal.pcbi.1013302.t003

Inequality Threshold

1.0

r=02

0.8 1

o
)
!

Signal Cost (c)

o
i
f

0.2 1

0.0 -
0.2 0.4 0.6 0.8 1.0

Relatedness Coefficient (r)

Fig 2. Visual representation of threshold values where the evolutionarily stable strategies presented in this article
would hold (p = 0.5, U= 0.9, V = 0.1). The intersection of r = 0.8 with both ¢ = 0.25 and ¢ = 0.75 is within the shaded
area of the two inequalities, therefore both thresholds are satisfied and we would expect the resulting strategy combi-
nation to be {N, G}. However, for r = 0.2, the evolutionarily stable strategies of Not signal and Keep only hold for low
signal costs as the intersection with ¢ = 0.75 is outside the shaded area.

https://doi.org/10.1371/journal.pchi.1013302.g002
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As shown above, there are no set of values that would result in Signal being the preferred
strategy for the Beneficiary. Even as we vary signal costs, as long as ¢>0 is satisfied, the benefi-
ciary would still choose not to signal that they are in need. Therefore, it is only the behaviour
of the Donor that we expect to see changes in, illustrated in Table 3. Depending on the param-
eter values, it may be evolutionarily stable or not for the Donor to give the resource - there
are cases, particularly where r is high enough, that inclusive fitness is maximised by giving the
resource (even though individual payoft is not).

Coevolution of reinforcement learning strategies

We will use MARL to demonstrate that the above equilibria are reached by learning agents.
In order to more closely approximate the model to a continuous signalling game [6], and to
ensure that results found are robust to increased signal strengths, we include two possible
signal costs. This means that the Beneficiary can either send a strong or weak signal. The
Beneficiary player class therefore has three possible actions: Not signal, Weak signal, Strong
signal, corresponding to the different signal costs detailed above (¢ = 0.25 for a weak signal
and ¢ = 0.75 for a strong signal). The reason for including weak and strong signals is to closer
approximate the model to a continuous signalling game [6], and to ensure that results found
are robust to increased signal strengths. The Donor player class, as in Maynard Smith’s origi-
nal model, has two possible actions: Give, Keep.

In the simulation, the agents update their expected value of an action through the use of
the Q-learning algorithm [56]. At time ¢, each player has an action a and state s - this state is
made up of both players’ actions in the previous round. R;(s, a) represents the reward for a
given state-action combination - in our case, this is the inclusive fitness. « is the learning rate
and y is the discount rate, both of which lie between 0 and 1; the choice of values for both of
these parameters will be discussed below. To assess the action to be taken at each stage, the
following Q-learning formula is used:

Qi(s,a) = Qi1(s,a) + aa(Rs(s,a) + y max Qri(s,a") - Qi1 (s,a)) (2)

where s" and a’ represent the new state and action at time ¢ + 1. Each action-state combination
is therefore assigned a value (Q;(s, a), referred to as a Q-value); these Q-values are then used
to make decisions about which action should be taken next. The agent updates the Q-value

Qq for the action they just played once they know the reward they received, meaning that they
know the action just played by the opponent and so the state they will be in when taking the
next action. The term that is multiplied by the discount factor y represents the value of the
action with maximum expected reward given the state they will be in when taking this next
action.

Before each interaction, both agents’ Q-value tables are initialised at 0. Each dyad plays
500 rounds of the game, as this allows for the Q-values to converge, so we can clearly show
what the learned strategies are. The first 50 rounds of each interaction between two agents are
exploratory (¢ = 1), meaning that both learning agents are playing randomly while updating
their Q-value tables. After these 50 rounds, the rate of exploration decays at a rate of € = %],
where N is the number of rounds played. For each parameter set, we run 1000 iterations, and
calculate the average values over all iterations. The Philip Sidney game was designed to model
the coevolution of signaller-receiver behaviour over generations within animal behaviour.
Using a reinforcement learning approach, each round of the game can be understood as a
generation in the animal species; however, reinforcement learning is also used to model indi-
vidual animal behaviour, so the simulation could also be understood in this way.
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We also explore the effects of varying the learning and discount rates on the resulting
behaviour of the agents. We used three values for the learning rate: 0.1, 0.5 and 0.9, and each
of these was run with two different discount rates: 0.1 and 0.9. (for a greater range of values
for both learning and discount rates, see S2 Appendix). A higher learning rate accelerates the
speed of learning, as Q-values are updated at a faster rate, but may result in convergence at a
suboptimal value. On the other hand, a high discount factor gives more weight to longer-term
rewards, therefore we expect that the Q-values of agents with a low discount rate will converge
faster.

Results
Learned strategies of RL agents

For each set of parameter values, the strategy most often learned by the reinforcement learn-
ing agents under optimal learning and discount rates is precisely the strategy that we expected
through the derivation of evolutionarily stable strategies (see Table 4). When inequality (1) is
not met, the resulting behaviour displayed by the agents is {N, K}: the Beneficiary does not
signal, and the Donor keeps the resource. We have seen that the behaviour of the Beneficiary
is never expected to deviate from N (Not signal), as there is no incentive to do so; it is only
the behaviour of the Donor that changes. In contrast, when (1) is satisfied, the resulting strat-
egy set is {N, G}: the Beneficiary again does not signal, but the Donor does give the resource
regardless of the lack of signal received. These results are robust irrespective of the state of the
Beneficiary, i.e. whether they are in a thirsty or not thirsty state, showing that the value of p
does not affect the results, as expected by Maynard Smith [12].

Although we show here the case where both agents are reinforcement learning agents with
equal parameters, we also wanted to explore the emergent behaviour of a learning agent when
interacting with an agent that is following a predefined strategy. As this is not the direct aim
of this paper, we have included examples in the Appendix where one of the agents follows
a static strategy (see S3 Appendix). In particular, no matter the choice of parameters, when
using two reinforcement learning agents we always have a case where Player B most often
chooses to Not Signal. Therefore, by implementing predetermined strategies, we can see what
is learned by Player D when their opponent either chooses to Weak Signal or Strong Signal a
majority of the time. Additionally, we show how the resulting strategies for both players vary
with longer memory of past actions (see S4 Appendix); in this case, we see a greater variation
of strategies learned, where the agent alternates or cycles through a pattern of actions.

Optimal RL parameters

Figs 3 and 4 show the resulting strategies learned by the RL agents under the parameters
§=0.2,V=0.2,r=0.5 (Case 1) for Players B and D respectively; Tables 5 and 6 describe the
corresponding strategies. The strategies presented in these tables are those most often learned
by the reinforcement learning agents that appear in the corresponding graphs. This is not the

Table 4. Resulting strategies of learning agents, showing the top strategy learned and the proportion of runs this
was the resulting strategy for the parameters LR=0.9, DR=0.1. For expectation, {N, K} means the Beneficiary does
not signal, and the Donor keeps the resource. Valid for any value of p.

r Vv U (1) satisfied Expectation B D

0.5 0.2 0.2 No {N,K} N=83.3% K=97.1%
0.8 0.1 0.9 Yes {N,G} N =46.1% G =94.6%
0.9 0.75 0.95 Yes {N,G} N =82.4% G=482%

https://doi.org/10.1371/journal.pchi.1013302.t004
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Beneficiary Resulting Strategies (U =0.2, V=0.2, r=0.5, NT)
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Fig 3. Beneficiary resulting strategies. Percentage of runs that the Beneficiary learns each strategy. Not thirsty state, r = 0.5, U = 0.2, V = 0.2. Strategies

described in Table 5.

https://doi.org/10.1371/journal.pcbi.1013302.9003

Donor Resulting Strategies (U=0.2, V=0.2,r=0.5)
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Fig 4. Donor resulting strategies. Percentage of runs that the Donor learns each strategy. Not thirsty state, r = 0.5, U = 0.2, V = 0.2. Strategies described in

Table 6.

https://doi.org/10.1371/journal.pcbi.1013302.9004
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Table 5. Strategies most often learned by the Beneficiary with parameters $ =0.2, V = 0.2, r = 0.5 (Case 1), see

Fig 3.

Acronym Strategy

NN Never signal

NwW Alternate between Not signal and Weak signal

wWw Always signal weakly

NS Alternate between Not signal and Strong signal

S Alternate between Weak signal and Strong signal

NWS Cycle through Not signal, Weak signal and Strong signal
NSW Cycle through Not signal, Strong signal and Weak signal
SS Always signal strongly

https://doi.org/10.1371/journal.pcbi.1013302.t005

Table 6. Strategies most often learned by the Donor with parameters $=0.2, V = 0.2, r = 0.5 (Case 1), see Fig 4.

Acronym Strategy

KK Always keep

GK Alternate between Give and Keep
GG Always give

KKG Cycle through Keep, Keep, Give

https://doi.org/10.1371/journal.pcbi.1013302.t006

full set of possible strategies, as through MARL, any action combination can be learned. For
both agents, a learning rate of 0.9 and discount rate of 0.1 appear to be the optimal combina-
tion, as it is with this choice of parameters that the expected strategy is learned most often.
From Fig 3, we can see that B very rarely learns a strategy involving strong signalling (S); this
is in line with our previous derivation, as the action S reduces B’s expected inclusive fitness the
most.

For Player D, the difference in learned strategies shows less variation with different learn-
ing and discount rates (Fig 4). For the values of S,V and r shown, the optimal strategy is to
always keep the resource, which is what we observed at least 80.9% of iterations. The combi-
nation of parameters resulting in this lowest value (80.9%) is a learning rate of 0.1 and a dis-
count rate of 0.9. For each value of learning rate, a lower discount rate leads to the optimal
strategy being learned a higher proportion of the time.

For Player B, there is more variation due to there being three possible actions and less
difference in the absolute value of the rewards. Nevertheless, we observe the same result: for
the same learning rate, a discount rate of 0.1 always outperforms a discount rate of 0.9. As
the Philip Sidney game was formulated to model interactions within animal behaviour, we
can interpret this result with respect to the original application. A lower discount rate can be
assimilated to maximising the importance given to immediate survival rather than potential
long-term gains. As in this case we are playing repeated instances of the same game, maximis-
ing short-term survival will ultimately also maximise long-term payoffs, therefore agents with
a lower discount rate learn the optimal strategies a higher proportion of the time.

Case comparison

D learns the strategy Always Give in Case 2 almost twice as often as in Case 3. The reason for
this is clear when looking at the graphs of Q-values over the rounds. The shape of the graph
with a convergence around round 50 is due to the fact that agents play exploratory actions
for the first 50 rounds, after which they play according to the learned Q-values. Figs 5A and
6A illustrate the average Q-values for each action across the rounds for B, as well as the aver-
age for each state; Figs 5B and 6B show the same for D. Whereas for Case 2, the Q-values of
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Q-values for B (95% CI) — Case 2

Q-values for D (95% CI) — Case 2
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Fig 5. Q-values Case 2, darker line is average across all, faint lines are average for each state.
https://doi.org/10.1371/journal.pcbi.1013302.9005
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Fig 6. Q-values Case 3, darker line is average across all, faint lines are average for each state.

https://doi.org/10.1371/journal.pcbi.1013302.g006

D associated with the action G quickly become distinctly higher than for K, Case 3 portrays

a different scenario. While overall the agent does learn that G will result in a higher payoff
than K, the difference is much smaller. Not only is the difference between the averages much
less marked (0.410 for Case 2 and 0.139 for Case 3), we can also see that the average Q-value
for K for one state (NG) is higher than that for G in two out of the six states (WG and SG). As
mentioned above, this is to be expected as the parameters for Case 3 are much closer to the
threshold and parameter limits, therefore the difference in inclusive fitness is smaller than
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for Case 2. Nevertheless, the most learned strategy is still to Always Give, and the next most
learned is to alternate between G and K, which is learned in 38.5% of iterations.

A similar outcome is observed for Player B, where in Case 2 the optimal strategy is only
learned in 46.1% of iterations. Again, this is clear in Fig 5A, where the state with the highest
average Q-values for W (state NG) is very close to the lowest for N (state SK). In particular,
the state with the highest Q-values for W, NG, is observed often by B as for this set of param-
eters Player D learns to Always Give 94.6% of the time. Therefore, Player B will choose action
W more often than is optimal.

Discussion

The results presented above are in line with the theoretical derivation of evolutionarily stable
strategies (see [48] and S1 Appendix). Sets of parameters that satisfy Eq 1 will result in the
strategies {N, G} in a majority of cases, whereas those that do not satisfy this inequality result
in strategies {N, K}. This is in accordance with our expectations, as B never has an incentive
to deviate from the strategy Never Signal; it is therefore only D’s strategy that varies according
to the inequality threshold.

The use of reinforcement learning allows us to observe the coevolution of behaviours
and strategies between the two learning agents, which simulates learning over generations
and evolution within animal behaviour. Through a theoretical analysis of the Sir Philip Sid-
ney game, we can derive the evolutionarily stable strategies, and predict what the dominant
behaviours will be. However, the use of reinforcement learning provides additional com-
plexity as we can also study what other strategies emerge, and under what conditions we are
more likely to observe a greater proportion of the population learning suboptimal behaviours.
As opposed to replicator dynamics, by using MARL we do not need to hand-code the learn-
able set of strategies and can observe the emergent behaviour of the learning agents. The only
constraints are imposed by the agent’s architecture, primarily memory length.

With regards to the optimal combination of learning and discount rates, we show that a
lower discount rate always results in the highest inclusive fitness being achieved by the RL
agent. The optimal combination for our formulation of the model is a learning rate of 0.9
and discount rate of 0.1. In some cases, the expected strategy is not learned as often as we
would expect (although it is always learned more often than any other). We observe this
phenomenon in Case 2 for B and Case 3 for D: this happens more markedly as the parame-
ter values approach the limit given by Eq 1. One contributing factor to this result may be the
length of the exploration period. Having either an initial exploration period longer than 50
rounds or slower decay of € can allow for a greater distance to be learned between Q-values,
and therefore the optimal strategy to be learned a greater proportion of the time. We show
examples of outcomes with varying length of initial exploration period and varying ¢ decay in

S5 Appendix.

Conclusion

The approach presented in this paper illustrates how MARL can be used to study the coevo-
lution of strategies and behaviours, and, in particular, animal behaviour. Whereas Maynard
Smith initially formulated the Sir Philip Sidney game as a way to exemplify honest signalling
[12], we show that in a majority of cases there is an alternative outcome. This result has pre-
viously been discussed in the literature [48,49,52] and relaxes the assumption of condition-
ality: the equilibrium shown in this paper is reached when we remove the condition that the
resource cannot be given in the absence of a signal. The game remains sequential, with D only
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acting after observing B’s action. The resulting strategy combination where B never signals but
D always gives the resource regardless can be assimilated to proactive prosociality. We observe
this phenomenon both in the animal realm [53,54], and within human behaviour [55], and
this behaviour may be caused by a number of mechanisms.

In all cases, the learning agents arrive at the optimal strategy a majority of the time;
regardless of the chosen parameters, the Beneficiary predominantly learns a non-signalling
strategy. For the Donor, depending on whether or not the threshold values are exceeded,
it will either learn to give the resource without a signal or to keep the resource. The former
case is also studied by Hamblin and Hurd [49], who refer to this as the ‘non-communicating,
always-give’ set, and by Huttegger and Zollman [30], as the ‘donate only if no signal’ strategy.
As parameter values approach the limit given, the proportion of runs where the optimal strat-
egy is learned decreases - this is as we would expect, as the difference in resulting inclusive
fitness between strategies becomes smaller. High learning and low discount rates result in the
highest proportion of agents learning the expected strategies.

Therefore, we show that MARL can be a powerful tool to study evolutionary dynamics
and understand the underlying mechanisms of learning over generations without the need
to choose the strategy space from the outset (beyond the set of learnable strategies). Methods
such as the one presented in this paper simulate learning over generations by incrementally
updating the beliefs of artificial agents, and allow us to explore how outcomes change depend-
ing on the variation of certain parameters. The application of this type of approach can be
an effective way to explore the emergent behaviours within animal populations, in particu-
lar looking at how behaviours coevolve. The model parameters vary in how literally they can
be interpreted when applied to animal behaviour: whereas learning and discount rates require
more interpretation, the relatedness coefficient and signal costs can be directly understood in
terms of evolutionary biology,

The above study was intended to derive the equilibrium for the Sir Philip Sidney game
through the use of reinforcement learning, and therefore focuses on dyadic interactions.
However, this focus leaves a series of open questions. Further extensions to this research
could explore population dynamics, perhaps including partner selection (see for example
[57]). Another interesting area of research could further explore dynamics of learning over
generations, where agents are initialised with the learned values of a ‘parent’ agent.

Supporting information

S1 Appendix. Derivation of evolutionarily stable strategies.
(PDF)

S2 Appendix. Results with varying learning and discount rates.
(PDF)

S$3 Appendix. Results with static agents.
(PDF)

S4 Appendix. Results with varying memory.
(PDF)

S5 Appendix. Results with varying exploration.
(PDF)
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