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The increasing adoption of machine learning (ML) raises ethical concerns, particularly regarding bias. This
study explores how ML practitioners with limited experience in bias understand and apply bias definitions,
detection measures, and mitigation methods. Through a take-home task, exercises, and interviews with 22
participants, we identified five key themes: sources of bias, selecting bias metrics, detecting bias, mitigating
bias, and ethical considerations. Participants faced unresolved conflicts, such as applying fairness definitions in
practice, selecting context-dependent bias metrics, addressing real-world biases, balancing model performance
with bias mitigation, and relying on personal perspectives over data-driven metrics. While bias mitigation
techniques helped identify biases in two datasets, participants could not fully eliminate bias, citing the
oversimplification of complex processes into models with limited variables. We propose designing bias
detection tools that encourage practitioners to focus on the underlying assumptions and integrating bias
concepts into ML practices, such as using a harmonic mean-based approach, akin to the F1 score, to balance
bias and accuracy.
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1 Introduction

Machine learning (ML) is being applied to an increasing number of diverse applications, such as
loan applications, diagnosing disease, crime prevention, facial recognition, and language translation
[51]. However, the expanding application of ML across various domains raises serious ethical
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concerns and challenges related to bias. Certain fields, such as healthcare [75] and crime prevention
[1], are particularly at risk of discrimination based on protected characteristics. Examples of biased
outcomes include predicting a criminal’s re-offending probability while discriminating based on race
[1], how search engine results reinforce racism [57], and “automatic gender recognition algorithms”
misgendering individuals [37]. Therefore, it is important to identify how ML users understand
and apply bias detection and mitigation methods when modeling ML. This is a timely challenge
for the HCI community, as the misapplication of ML might lead to detrimental consequences for
disadvantaged groups of individuals.

We present a qualitative study aimed at understanding how novices in bias' can operationalize
bias definitions and apply mitigation methods. The need for bias mitigation is increasingly empha-
sized by evolving regulatory frameworks like the EU AI Act [20] and heightened expectations for
fairness in ML models. While prior research has introduced numerous fairness definitions [49, 63,
70], bias metrics [26, 35, 42], and supporting tools [8, 62, 65], the mere availability of these resources
does not address bias in ML. Their effective use requires practitioners to make complex decisions.
For example, previous studies have highlighted challenges such as the need for domain-specific
training, enhanced communication between stakeholders, and improved organizational practices
to mitigate bias [36, 47, 73, 74]. Building on this, our study provides practical insights by engaging
participants with 10 fairness definitions, examining their strategies for detecting and mitigating
bias across two datasets: COMPAS [1] and German Credit [25].

Twenty-two participants interested in learning and applying bias detection and mitigation
techniques took part in our study. They were introduced to bias concepts through a take-home task
designed to be completed within one and a half hours. The task, iteratively designed and centered
around a popular browser-based coding environment, exposed participants to various methods
for detecting and mitigating bias through a series of exercises. Participants demonstrated their
understanding through these exercises and in a subsequent 30-minute semi-structured interview,
where they elaborated on their responses and reflected on bias metrics and fairness definitions.
The researchers then analyzed participant responses from both the take-home task and interviews
using thematic analysis techniques to identify the challenges in operationalizing bias. Specifically,
we address the following research question: how do novices in bias understand and apply a range
of bias definitions, measures to detect it, and methods to mitigate it?

A thematic analysis of participant interviews and exercises identified five key themes: (1) sources
of bias; (2) employing and selecting bias metrics; (3) detecting bias; (4) mitigating bias; and (5)
ethical considerations. These findings revealed that participants encountered unresolved conflicts
when attempting to operationalize bias, including: (1) the application of fairness definitions in
practical settings, such as a loss of granularity; (2) the challenge of selecting appropriate bias
metrics, with context-dependency being a key consideration; (3) addressing real-world biases; (4)
balancing model performance with bias mitigation; and (5) relying on personal goals, opinions,
and stereotypes rather than bias metrics and the underlying data. Despite the availability of bias
mitigation techniques, participants were unable to fully eliminate bias from the COMPAS and
German Credit datasets. They attributed the difficulty in mitigating bias to the oversimplification of
complex real-world processes into models with a limited set of variables. Nonetheless, participants
were able to reflect on effective model-building practices for bias mitigation, discussing how they
would apply these strategies within their own domains while considering the sources of bias.

We offer three key contributions. Answering the research question, our first contribution is
a series of findings that illustrate the various challenges that novices in bias experience when

1We refer to novices in bias as those interested in implementing bias detection and mitigation methods (e.g., in their own
domains) and are familiar with ML and Python programming.
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operationalizing a range of measures to detect and mitigate bias. Second, despite misconceptions and
challenges that persisted, our findings indicate that participants showed an ability and creativity
toward tackling bias, often proposing their own methods for mitigating biases in their work.
Completing the study improved their ability to identify bias methodically and quantitatively,
demonstrating the benefits of a short-term learning program. The third contribution is a series of
implications for operationalizing bias. This involves designing bias detection tools that encourage
practitioners to focus on underlying ethical principles rather than “gaming the system” by selecting
bias metrics that merely make an ML model seem less biased. Another implication is to leverage
the overlaps between bias and ML concepts to help integrate bias mitigation into ML practices.
For instance, our findings suggest the need for a harmonic mean-based approach, similar to the F1
score, adapted from ML practices, which could be used to balance bias and accuracy.

2 Related Work

Relevant research exists on assessing ML practitioners’ fairness needs within the context of fairness
tools and their practical limitations. We review this work below, while also providing a background
on fairness definitions and metrics employed by the study.

2.1 Assessing ML Practitioners’ Fairness Needs

Holstein et al. [36] investigated the challenges and needs of industry practitioners in developing
fairer ML systems. Key findings include the influence of human biases in data labeling, the impact
datasets have on fairness, and the lack of fairness metrics and automated tests. The study emphasizes
the need for domain-specific resources and technical tools to support fairness throughout the
ML development pipeline [36]. Work by Madaio et al. [47] investigated how ML practitioners
identify, assess, and mitigate bias. Through semi-structured interviews and workshops with 33
Al practitioners from various technology companies, the study highlights challenges in choosing
performance metrics, identifying relevant stakeholders, and collecting suitable datasets. Varanasi
and Goyal [73] conducted interviews with 23 ML practitioners to understand their difficulties in
creating fair ML systems within their workplace. Key challenges include the practitioners’ lack of
knowledge on ML fairness principles and the conflict between different fairness definitions, given
that prior work has found inherent tradeoffs between satisfying various types of fairness [9] and
that there is no single definition of fairness [63].

In addition, prior work by Veale et al. [74] investigated the current approach of algorithmic
fairness for ML practitioners in public sector decision-making, interviewing 27 public servants.
They found key issues in current model-building practices which impact fairness, such as an over-
reliance on summary statistics which masks underlying issues, and how domain experts should
be modifying their ML models to account for changes in the data over time [74]. A significant
amount of prior work in this area also suggests that practitioners need improved organizational
processes and engagement with stakeholders to effectively conduct fairness evaluations [36, 47, 73,
74]. These studies relied on interviews, workshops, and surveys about the needs of ML practitioners
to develop ML systems. Instead, our study focuses on how ML practitioners operationalize bias
definitions and metrics through a series of practical exercises.

2.2 Bias Mitigation Tools and Methodologies

Regarding the detection and mitigation of unwanted algorithmic bias, several tools compile fairness
metrics and definitions into bias analysis frameworks, including Aequitas [62], Al Fairness 360 [8],
FairLearn [11], and Fairness Indicators [32]. These libraries allow practitioners to apply fairness
definitions to their datasets and models, using the outputs to assess and mitigate bias. Additionally,
other research focuses on mitigating bias from the outset by using unbiased datasets. Suggestions
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for creating and documenting datasets include Factsheets [2], Datasheets for Datasets [31], and
Model Cards for Model Reporting [52]. Some researchers have developed benchmark “bias-free”
datasets, such as the Diversity-in-Faces dataset, which achieves statistical parity among different
sensitive features [50]. While these tools and methodologies are a valuable step toward helping
ML practitioners address bias in their models, their availability alone does not resolve the issue, as
their effective application depends on practitioners making numerous informed decisions.

To understand how to improve adoption of these tools, Richardson et al. [59] investigated how
ML practitioners use two of them: Fairness Indicators [32] and Aequitas [62]. The results revealed
that fairness tools should support bias analysis across the ML model-building process and that they
should allow for the customization of fairness and performance metrics. Similar research by Deng
et al. [23] and Lee and Singh [43] supports these findings, with interviews and surveys indicating
that fairness tools need to provide more context-specific guidance for ML practitioners throughout
the entire development process. Lee and Singh’s assessment of six fairness tools revealed a steep
learning curve and insufficient guidance, making them challenging for practitioners unfamiliar
with fairness literature. This conclusion was drawn from semi-structured interviews with fairness
experts and surveys among a broader group of ML practitioners.

Balayn et al. [4] conducted a study with 30 participants that had practical experience with some of
these tools. Using two of them (AI Fairness 360 [8] and FairLearn [11]) and subsequent interviews,
the researchers identified that while these tools improve practices around algorithmic fairness,
practitioners would apply metrics available through the tools and declare fairness was reached
without reflecting on the appropriateness and limitations of the metrics, and without considering
the tradeoff between accuracy and fairness. Our work builds on this research by identifying practical
challenges that ML practitioners who are novices to bias face when detecting and mitigating biases,
offering insights on how they operationalize bias, with implications for fairness tools.

2.3 Background on Fairness Definitions and Metrics

Defining, detecting, measuring, and mitigating bias in ML systems is a complex and ongoing area of
research [6]. Mehrabi et al. identified 23 types of bias [49], while Srinivasan and Chandler categorized
biases into 11 main types with several sub-types [67]. To address these biases, researchers have
developed several techniques for measuring different types of biases, known as definitions of
fairness. Our study implements some of the most popular fairness metrics and definitions as
described by Mehrabi et al. [49].

The bias definitions in our study are divided into two groups: group-level fairness metrics and
individual-level fairness metrics. The group-level metrics measure fairness by assessing if the
metric’s values are equal across different feature groups, such as male and female. The methods
implemented in our study include equalized odds [35], equal opportunity [35], statistical parity [26],
treatment equality [9], and fairness in relational domains [27]. Participants can compare results
across different groups, such as males and females, using numerical implementations of these
methods. The individual-level fairness metrics assess the effect of modifying an input feature value
on the model’s output, demonstrating fairness through awareness [26], counterfactual fairness
[42], conditional statistical parity [21], and test fairness [16]. While the latter two can also be
implemented at a group level, they are primarily demonstrated here through sensitivity analysis.
This analysis shows participants how changing feature values, such as race from Asian to Hispanic,
affects the model’s output. It is based on the Prospector by Krause et al. [40], an interactive visual
analytics system that ML practitioners can use to change the feature values and observe how the
prediction responds. Additionally, fairness through unawareness [33] is considered satisfied when
a model does not use any protected characteristics or their proxies. This is visually demonstrated
to participants through feature correlation plots.
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Table 1. Details of the ML Practitioners Who Participated in the Study, Identified by Their Participant
ID, Including Their Occupation, Area of Expertise, and Sex

ID Occupation Specialty Sex
01 Researcher in Metaphysics Sound Modulations M
02 Researcher in Healthcare Patient EEG Signals M
03 Researcher in Healthcare Eye Occlusions M
04 Undergraduate in Physics Tailoring Advice to Individuals M
05 Software/ML Engineer Military Applications M
06 Researcher in Computer Science High Performance Computing M
07 Masters in Advanced Computer Science Computer Vision M
08 Undergraduate in Economics Economics and Statistics F
09 ML Engineer Non-sensitive Projects M
10 Masters in Advanced Computer Science Computer Vision M
11  Masters in Advanced Computer Science Computer Vision M
12 ML Engineer User Profiling M
13 Researcher in Theoretical ML Algorithm Performance Guarantees F
14  Undergraduate in Economics Economics and Statistics M
15 Researcher in ML Accelerating Deep Learning Models M
16  Researcher in ML Graph Neural Networks M
17  Researcher in Computer Vision Data Reconstruction M
18 Researcher in Neural Rendering Generating Objects and Scenes M
19 Researcher in ML Neural Networks M
20 Researcher in Healthcare Medical Imaging M
21 Researcher in Computer Vision Localization Robotics M
22 Researcher in Healthcare Rare Diseases M

3 Study Design

We conducted a remote qualitative study to explore how novices in bias comprehend and apply
various bias definitions, detection measures, and mitigation methods. The method is detailed below.

3.1 Participants

Twenty-two ML practitioners were recruited from a range of domains and specialties. Recruitment
took place by distributing a call for participation by email and online forums such as Discord servers.
We recruited through specific university departments’ mailing lists where individuals would have
knowledge of ML (Computer Science; HCL; Al-Enabled Healthcare; Al Society; Intelligent Social
Systems Lab; Centre for Vision, Speech and Signal Processing) and snowball sampling through
past participants’ word-of-mouth referral, including industry contacts. The list of participants can
be found in Table 1.

We recruited ML practitioners who were novices to bias to explore how this group could employ
existing bias metrics and methods to address bias. Our goal was also to gather their reflections on
the process, aiming to inform the development of computational tools and methods that can help
the ML community operationalize bias. None of the participants worked in the field of fairness or
had previously conducted a bias analysis of ML models. This recruitment approach acknowledges
that simply providing tools and methodologies is insufficient to resolve bias in ML. Their effective
use requires ML practitioners, who may have limited knowledge of fairness, to make numerous
critical decisions.
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Familiarity with ML and programming was essential for completing the take-home task, as
participants needed to run code snippets containing ML models. All participants met the following
eligibility criteria: (1) the ability to read and write simple Python code; (2) familiarity with data
manipulation (e.g., experience working with Pandas); (3) experience using notebooks (e.g., Jupyter
Notebook or Google Colab); and (4) some ML experience (e.g., taking a class in ML or building
models that use ML). Participants had advanced educational backgrounds and were either already
applying ML in their fields or planning to do so in the near future. They brought diverse expectations
and motivations to the study, including a desire to better understand the risks of bias in ML and its
implications for their areas of expertise. As a small incentive, and to acknowledge the time spent
on the study for this specialized cohort, participants were remunerated with £25.

3.2 Apparatus

The take-home component of the study provided participants with an interactive tutorial via a
browser-based coding environment, introducing them to 10 definitions of fairness and bias. They
applied these definitions to detect and mitigate bias in the COMPAS dataset [1], with the option to
explore the German Credit dataset [25]. These two datasets provided practical, real-world examples
for participants to detect and mitigate bias. The COMPAS dataset is known for racial discrimination
in predicting the risk of criminal recidivism in Broward County, Florida [1], while the German
Credit dataset is known for bias based on sex [60]. There are inherent tradeoffs in satisfying different
fairness criteria, making it challenging to address bias comprehensively [9].

To navigate these complexities, the interactive tutorial introduced fairness definitions and bias
mitigation techniques from the literature discussed in Section 2.3 and included 12 exercises relevant
to the study’s research objectives. This list is not exhaustive but represents a selection of definitions
covering a range of bias metrics identified by Mehrabi et al. [49], adapted for the practical nature of
the study. Although implementing an alternative set of bias definitions could potentially generate a
different set of participant challenges and reflections, our selected list served as a means to extract a
series of insights and observations within the constraints of a one-and-a-half-hour session. Google
Colaboratory (Colab) was selected as the coding environment due to its interactive notebook
interface, online accessibility, no setup requirements, and the computational power it provides for
running ML models directly in the browser [56].

As part of the take-home task, participants were instructed to read and then run code snippets
already provided and encouraged to write their own code to conduct further analysis of the data.
They were also asked to write their answers to the exercises within the notebook. The content and
exercises were iteratively developed based on feedback from students and pilot participants, in-
cluding experienced ML users. The exercises included seven qualitative questions and the following
four quantitative exercises:

— Q7: For variable statistical party delta, and feature sex, which training type results in the
lowest delta metric? Is this an improvement over the original dataset training type?

— Q9: For variable equalized odds delta, and feature value African-American, which training
type results in the biggest improvement in score? If you chose this training type, how does it
affect the equalized odds delta of the feature value Caucasian?

— Q10: Pick a feature value and write down which training type leads to the lowest ratio of
prediction changes, and which leads to the highest ratio.

— Q11: Looking at the same feature value that you picked in Exercise 10, have the training types
that led to the lowest and highest ratio of prediction changes changed? If so, what are they
now?
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Ratio of samples changing output for feature 'age_cat' and feature value '25_45'" by training type
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Fig. 1. An example of the ratio of samples changing output for the feature age and feature value 25-45. A
reduction in bias is reflected by a decrease in the prediction change ratio. In this instance, removing the
feature priors count results in the lowest level of bias.

The quantitative exercises required participants to use graphical outputs from the study interface
to identify specific instances of bias. For instance, the graphical output in Figure 1 shows the ratio
of samples that change their output for the feature value range 25-45. Removing the feature priors
count results in fewer samples changing compared to the original dataset, whereas removing the
feature age increases the number of changing samples relative to the original dataset. Due to the
quantitative nature of these exercises, participant responses were scored using a binary system.
For two-part questions, a half mark was awarded if one part was answered correctly. A summary
of key concepts in the order they were presented to participants is presented below, while the full
material is available in the supplementary material.

(1) Familiarization with the COMPAS dataset [1], containing 10 input features for 6,172 in-
dividuals. This dataset was selected due to its frequent use in fairness research and its
well-documented biases.

(2) Participants began by computing the bias analysis metrics and generating the visualizations
described in the subsequent steps. This task was performed at the outset, as some computa-
tions required several minutes to complete. The process involved training the same Neural
Network algorithm across multiple ML models, each containing a different subset of the
training features. While participants did not create the models themselves and could not alter
the algorithm, they were able to adjust default settings for the Neural Network parameters,
such as the number of hidden layers.

ACM Transactions on Interactive Intelligent Systems, Vol. 15, No. 2, Article 12. Publication date: June 2025.
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(3) Definition of key bias concepts, such as a group, defined as a subset of the dataset filtered by
a specific feature value (e.g., male and female groups based on the sex attribute in COMPAS).
This step was completed prior to any bias analysis to ensure participants understood the
context and objectives of the subsequent exercises in the take-home task.

(4) Bias analysis through model evaluation, using dataframes and scatter plots to display ML
and bias metrics for each group: true/false positives and negatives, equalized odds [35],
equal opportunity [35], statistical parity [26], fairness in relational domains [27], treatment
equality [9], accuracy, precision, recall, and F1 score. This step was crucial for participants to
gain practical experience with various methods of measuring bias, using the newly learned
concept of groups to partition the dataset based on feature values.

(5) Bias analysis through sensitivity analysis, where participants altered feature values and
observed prediction changes, introducing additional metrics: fairness through awareness
[26], counterfactual fairness [42], conditional statistical parity [21], and test fairness [16].
This step was essential to introduce the concept of individual-level fairness, demonstrating
the impact of keeping all features constant while altering a protected characteristic, such as
changing sex from male to female.

(6) Feature correlation plots were used to analyze bias, introducing participants to the fairness
through unawareness definition of bias [33]. This step demonstrated how to mitigate bias
under this definition by removing discriminatory features and identifying proxy features.
It also introduced the sole model-level fairness definition included in the take-home task,
along with its corresponding mitigation approach.

(7) Relative delta bias visualizations comparing metric differences for each feature value, calcu-
lated against various training types, aiding in selecting the training type that minimizes bias.
Each training type was a model trained on a specific subset of features from the COMPAS
and German Credit datasets. To minimize bias, a participant should select the training type
with the lowest relative delta bias. With participants now familiar with methods for detecting
bias, this task was designed to encourage them to reflect on strategies for mitigating bias at
a group level.

(8) Absolute delta bias analysis, examining the effects of different training types on within-
feature values, comparing them to the original dataset to highlight improvements or declines
in metrics for specific feature values. For example, if a new training type results in higher
accuracy for males, this would be considered a positive absolute delta bias. This analysis
encouraged participants to explore how changes in the training type affected specific feature
values using the group-level bias metrics they had learned. In practice, when bias cannot
be fully eliminated, ML practitioners may focus on reducing bias for a particular group of
individuals.

(9) Prediction change visualizations evaluate how the training type impacts the ratio of samples
whose output changes when a given feature value is artificially modified. The least biased
training type is identified as the one that causes the fewest output changes. Intuitively, if a
new training type results in fewer prediction changes when the feature sex is modified from
male to female, it can be said that bias has been reduced. This step assessed participants’
ability to mitigate bias on individual-level bias metrics by selecting a training type that
minimizes prediction changes when the value of a protected feature is artificially altered.

(10) Prediction volatility visualizations focus on variations in prediction probabilities, identifying
the least biased training type by minimizing changes in probability outputs. This offers more
detailed insights into output trends than the prediction change visualizations in the previous
step by detecting subtle changes in output probabilities. In binary classification, we might
not observe a shift from 0 to 1 or vice versa, but these small changes can still be significant.

ACM Transactions on Interactive Intelligent Systems, Vol. 15, No. 2, Article 12. Publication date: June 2025.



Practitioners and Bias in Machine Learning: A Study 12:9

This step offers greater detail in output trends compared to the previous one and serves as a
continuation, providing deeper insights to participants while building upon the prior step.

(11) Due to time constraints, the final part of the take-home task was an optional exercise involving
the exploration of the German Credit dataset [25], encouraging participants to further delve
into bias concepts and mitigation techniques. Participants were specifically instructed to
apply the analysis methods introduced in earlier steps to this new dataset and document at
least three insights that could help reduce bias when building a model on it. This dataset,
which was also discussed during the interview with all participants, is widely used by the
fairness community due to its known biases and was provided to participants as an additional
opportunity for reflection.

3.3 Study Procedure

The study procedure consisted of a one-and-a-half-hour take-home task detailed in Section 3.2,
followed by a thirty minute semi-structured interview. These times were provided as guidelines to
set participant expectations that the study was a significant commitment. However, there was no
enforced time limit. To increase completion rates and to keep the gap between the interview and
the take-home task to under a week (participant schedule permitting), the interview was scheduled
before study material was released. Most participants completed the take-home task on the day of
the interview, or in the preceding days. Participants were asked to share their answers in advance
of the interview. The study was conducted in accordance with the ethical approval granted by
the university ethics committee. Informed consent was obtained from all participants, ensuring
they understood the nature of the study, their involvement, and how their data would be used. All
participants were given the option to withdraw at any time without penalty.

In the interview, participants were asked to elaborate on their written answers to the exercises
in the take-home task, specifically discussing and reflecting on metrics to detect and mitigate bias.
Participants could refer to the tutorial and their written answers during the interview. To further
assess participants’ comprehension and reflections on analyzing biases, participants were prompted
to consider potential bias issues and methods for detecting and mitigating bias in the German
Credit dataset [25], regardless of whether they had explored this dataset in the take-home task.
Without needing to build it, participants were asked to think aloud as they discussed how they
would operationalize bias on this dataset. Finally, participants were asked a series of questions
around their own experiences with ML bias at work and ethical issues around potentially biased
models. The questions were designed to explore participants’ written answers to the study and also
as a way of getting participants to reflect on analyzing biases. The full interview guide is available
in the supplementary material.

3.4 Analysis

The interviews were audio recorded and fully transcribed, and written responses to the 12 exercises
in the Colab notebook were also extracted. Both the interview transcriptions and exercise answers
were analyzed using inductive thematic analysis [12, 13], following the six-step data analysis process
outlined by Clarke and Braun [18]. The process involved open coding conducted by the primary
researcher, followed by sample checks conducted by the other researchers. Open coding enabled
the exploration of the qualitative data without relying on predefined assumptions or categories
[19] and is frequently employed in HCI research when participant responses are open-ended in
nature [17, 22, 29]. The open coding approach involved summarizing participant statements into a
set of concise, representative keywords. These codes were added to an expanding list of used codes,
which was employed to help the researcher maintain consistency in the coding process.
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The initial list of codes was refined down to 125 codes (full list available in the article supple-
mentary material), based on merging codes that were misspelled or that had the same meaning.
Codes that had fewer than five quotes were checked for novelty, and whether they were entirely
covered by other codes. The final list of codes was deliberated among the researchers, who then
independently searched for themes by identifying patterns across the codes and data, clustering
the codes into groupings of four to eight categories. The initial themes were discussed and refined
over seven iterations, leading to a collective decision to consolidate them into four themes. After
drafting the findings, each paragraph was tagged, which prompted a reorganization of the findings
into five themes, as detailed in the results. The original themes were adjusted to address imbalanced
sections and to more accurately align with the research question.

4 Findings

The findings from both the interviews and exercises are presented in the following subsections,
each corresponding to one of five themes. These results revealed that eight participants had some
familiarity with bias in ML, while another four were aware of the existence of bias-reducing
methods; however, all 12 participants had limited or no knowledge of how to address bias, hence
they were considered novices to analyzing biases. Eight of the study’s participants were already
employing some bias prevention methods in their work, either consciously or as part of other ML
practices. Our findings also reveal that before the study, seven participants had not considered bias
at all, either because it had not been an issue for them, or they believed bias was not relevant to
their domain. In contrast, nine participants indicated that the study would lead them to change
some of their ML practices to minimize bias as much as possible in their work.

Overall, the interviews indicate that participants found the exercises interesting and engaging.
All participants completed the compulsory exercises, and four participants spent more than the
recommended one and a half hours to further analyze biases in the provided datasets. P02 expressed
that, as an ML practitioner, handling bias is not common in practice. However, participants ac-
knowledged the growing consensus that ML practitioners who design the models are responsible
for any bias, as highlighted in emerging regulatory frameworks such as the EU AI Act [20], which
mandates that developers use representative and unbiased data for model training. Participants
considered this a positive step forward and suggested that bias handling should be taught as part
of regular ML courses.

4.1 Sources of Bias

A recurring theme in both the interviews and exercises was participants’ perceptions of the origins
of bias. Table 2 highlights these sources, categorizing them into four main areas: ML models,
datasets, features, and ML practitioners. The table illustrates the diverse reasons participants
attributed to the presence of bias. Detailed insights into these specific sources are provided in the
following subsection.

Participants identified the underlying ML models as a potential source of bias. Eight of them
described the existence of an inherent algorithmic bias, described by P02 in the exercises as: “models
looking for correlations rather than causation.” Five participants highlighted omitted variable bias
as a type of algorithmic bias, which they defined as occurring when a feature influencing the
population data is omitted from the training data by the ML model, leading to lower performance
on unseen test data. For example, “a face detection model may be trained only on Caucasian subjects
and thus perform poorly on real data with subjects of other races” [P05]. Participants also identified
sources of bias within the framework of traditional ML concepts. For instance, five participants
discussed bias in the context of the bias-variance tradeoff, explaining that high bias occurs when a
model overfits, performing well on the training data but failing to generalize to new, unseen data.
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Table 2. Sources of Bias Identified by Participants, Grouped by Type, Reason, Count, Participants, and
Stage of the Study

Source Type | Reason Count | Participants Stage
Model Algorithmic bias 8 P01, P02, P04, P09, P11, P17, P20, P22 Exercises
Model Omitted variable bias 5 P01, P08, P09, P14, P16 Interviews
Model Bias-variance tradeoff 5 P07, P08, P10, P12, P16 Exercises
Model Intercept in linear regression 1 P16 Exercises
Model Bias nodes in a linear network 1 P17 Exercises
Data Unfair, non-representative datasets 14 P01-06, P11-18 Exercises
Data Sampling bias 11 P01, P03-05, P11, P12, P14-16, P20, P22 Interviews
Data Prejudice bias 4 P04, P05, P09, P21 Exercises
Data Historical bias 6 P02, P04, P09, P16, P21, P22 Interviews
Data Data drift (price or seasonal changes) 3 Po1, P05, P12 Interviews
Features Using protected features (e.g., race) 17 P01, P02, P04-07, P09, P11-14, P16-20, P22 | Exercises
Features Disparities within a feature 14 P02, P03, P06-12, P18-22 Interviews
Features Proxy of a protected feature 3 Po1, P10, P12 Interviews
Features Vagueness of the feature 2 P03, P06 Interviews
Practitioners | Incorrect assumptions in modeling 10 P01, P04, P06, P09, P13, P14, P16-19 Exercises
Practitioners | Personal traits and beliefs 9 P01, P04, P09, P14, P16-19, P22 Interviews

This understanding of bias aligns with the classical tradeoff between bias and variance [7], where
models with high bias are typically too simplistic and unable to capture the complexities of the
data. Meanwhile, two participants provided technical definitions of bias. Participant P17 described
bias as “a unit in the hidden layer of a linear network” while P16 referred to it as “the intercept in
a linear regression, representing the expected value when all explanatory variables are set to 0.
These definitions highlight the varying ways participants conceptualized bias within traditional
ML frameworks, offering different angles on its implications for model performance.

Regarding dataset issues, 14 participants highlighted unfair datasets, particularly non-
representative data as a significant source of bias. They described data imbalances as a key factor
contributing to unfairness: “you will probably find more training examples of certain races and
if you train a model on that, it will sort of push just having that race [...] toward a prediction of
‘1’” [P12]. Eleven participants attributed these imbalances to issues in data collection, specifically
sampling bias, which they defined as data failing to represent the overall population. This results in
models that are not generalizable: “if people of certain races were more likely to be arrested in the
first place as a result of existing biases, this could be reinforced by the ML algorithms” [P02]. P13
and P18 highlighted that these data collection issues result in the over-representation of specific
groups in the dataset, such as African-Americans in the COMPAS dataset. Four participants referred
to this over-representation as prejudice bias, which they attributed to biases inherent in the real
world. Similarly, six participants described these real-world biases as historical bias, emphasizing
how existing discrimination and socio-economic disparities within the data perpetuate stereotypes.
Additionally, three participants raised concerns about measurement problems as a source of bias,
focusing on the failure of ML practitioners to adapt their models to data drift. Examples included
changes over time, such as price fluctuations or seasonal variations, which can negatively impact
model performance.
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Participants also discussed feature issues as a source of bias. They expected feature bias from
protected characteristics in the COMPAS dataset, such as race (17 participants), sex (14 participants),
and age (13 participants). Fourteen participants identified disparities within specific features as a
potential source of bias, citing examples from the COMPAS dataset such as sex, juvenile felony
count, misdemeanor count, and priors count. Participants also voiced concerns about the quality of
features in the COMPAS and German Credit datasets, with three of them noting that some features
might be proxies for others, such as the feature sex in the German Credit dataset: “you can make
the argument that it’s a proxy because females are more likely to be in temporary employment
versus permanent employment” [P01]. Two participants mentioned that some features could be
better refined, such as loan purpose in the German Credit dataset, which they considered to be too
vague.

With regard to ML practitioners as a source of bias, 10 participants described bias as a systematic
error in the model arising from incorrect assumptions made by practitioners during the modeling
process. Examples included biases introduced through data pre-processing [P06] or preconceived
notions held by practitioners [P18]. During the interview, nine participants discussed assumption
bias, describing it as biases introduced by ML researchers due to their personal traits and beliefs. For
instance, P16 highlighted how relying on ML libraries without fully understanding the assumptions
underlying algorithms can result in bias. Meanwhile, P22 expressed their personal belief that,
despite age being a sensitive feature, it is reasonable to include it when training a model on the
German Credit dataset: “if I see something like a high correlation between age and target variables
I think it makes sense because [...] when they get older, maybe they have more experience, they
may learn how to live in the community, in a good way.” Four participants noted that these issues
caused by practitioners can lead to biased algorithmic design choices, resulting in biased model
outputs.

In summary, participants identified four distinct main sources of bias in ML models but agreed
that multiple sources are typically present: “I think it’s difficult to say that bias is entirely contained
within the ML approach, because bias certainly emerges just in the data itself” [P05]. For example,
four participants mentioned that irregularities in the form of outliers in small datasets can cause
problems for model-building and analyzing bias, or that feature imbalances might be caused by
sampling bias in data collection.

4.2 Employing and Selecting Bias Metrics

This theme provides insights into the decision-making processes of participants regarding selecting
different bias metrics and the practical implications of employing them. The take-home task asked
participants to describe which group-level bias metrics (equalized odds, equal opportunity, statistical
parity, or treatment equality) they would select to assess bias in the presented datasets. As shown
in Table 3, participants did not reach a consensus on a single method for measuring bias in the
COMPAS dataset, emphasizing the various advantages and limitations of different metrics. A similar
pattern was observed with the German Credit dataset, where four participants who provided written
responses selected equalized odds to minimize false positives. However, P04 and P12 also opted for
treatment equality, with P12 additionally choosing equal opportunity.

Treatment equality emerged as the most popular bias metric, chosen by 13 participants, six of
whom preferred it because it considers both false positives and false negatives. They viewed these
errors as particularly harmful within the context of the COMPAS dataset, as it could result in either
releasing recidivists or unnecessarily detaining individuals who would not re-offend. Four partici-
pants chose it because it yielded low values, making the model appear fairer, perhaps artificially
satisfying the goal of creating a fair model. P16 chose it to prevent performance concentration on a
single group.
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Table 3. Bias Metrics Chosen by Participants for the COMPAS Dataset during the Take-Home Exercises,
Along with Their Reasons and Corresponding Participants

Bias Metric Reason Count | Participants
Treatment equality Lowest delta value 4 P04, P10, P14, P20
Treatment equality Incorporates both false positives and false negatives 6 P02, P05, P09, P12, P17, P18
Treatment equality Avoids performance being concentrated on a single group 1 P16

Equalized odds Lowest delta value 2 P04, P20
Equalized odds Penalizes false positives 2 P07, P11
Equalized odds More stringent definition than equal opportunity 1 P03

All metrics Base conclusions on all metrics, identify largest differences 3 P06, P12, P13
Statistical parity Recall and F1 score are similar to statistical parity 2 P07, P22

Fairness in relational domains | Less stringent, makes sense in practice, as it sets a threshold 1 P19

Own metric A modified version of treatment equality 1 P08

Own method Sampling input features equally as it minimizes bias 1 P21

Accuracy What ML practitioners aim for when training models 1 P15

Participants did not converge on a single method for measuring bias.

Equalized odds was another popular choice, selected by eight participants. Reasons for choosing
it included its ability to reduce false positives (three participants), the low values observed during
experimentation (two participants), and its rigorous definition, which accounts for both the odds
of being correctly and incorrectly assigned a positive outcome (one participant). This is unlike
equal opportunity, which considers only the odds of being correctly assigned a positive outcome.
Notably, no participant chose equal opportunity as the sole metric; it was only selected by the three
participants who chose to use all four metrics to draw comprehensive conclusions.

Although less frequently selected, P07 and P22 chose statistical parity because of its connection
to the F1 score, a traditional ML evaluation method. P19 preferred a relaxed version of statistical
parity known as fairness in relational domains, valuing its practical approach of setting a fairness
threshold. Notably, during the follow-up interview, five participants questioned whether practical
thresholds could be applied to the other bias metrics as well.

Participants also proposed using traditional ML evaluation methods directly, instead of bias
metrics, to detect bias. Specifically, three participants stuck with traditional ML evaluation methods
like accuracy [P15], or defined their own methods using ML concepts [P08, P21]. For example,
P08 proposed specific ratios of false positives and negatives to measure bias impacts: “I would
like to use false_positives / (true_positives + false_positives) and false_negatives / (true_negatives
+ false_negatives) because if any group has a higher rate of either of these, it will mean either
innocent people being targeted with more suspicion because of their group, or recidivists being
unsuspected because of their group” [P08].

During the interview, participants reflected on the use of bias metrics, focusing on strategies
for selecting metrics, interpreting them in practical contexts, and considering the impact of group
sizes. Five participants questioned whether different types of data require different bias metrics,
with most participants expressing that they would use the same bias metrics for both COMPAS
and German Credit. However, eight participants proposed selecting a bias metric based on the
application goal, such as minimizing false positives for the COMPAS dataset, or false negatives
for the German Credit dataset: “if a person who is capable of paying back the loan is less likely to
get the loan because they are a certain race or age or gender, then that is probably unfair” [P08].
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Participants also mentioned ML model-building considerations, like using bias metrics iteratively
to improve models [P06].

Participants also noted potential issues with employing bias metrics, like selecting metrics
yielding the highest fairness level (four participants), which could lead to “gaming the system.
Another issue pointed out by two participants was the tradeoffs between different metrics, as they
mentioned it is not possible to satisfy all fairness definitions simultaneously. They attributed this to
a tradeoff between minimizing false positives and false negatives. Additionally, five participants
noted that small or highly imbalanced datasets could impact the reliability of the metrics.

P08 and P09 highlighted the loss of interpretability when employing bias metrics. For equalized
odds, P09 highlighted that the value for two groups might be the same, but one group could
have a high false-positive rate while the other has a high true-positive rate due to the metric’s
harmonic mean of both false positives and true positives. For statistical parity, P09 mentioned that
the summing of true and false positives leads to a loss of granularity. Regarding treatment equality,
P08 explained that its construction can result in similar scores for groups with different rates of
false positives and false negatives: “if a group has both greater false positives and false negatives,
they will have similar scores as another group with lower false positives and false negatives, but this
is still unfair” [P08]. Two participants mentioned a loss of interpretability due to subtle differences
between some metrics, which made it difficult for them to grasp the distinctions, such as between
equalized odds and statistical parity.

In the interview, all participants considered conventional ML model evaluation techniques within
the context of mitigating bias. Seven participants used accuracy to discuss the COMPAS dataset
results, while three of them noted that maximizing accuracy alone can cause bias. Six participants
used other evaluation metrics like F1 score or recall, or a combination of all metrics presented
in the study. Eight participants highlighted how differences in traditional metrics across groups
could reveal biases without needing specialized bias metrics. For example: “based on how the
models perform differently among different sub cohorts and the different ways of removing features
affected the scores, this would suggest that that there would have been some biases even in the
other features that don’t explicitly encode biases” [P02]. This suggests that existing metrics could
be repurposed to detect bias.

4.3 Detecting Bias

This theme reports on how participants implemented a selection of bias metrics and reflected
on them through written responses to the study exercises and subsequent interviews. Table 4
summarizes participants’ responses to the quantitative elements of the take-home task, illustrating
their effectiveness in detecting bias within the datasets. Ten participants answered all four questions
correctly, while nine missed points on only one question. Most errors occurred in Exercise 7, with
no mistakes recorded in Exercise 10. When errors did occur, participants either failed to identify the
training type that most effectively reduced bias, focused on the wrong discriminatory feature, or
provided partial answers, potentially due to technical issues. Despite being an optional exercise, P04
identified bias in the German Credit dataset by examining the feature sex and found that removing
features such as duration or housing reduced the level of bias.

During the interviews, participants reflected on instances of bias they detected in the COMPAS
dataset. Nine participants described bias against African-Americans, observing significant disparities
in bias metrics between races: “African-Americans consistently have a higher ‘equalized odds / equal
opportunity’” [P21]. This supports ProPublica’s findings that black defendants were more likely to
be misclassified as high-risk compared to white defendants [1], indicating a higher false-positive
rate. Additionally, eight participants reported significant differences in bias metrics between age
groups, with younger offenders scoring worse, confirming ProPublica’s findings that younger
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Table 4. Participants’ Performance Scores on Bias Detection Exercises

Participant | Q7 | Q9 | Q10 | Q11 | Score | Score %
Po1 05 |1 1 1 3.5 87.5
P02 0 1 1 0 2 50.0
P03 05 |1 1 1 3.5 87.5
P04 1 1 1 1 4 100.0
P05 1 1 1 1 4 100.0
Po6 1 1 1 1 4 100.0
P07 1 1 1 1 4 100.0
P08 05 |1 1 0 25 62.5
P09 1 0 1 1 3 75.0
P10 1 1 1 1 4 100.0
P11 1 1 1 1 4 100.0
P12 1 1 1 0 3 75.0
P13 1 1 1 1 4 100.0
P14 1 1 1 1 4 100.0
P15 0 1 1 1 3 75.0
P16 0.5 1 1 1 35 87.5
P17 1 1 1 1 4 100.0
P18 1 1 1 0 3 75.0
P19 1 1 1 1 4 100.0
P20 05 |1 1 0 25 62.5
P21 0 1 1 1 3 75.0
P22 1 0 1 1 3 75.0
Accuracy % | 75.0 | 90.9 | 100.0 | 77.3

Quantitative exercises were evaluated using a binary scoring system, with
half marks awarded for partially correct answers in two-part questions. Most
participants answered all four questions correctly.

individuals were more likely to receive higher scores [1]. Two participants noted a data imbalance,
with those aged 25-45 being over-represented. However, while ProPublica found that female
defendants were more likely to receive higher re-offending scores than males, participants did
not detect this. Instead, seven participants found that men were discriminated against in terms of
recall: “males have almost double the recall of females, so re-offending females are half as likely to
be identified” [P18].

Participants also detected bias through a feature correlation plot, finding it useful for understand-
ing the causes of bias. Six participants noted that highly correlated input features are detrimental to
the model, even if none are protected features. Five participants used feature correlations to identify
bias in the COMPAS dataset, even when one feature was non-discriminatory. For example, one
participant observed that non-discriminatory features correlated with specific races could lead to
biased models: “the values for these features are greater than 0 mostly for people belonging to the
African-American race. This could lead to a model that highly discriminates on people belonging
to this race” [P10]. Another participant noted differences between African-American males and
Caucasian females in F1 scores. However, eight participants were sometimes unsure about what
constitutes a closely correlated proxy feature or a protected characteristic, indicating a need for
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clearer guidelines. Three participants suggested that discriminatory features should be limited to
those that cannot be changed, such as age, sex, and race.

4.4 Mitigating Bias

This section includes participants’ reflections on the bias mitigation process as they attempted
to reduce bias in the COMPAS and German Credit datasets. The results showed participants
successfully reduced bias by selecting training types that minimized prediction changes for certain
features in both COMPAS and German Credit.

One exercise asked participants to change the model’s training type to mitigate bias. Each training
type was a model trained on a specific subset of features from the COMPAS and German Credit
datasets. P01 compared this mitigation method to Shapley Values, explaining in the interview that
they are used in explainable Al to evaluate the importance of each feature: “if I remove race, how
many label predictions change? If not many change, then you say it’s not a very important feature”
[P01]. To mitigate bias, participants used sensitivity analysis to measure differences between
training types. This analysis involves changing the input values of potentially discriminatory
features and observing changes in the model’s output. For instance, changing the feature sex from
male to female to see if the prediction changes. If a model is truly fair, then the output would not
be influenced at all by changes in discriminatory features.

In practice, participants’ goal was to select a training type where fewer predictions change,
thereby partially mitigating bias. Five participants noted that the sensitivity analysis can help
identify borderline cases where slight input changes affect predictions. They also saw this analysis
as a way to observe drivers of predictions, by observing how specific features influence the model’s
output. According to five participants, it is acceptable for a model’s predictions to change when
input features are modified, if the changes are driven by non-discriminatory features: “with priors
count, you would expect the predictions to change anyway, at least slightly, at least much more
than with gender” [P04].

In the COMPAS dataset, participants examined features such as race (15 participants), age (10
participants), sex (9 participants), priors count (6 participants), juvenile other count (2 participants),
juvenile misdemeanor count (1 participant), and the type of charge (1 participant). Despite the
availability of bias metrics to detect bias, 16 participants relied on their intuition rather than the
bias metrics to identify potentially biased features. For instance, nine participants noticed many
predictions changed from will re-offend (a value of “1”) to will not re-offend (a value of “0”) when the
feature race was changed from African-American to any other value, with four of these participants
identifying training types that partially mitigated this bias. Similarly, P14 and P19 observed changes
in predictions when modifying race from Caucasian to Others, with removing the feature priors
count or sex resulting in fewer prediction changes.

Nine participants identified changes in the feature sex from male to female also led to many
predictions changing from “1” to “0,” with four of these participants finding that removing race
or age led to the greatest reduction in changes. This suggests that excluding these features could
decrease bias related to sex. Nine participants acknowledged potential tradeoffs in bias mitigation,
noting that reducing bias for one feature might increase it for another. For example, four participants
used the bias metrics to observe that removing priors count reduced bias for African-Americans
but worsened it for Caucasians: “For equalized odds, and feature value African-American (race),
removing priors count resulted in the biggest improvement in score. For feature value Caucasian
(race) it negatively impacts the score” [P11]. Regarding age, five participants found that changing
the age category from 25 to 45 to under 25 caused many predictions to change from “0” to “1” Three
of these participants identified that the training types removing race or priors count helped reduce
this effect.
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Findings in Section 4.3 show how participants used the feature correlation plot to identify
bias. As part of the exercises, participants used these plots to mitigate bias by removing features
correlated with discriminatory ones. This approach encouraged participants to consider the fairness
through unawareness definition of bias [33]. Six participants found this intuitive, as they related
the definition to real-world use cases, such as companies removing labels like race and sex from
their ML models. Although one participant expressed surprise that, under this definition, a model
is considered fair simply by removing protected features and their proxies.

The exercise results show that 15 out of the 19 participants found priors count valuable and
did not remove it despite its correlation with the output, as removing it negatively impacted the
accuracy of the model. It was also not seen as a directly biased feature, though indirectly some
participants argued that the feature can hold bias because certain groups are more likely to be
arrested, referring to data issues as described in Section 4.1. Six participants observed a correlation
between juvenile misdemeanor count and priors count and chose to remove juvenile misdemeanor
count due to concerns about inferring age. Twelve participants recognized the tradeoffs in this
approach, as removing features might decrease model accuracy or increase bias in other correlated
features. For example: “I would not remove any of them, because removing juvenile misdemeanor
count increases the sensitivity of age, removing priors count increases the sensitivity of race” [P08].
Four of these participants found it hard to justify removing even sensitive features if they are
valuable for the output.

The study shifted participants’ perspectives on addressing bias within their own work. As ML
practitioners, they suggested that in the future, they will quantify potential bias rather than rely on
a qualitative inspection of the dataset [P09, P18], conduct a sensitivity analysis on the features [P05,
P09], and choose non-discriminatory features [P13]. Participants also proposed several other bias
mitigation methods to tackle the bias sources described in Section 4.1 that they could use in their own
domains, centering on issues with the datasets, features, model, and the practitioners themselves.
These are outlined in Table 5. Four participants suggested using traditional ML techniques to
mitigate bias, such as regularization, dropout, model complexity reduction, and cross-validation
and that choosing certain ML algorithms over others can help reduce bias: “algorithms which fight
bias will be chosen over those that don’t, for example Catboost where gradient boosting is needed”
[P05]. In terms of a bias mitigation tool, two participants suggested it would be useful to have
automated systems to monitor bias in the data.

4.5 Ethical Considerations

Participants considered ethical ramifications when reflecting on the potential for bias in ML. Six
participants expressed the view that ML applications might always contain bias due to inherent
unfairness in real-world scenarios, despite implementing the bias mitigation techniques described
in Section 4.4, such as by refining features in COMPAS to use location instead of race: “if you
are measuring postcode and we did live in a world where ethnicities were evenly distributed
geographically, theoretically only then would our models be fine” [P01].

Participants brought up ethical concerns regarding the use of ML. For instance, P18 highlighted
the challenge ML practitioners face in simplifying real-world applications to fit ML models, such as
the German Credit dataset missing critical insights: “if they’re living with their parents, they’ve got
an income, they’re not paying much rent or whatever, then actually they could be in a really good
financial situation. And the mortgage people could actually be struggling and have less money and
actually be a higher risk” [P18].

Eight participants discussed the possibility that biases in ML models originate from real-world
societal issues rather than the models themselves. For example, in the COMPAS dataset, two
of these participants linked race and sex to crime, noting, “I believe statistically someone of an
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Table 5. Bias Mitigation Proposals and Participant Counts across Various Subject Areas

Subject Area Count | Actual Observation

Data collection 6 Collecting more data if features at risk of bias cause big changes
in performance.

Data collection 1 Ensuring a diverse range of samples are used [P18].

Data collection 1 Incorporating different datasets of the same kind, rather than

simply trusting one dataset [P09].

Data pre-processing 5 Resampling the output classes to make them equal. However,
P21 pointed out that in practice it may be hard to balance both
protected input features and the output.

Data pre-processing 1 Removing outliers, although in small datasets there may not be
enough data to know if a specific sample is an outlier [P06].

Features 2 Improving features by the way they are labeled, such as mea-
suring a person’s ability to repay a credit instead of measuring
risk in the German Credit dataset.

Features 1 Performing a transformation on the features in the hope that it
reduces some of the biases that arise from skewed data [P08].

Features 4 Breaking features down into more granular sub-features, such
as accompanying the feature race in COMPAS with other demo-
graphic data, or further splitting the age category.

Features 1 Ensuring no two features have a high correlation between each
other.

Model 6 Building models that do not include discriminatory features and
do not extrapolate from the data.

Model 2 One input should not be prioritized over another input.

ML practitioners 2 Discussing one’s own model-building ideas with others.

Suggestions for mitigating bias were primarily focused on features, data collection, and pre-processing methods.

African-American race would be more likely to commit a crime in that respect, but that’s basically
a socio-economic issue [...]. I think that if you allow a model to deliver these insights then it
will perpetuate the stereotype that African-Americans are people that commit crimes” [P04].
Consequently, participants suggested that bias might always be present in some ML applications
due to underrepresented groups in both the training data and society. This discussion led to
reflections on how differing societal views influence ML model design. For instance, in the context
of the COMPAS model predicting recidivism, opinions varied on whether to prioritize individual
human rights or societal safety. Two participants argued that a model could not be considered
biased if the data were accurate and sufficiently sampled, implying that it is simply a reflection of
bias in the world [P16, P21]. P08 suggested that the onus of ensuring that models are unbiased falls
on those who design them in the first place.

Given these ethical ramifications, four participants suggested instances where ML should not be
used, such as: when removing problematic features causes the accuracy to drop below an acceptable
range; if bias cannot be mitigated due to missing data or features; or if the application is “very
subjective,” for example with the COMPAS dataset: “it’s very subjective to tell whether the person
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is going to commit crime or not. It’s not like 100% sure that he’s going to commit a crime” [P11].
Ten participants suggested that whether ML should be used despite bias concerns depends on the
specific application and whether the available alternatives are more subjective. For example, P06
suggested bias might be acceptable if the application is not critical: “It may not be a problem if my
model cannot recognize a white cow with black spots to a Dalmatian dog, but when it comes to
matters about sex, jobs, race, and so on, this could be a real problem in case of wrong results” [P06].
This was reflected in the study: three participants found it harder to discuss and reflect on bias for
the German Credit dataset because the detrimental effects were not considered as serious as with
the COMPAS dataset.

Additionally, four participants mentioned the importance of bias depending on regulatory
requirements. Six others emphasized avoiding bias by being meticulous throughout the model gen-
eration process, such as when choosing features, the assumptions that they make in the model, and
ensuring the bias metrics yield similar scores across different groups. Meanwhile, four participants
indicated that, despite gaining a greater awareness of bias sources through this study, they would
not alter their approach to constructing ML models.

Participants sometimes based their reasoning on stereotypes when discussing how bias arises
in the input features of the study’s datasets. This was particularly evident regarding age. While
considered discriminatory, four participants found its use acceptable in certain contexts. For
example, P22 stated, “if I see something like a high correlation between age and target variables
I think sometimes it makes sense because I think most of the people who have done something
wrong, they did it when they were adolescents. But when they get older, maybe they have more
experience, they [...] learn how to live in the community.” Another example: “age is one thing that
in this case I would argue is, well, I would keep age in credit risk models because I think inherently
people become more financially free, have more money, work in higher paying jobs as they get
older. So, in this case age is actually a very good indicator of your creditworthiness” [P12]. In
the COMPAS dataset, eight participants thought the ML model was making judgments based on
race. Five of these participants attributed this to institutional discrimination and socio-economic
disadvantages. However, P16 based their reasoning on stereotypes, suggesting that cultural or
habitual differences might also contribute.

5 Discussion

The findings revealed that participants, as users of ML, understood and effectively applied various
bias definitions, detection measures, and mitigation methods, thus addressing the research question.
This understanding was evaluated through the study exercises and interviews, where participants
elaborated on their responses and reflected on best practices in model-building. While participants
discussed different fairness definitions and identified bias in the COMPAS dataset, they encountered
challenges during this process. Consequently, two main discussion points have been identified
from the findings and are reported in the subsequent section.

5.1 Unresolved Conflicts

The findings in Section 4.1 indicate that participants had an intuitive understanding of bias formation
and types but faced challenges in selecting relevant metrics, balancing model performance with
bias mitigation, and relying on data over personal opinions. These challenges echo prior research
suggesting most bias remains unmitigated in practice [38].

Participants experienced difficulties when selecting bias metrics, corroborating findings by
Madaio et al. [47]. Section 4.2 shows that, although participants could employ various fairness
definitions and bias metrics to detect bias, they were uncertain about which metric to apply in
different contexts. Consequently, they often selected metrics that made the ML application appear
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less biased rather than addressing the underlying fairness issues. This issue of practitioners “gaming
the system” is corroborated by prior work from Veale et al. [74]. The tendency to select metrics that
minimizes apparent bias highlights a broader issue in ML practices, where models are frequently
chosen based on summary statistics like accuracy, obscuring important information about a model
such as group sizes, and leading to the deployment of problematic models [58, 78].

The effect of employing different metrics when analyzing biases is shown in prior research
on the COMPAS dataset, where ProPublica highlighted violations of equalized odds and equal
opportunity fairness criteria, indicating African-American defendants had higher false-positive
rates than Caucasian defendants [1]. In contrast, Northpointe, the creators of COMPAS, claimed
fairness based on statistical parity [24]. Our findings in Section 4.3 show that participants differed
from the bias literature in their conclusions about gender discrimination in the COMPAS dataset.
This discrepancy arose as ProPublica adjusted for the same factors by balancing group sizes [1],
highlighting the impact of data imbalances on bias metric applications and the conclusions drawn
when analyzing biases.

Findings (e.g., in Section 4.2) indicate that bias metrics may suffer from a lack of interpretability
because of their construction, where different underlying outputs can yield the same metric value.
This echoes prior work which has called for ways to measure model performance beyond summary
statistics that conceal important information about the model [74] and extends it to detecting bias.
One suggested solution is a unified metric for algorithmic unfairness using inequality indices from
economics, which accounts for group size and allows for easy comparison of algorithms at both
individual and group levels [66]. This solution also addresses concerns raised by our participants
(e.g., in Sections 4.1 and 4.2) regarding imbalances in group sizes.

Our findings in Section 4.3 show that participants identified biases in both the COMPAS and
German Credit datasets, aligning with prior research indicating that the COMPAS dataset is biased
concerning race, sex, and age [1], while the German Credit dataset is biased toward sex and low-
skilled workers [60]. Despite participants’ interest in fairness and the availability of bias mitigation
techniques, our findings (e.g., in Section 4.4) indicate that they were unable to completely eliminate
bias from the COMPAS and German Credit datasets. Participants (e.g., in Section 4.5) attributed
the difficulties in mitigating bias to the simplification of complex real-world processes into models
with limited variables. This may be attributed to problem selection, which prior research has shown
to be the cause of failure in 87% of ML projects [69], often due to the complexity of the designed
applications [39, 76]. An implication might therefore be to encourage ML practitioners to address
simpler problems, reducing the impact of bias caused by sampling issues or societal factors.

Participants also found (e.g., in Sections 4.3 and 4.4) that non-discriminatory features in the
COMPAS and German Credit datasets implicitly encoded real-world bias. This confused participants,
with findings (e.g., in Sections 4.1 and 4.5) revealing that were unsure whether it stemmed from the
way these datasets were constructed (i.e., unrepresentative data collection) or if it reflected bias in
the world (i.e., representative of an unfair society). The issue of real-world bias is well-documented,
with our participants echoing prior work noting racial disparities in healthcare outcomes and access
[48]. Consequently, they were conflicted about the best approach to tackle this issue. Drawing on
ideal theory concepts from political philosophy [72], prior research addresses this ethical concern,
questioning whether ML practitioners should create models based on real-world biases, risking
discrimination, or based on an idealized society, risking unrealistic models [28].

Our findings in Sections 4.2 and 4.4 show that participants struggled to balance model perfor-
mance with bias mitigation, recognizing the existence of a tradeoff. This aligns with prior research
demonstrating a fairness-accuracy frontier [44]. However, this contrasts with Balayn et al. [4], who
found that ML practitioners did not consider the tradeoff between accuracy and fairness when
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addressing biases. This difference may be attributed to the participant groups: this study included
ML practitioners with an interest in fairness, whereas the previous study did not.

Meanwhile, findings in Section 4.5 indicate that participants struggled to justify mitigating bias
by removing discriminatory features if it caused the model’s performance to fall below an acceptable
threshold. While participants were sensitive to bias, they prioritized maintaining model accuracy
and were willing to use sensitive features to preserve performance, often justifying their decisions
with personal opinions and stereotypes. This contrasts with Deng et al. [23], who observed that ML
practitioners commonly assume that removing sensitive features like sex is necessary as it enhances
fairness. However, it aligns with prior fairness research on non-ML experts by Cheng et al. [15],
who found that non-ML experts were reluctant to compromise on accuracy in order to mitigate
bias by achieving equalized odds across different feature groups. Additionally, this finding supports
previous ML research showing a strong reliance on accuracy as a measure of model performance
[40, 58, 78], extending this reliance to considerations of bias.

This section has outlined the various challenges participants, as novices in addressing bias, faced
when operationalizing bias. Additionally, previous research has identified that ML practitioners
often view data collection and processing as the primary challenges to fairness in ML [36, 47]. Our
findings in Section 4.5 support and expand on these observations, indicating that ML practitioners
perceive that bias is not an issue if the dataset is well-sampled, which can create an unwarranted
sense of confidence in the ML process. These challenges and perceptions may help explain the
gap between the practical use of bias metrics and current ML practices. While prior research has
introduced numerous bias metrics [26, 35, 42] and tools [8, 62, 65], this section highlights that
addressing bias in ML requires practitioners to make critical decisions beyond simply using these
resources.

5.2 Reflections on Bias Concepts

Despite the conflicts described in Section 5.1, findings in Section 4.3 show that participants suc-
cessfully identified bias in the COMPAS dataset, corroborating ProPublica’s analysis [1]. Findings
in Section 4.1 show that participants were intuitively aware of various sources of bias, with their
explanations closely aligning with prior literature. For example, in Section 4.3, they observed a
higher false-positive rate, while in Section 4.1, they pointed out that the over-representation of
African-Americans could stem from biases in law enforcement practices, leading to dispropor-
tionately higher arrest rates for African-Americans. Participants also identified biased algorithmic
design choices by ML practitioners as a source of bias, confirming prior research that found this
to be a significant source of bias [3]. Similarly, Section 4.4 demonstrates that participants could
reduce bias using the proposed sensitivity analysis method, indicating that despite conflicts, ML
practitioners can reason about and operationalize bias.

Participants also proposed ways to apply bias mitigation techniques in their own ML projects.
For instance, findings in Section 4.4 indicate that participants could reason about various methods
applicable to their work and that the study enhanced their ability to identify bias methodically and
quantitatively. Through these reflections, participants demonstrated good model-building practices
and used their knowledge of ML to incorporate bias detection and mitigation techniques, showing
a significant overlap between implementing these methods and current ML practices.

Our findings (e.g., in Sections 4.2 and 4.3) indicate that participants recognized a tradeoff between
different bias metrics when detecting bias, attributing this to the balance between minimizing false
positives and false negatives. This supports prior research, which also identified such tradeoffs
between bias metrics [49, 66], and extends these insights to the context of empirical testing by
ML practitioners. Additionally, our findings reveal that participants did not universally adopt a
single method for measuring bias, instead noting the limitations of each metric. For example,

ACM Transactions on Interactive Intelligent Systems, Vol. 15, No. 2, Article 12. Publication date: June 2025.



12:22 R. Cinca et al.

metrics like treatment equality, which aim to balance minimizing false positives and false negatives,
were criticized for sacrificing granularity. This contrasts with the work of Balayn et al. [4], who
found that ML practitioners lacking a strong interest in fairness often applied bias metrics without
critically reflecting on their suitability or limitations. This finding also contrasts with prior research
on non-ML experts, where Srivastava et al. [68] found that lay users preferred the adoption of
statistical parity, possibly because its simpler mathematical construction made it the most intuitive
representation of fairness.

Our participants, as ML experts relatively new to bias considerations, suggested (e.g., in Section
4.2) choosing bias metrics that prioritized minimizing either false positives or false negatives,
depending on the objectives of the ML application. This aligns with previous research on the
precision-recall tradeoff encountered by ML practitioners [14], which is based on confusion matrix
elements, and expands this understanding to bias metrics. However, this finding contrasts with the
work of Haider et al. [34], which found that non-ML experts’ preferences for fairness definitions
were highly subjective and shaped by their individual backgrounds.

Although the study was designed to assess participants’ understanding of bias concepts through
the short exercises and interviews, the findings indicate that even a short-term learning program
enabled novices to develop a strong grasp of bias detection and mitigation. For instance, the results
in Section 4.1 demonstrate that the study helped participants recognize the risk of introducing
their own biases when designing ML models. This supports calls by prior research [36, 73] for more
resources to help ML practitioners enhance fairness and extends their findings by demonstrating
the practical benefits. It also aligns with findings by Lee and Singh [43], suggesting that better
guidance may help overcome the steep learning curve of existing fairness tools and complements
previous research indicating that short training sessions can significantly improve learners’ mental
models and system satisfaction [41], extending these findings to the analysis of biases.

6 Implications

Sections 4.3 and 5.2 show that participants successfully detected bias and were able to partially
mitigate it in a practical setting. These results imply that ML practitioners could benefit from
more encouragement to use bias detection and mitigation methods. Despite numerous fairness
definitions, bias metrics, and packaged tools available (e.g., [8, 62, 65]), the availability of these tools
and methodologies alone does not resolve bias in ML, as their effective use requires practitioners to
make numerous critical decisions. Prior work on how ML practitioners use fairness tools indicate
that existing fairness tools need to better align with the needs of ML practitioners [23, 43, 59]. Our
study supports this call and expands on it by offering a series of implications for operationalizing
bias, including insights into the design of bias mitigation strategies and the integration of bias
concepts with ML practices, as detailed below.

6.1 Designing Bias Mitigation Strategies and Tools

A more consistent application of fairness principles is needed across diverse contexts and applica-
tions. Our findings (e.g., in Sections 4.3 and 4.4) reveal that participants used various techniques to
detect and mitigate bias, often arriving at differing conclusions about the data. These discrepancies
mirror the differences between our participants’ findings, ProPublica, and Northpointe, as discussed
in Section 5.1, and align with prior work highlighting tensions between different fairness interpre-
tations [73]. This finding supports calls from previous research on bias assessment tools [23, 43,
59] to standardize bias metrics and provide transparent benchmarks for assessing dataset fairness.
However, such standardization may be impractical due to the lack of a universally agreed-upon
definition of fairness [63] and the wide variety of bias types and sources of discrimination [49].
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In addition, Sections 4.2 and 5.1 revealed that novices in bias often struggled to select appropriate
bias metrics, expressing uncertainty about which metrics to use and whether their choice should
vary across ML applications. This finding aligns with Nakao et al. [54], who observed that both non-
ML and ML experts unfamiliar with fairness concepts sought additional explanations of bias metrics
to understand their appropriate use. These results suggest that simply providing customizable
fairness and performance metrics, as proposed by Richardson et al. [59], could overwhelm novices in
bias analysis. Instead, practitioners would benefit from guidance in selecting the most suitable bias
metrics for their specific contexts. For instance, Smith et al. [64] recommended that practitioners
first define their fairness objectives and then use a curated menu of choices to identify relevant
metrics. Similarly, Mitchell et al. [53] proposed emphasizing a deeper understanding of foundational
concepts and assumptions to guide metric selection.

However, other researchers have advocated prioritizing ethical fundamentals over metric-driven
approaches [10, 30]. For instance, Binns [10] has called into question key tradeoffs, both between
individual and group fairness, as well as among group fairness metrics, arguing that ML prac-
titioners should instead focus on core assumptions, such as the purpose of the model and the
data-gathering process. Our findings (e.g., in Section 4.2) and discussions (e.g., in Section 5.1)
support this perspective. While participants reflected on potential sources of bias, we observed
instances where they “gamed the system” by selecting metrics that made the ML application appear
less biased, rather than addressing the underlying fairness issues.

Section 4.4 implies the need to automate parts of the bias mitigation process, especially for high-
dimensional datasets and models, as novices may be overwhelmed by excessive information. This
aligns with prior research on the complexity of ML algorithms, which can make even explainable
models like linear models and decision trees difficult to interpret due to human cognitive limits
when dealing with high-dimensional data [46], extending this challenge to analyzing biases.

6.2 Leveraging Overlaps between Bias Concepts and ML Practices

Our findings indicate the potential to integrate bias concepts into ML practices, apply existing
ML practices to measure bias, or adapt concepts from ML for bias. As discussed in Section 5.1,
a key implication for designing bias detection methods for novices is the need to quantify the
bias-accuracy tradeoff. In ML, the F1 score, a widely adopted metric that balances precision and
recall [14, 71], provides a useful framework. We suggest that a similar harmonic mean-based
approach, adapted from ML practices, could be applied to balance bias and accuracy. Since ML
users are already familiar with the F1 score, leveraging this existing knowledge could help novices
better understand a new metric for evaluating the bias-accuracy tradeoff.

Sections 4.1, 4.4, and 5.2 highlight a notable overlap between bias concepts and standard ML
practices like data handling and feature refinement, which could help novices in grasping bias
concepts. This finding complements previous research that showed ML practitioners often de-
prioritize unfamiliar values [73]. By integrating bias concepts with familiar ML practices, we expect
that ML practitioners’ engagement with issues of fairness to increase. Participants noted that typical
ML tasks involving the training dataset, such as correct data sampling, balancing datasets, and
collecting relevant features, can also help mitigate bias. This finding aligns with prior research by
Holstein et al. [36], which found that ML practitioners consider standard dataset-related tasks,
like collecting more training data, essential for addressing fairness issues. Therefore, leveraging
these overlaps in designing bias mitigation strategies and tools can better equip ML practitioners
to understand and apply them effectively.

The findings (e.g., in Section 4.2) indicate that traditional evaluation metrics familiar to ML
practitioners, despite their limitations, can be used to measure group-level bias and highlight
disparities between groups. This approach can foster awareness of bias detection while leveraging
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established ML practices. These metrics could serve as iterative feedback loops for addressing bias,
building on prior research on iterative ML model design processes [77] and extending them to bias
mitigation strategies. However, this approach should be used with caution: prior work on non-ML
experts has shown that while adjusting feature weights through iterative feedback loops could
improve the fairness of a ML model, it sometimes resulted in worsening fairness [55].

There is also an opportunity to design visualizations explaining bias metrics, as highlighted by
findings in Section 4.3, confirming prior work that visualizing model evaluations leads to better
understanding and increased trust [45], with participants in our study effectively using bar charts
to visualize and identify bias.

7 Limitations and Future Work

Our participants, as ML experts with a high level of education, were likely better equipped to
identify and address bias within the study. For instance, prior research by Saha et al. [61] on a general
audience of non-ML experts found that education strongly predicts comprehension of fairness
concepts. Despite this, our findings (e.g., in Sections 4.1, 4.2, and 4.3) revealed several unresolved
conflicts, highlighting the challenges ML experts who are new to bias face when attempting to
operationalize various measures for detecting and mitigating bias. Moreover, the take-home task
was designed to evaluate participants across a range of computational methods applicable in the
ML community. We believe this participant group, with expertise spanning areas such as medical
imaging, military applications, and robotics, reflects individuals well-suited for such an evaluation.
They demonstrated both a willingness and a realistic capability to apply fairness concepts within the
context of a one-and-a-half-hour take-home task and potentially beyond, in their own professional
work.

Although the COMPAS dataset is widely used by the fairness community, prior research has
pointed out issues with using it to assess algorithmic fairness through bias metrics [5], noting that
the dataset contains errors in how the data were measured and collected, therefore not making
it a representative “real-world” dataset. For the purposes of our study, these measurement issues
provided participants with opportunities to reflect on both the dataset and the metrics. For example,
Bao et al. [5] emphasized how historical structures have perpetuated injustices. Our findings
(e.g., in Section 4.1) reveal that participants recognized and reflected on this issue, noting how
discrimination and socio-economic disparities in data collection have led to the over-representation
of certain groups in the COMPAS dataset.

Finally, the primary aim of our research was to expose ML practitioners who are novices in
bias to a range of fairness definitions and bias metrics. However, the implications (e.g., in Section
6.1) align with prior research emphasizing the importance of prioritizing ethical fundamentals
over metric-driven approaches to bias mitigation [10, 30]. Future research could build on this by
focusing on the key assumptions and normative goals ML practitioners encounter when addressing
and operationalizing bias.

8 Conclusion

This article presented a qualitative study designed to understand how ML practitioners who are
novices in bias can operationalize definitions of bias and apply mitigation methods. The study
included 22 participants who engaged with a series of methods to detect and mitigate bias through
an interactive take-home tutorial, completed various exercises, and were subsequently interviewed.
Our findings revealed that participants encountered a variety of unresolved conflicts, including
selecting relevant bias metrics, tradeoffs between different bias metrics, and a tension between
relying on their own opinions and stereotypes rather than on the data and metrics. However, despite
these challenges, participants demonstrated a sensitivity to bias by correctly identifying biases in
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two datasets used by the fairness community while reflecting on incorporating bias mitigation
methods within their own ML processes. Finally, starting from these findings, we identified a series
of implications for operationalizing bias, such as leveraging the overlaps between bias concepts
and ML practices and for the effective design of bias mitigation tools. As the number of domains
where ML is being applied increases, it becomes increasingly important for ML users to identify
and mitigate bias. This is a timely challenge for the HCI community, as the misapplication of ML
might lead to detrimental consequences for disadvantaged individuals or groups.
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