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ABSTRACT
Mobile notifications are increasingly used by a variety of
applications to inform users about events, news or just to send
alerts and reminders to them. However, many notifications
are neither useful nor relevant to users’ interests and, also
for this reason, they are considered disruptive and potentially
annoying.

In this paper we present the design, implementation and evalu-
ation of PrefMiner, a novel interruptibility management solu-
tion that learns users’ preferences for receiving notifications
based on automatic extraction of rules by mining their inter-
action with mobile phones. The goal is to build a system that
is intelligible for users, i.e., not just a “black-box” solution.
Rules are shown to users who might decide to accept or dis-
card them at run-time. The design of PrefMiner is based on a
large scale mobile notification dataset and its effectiveness is
evaluated by means of an in-the-wild deployment.
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ACM Classification Keywords
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INTRODUCTION
Today’s mobile phones are highly personal devices character-
ized by always-on connectivity and high-speed data processing.
These affordances make it a unique platform for applications
harnessing the opportunity of real-time information delivery.
A variety of applications are available on the app stores that
enable users to subscribe to numerous information channels
and actively receive information through notifications [3, 4].

Previous studies have shown that users are willing to tolerate
some interruptions from notifications, so that they do not miss
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any important information [23]. However, their willingness is,
in a sense, exploited by mobile applications as these trigger
a plethora of notifications continuously [24]. Given the po-
tentially large number of notifications, users do not accept all
of them as their receptivity relies on the content type and the
sender of the messages [24, 25]. Users mostly dismiss (i.e.,
swipe away without clicking) notifications that are not useful
or relevant to their interests [19, 33]. Some examples of such
notifications are promotional emails, game invites on social
networks and predictive suggestions by applications. At the
same time, past studies have shown that users get annoyed
by receiving irrelevant or unwanted notifications which could
result in uninstalling the corresponding application [17, 33].

The above findings provide evidence that, in order to reduce
the level of disruption, an interruptibility management sys-
tem should not just try to deliver notifications at opportune
moments but also stop notifications that are not useful, or
are uninteresting or irrelevant for the user. However, most
of the previous studies propose interruptibility management
mechanisms that leverage the concept of anticipatory comput-
ing [29] to predict opportune moments by using context [21,
18, 28, 26] and content [24]. In this work, for the first time, we
design an intelligent interruptibility management mechanism
that learns the types of information users prefer to receive via
notifications in different situations. Another important aspect
is usability: in order to tackle this problem we implement
a mechanism for mining association rules [9] and make the
discovered rules transparent to users so that they can check
their appropriateness.

In order to train and evaluate the proposed intelligent notifi-
cation mechanism, we first exploit the datasets of real-world
mobile notifications collected during the My Phone and Me
study [25]. We construct the association rules by using the
combinations of notification titles and context modalities in-
cluding activity, time and location. Through an extensive
evaluation, we show that by using notification titles and the
user’s location we can predict the notifications that will be
dismissed by the user with a precision greater than 91%. More-
over, we show that the user’s activity and hour of the day do
not contribute to the improvement of the prediction accuracy.

We then funneled our findings into a practical implementation
of an interruption mechanism for mobile devices – MyPref,
an intelligent notification library for the Android OS. MyPref
enables an application to discover personalized rules for the
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user’s preferences and predict their receptivity to notifications
containing different types of information. The expressive API
of the library allows a developer to configure the prediction
settings including the features used for mining rules, making
it also extensible and generalizable. Moreover, through an
extensive evaluation of memory, battery and time overheads,
we show that MyPref is a light-weight and resource efficient
library that is capable of mining 1500 notification samples in
a minute by consuming only 11.737 mAH battery charge.

We present the design and implementation of PrefMiner, an
interruptibility management application that is built on top
of the MyPref library. To achieve users’ trust the application
shows the discovered rules to them and asks for their consent
for each rule to activate it.

Finally, unlike previous interruptibility studies, we do not re-
strict ourselves to evaluating the interruptibility management
mechanism on the collected data or to manage our own gener-
ated notifications. Instead, in order to evaluate PrefMiner, we
conducted an in-the-wild 15-day experiment. We show that
with 16 subjects PrefMiner suggested 179 rules and 56.98%
of these rules were accepted. During the study period the app
filtered notifications with a recall of 45.81% and a precision
of 100% as all filtering rules were accepted by the users.

MOTIVATION OF KEY DESIGN CHOICES
In this section we discuss the key motivations and design
choices of our solution, namely (i) the choice of learning
users’ preferences with respect to different types of informa-
tion delivered through notifications rather than modelling their
interruptibility; (ii) the choice of implementing an algorithm
based on association rules instead of alternative machine learn-
ing algorithms.

Why Mine User’s Preferences for Different Types of Infor-
mation?
The key objective of an interruptibility management system
is to deliver the right information at the right time. Most of
the previous interruptibility studies have proposed different
approaches to model interruptibility for predicting opportune
moments [21, 18, 28, 24]. However, these studies do not
suggest what to do with notifications that arrive at inopportune
moments. Should we defer them? Or should we completely
dismiss them?

In a previous study [13], Clark suggested that users’ negative
response to an interruption can be of two types: (a) acknowl-
edge it and agree to handle it later; (b) decline it (explicitly
refusing to handle it). Based on Clark’s suggestions we hypoth-
esize that an interruptibility management mechanism should
take an orthogonal but equally important approach by learn-
ing the different types of interruptions that users explicitly
refuse by dismissing notifications. In this way such a mecha-
nism can identify the notifications that are not useful for the
users and stop the operating system from triggering alerts for
these types of notification. Moreover, our hypothesis is in
line with the findings of Fischer et al. [19, 33], i.e., users’
receptivity relies on the usefulness and their interest in the
delivered information. We would like to stress again that this
is an orthogonal mechanism that can be used in conjunction

with others, for example for deferring the notifications until
the right time/context.

Why Mine Association Rules Over other Types of Machine
Learning Models?
One of the major issues in designing interruptibility manage-
ment systems is related to their testing and evaluation. In fact,
if the notification mechanisms are not correct, they might lead
to rejecting or deferring important notifications. Therefore,
in order to build usable systems, we have to involve users to
adjust the interruptibility management mechanisms, in order
to achieve the goal of reducing interruptions without compro-
mising the reception of any useful and important information.

The interruptibility management mechanisms proposed in the
previous studies rely on machine learning models for making
predictions that might be difficult to understand and translate
directly into human-readable rules [21, 28, 24]. These models
are good for learning quickly with a high accuracy but it is
nearly impossible for users to understand these models and
provide their feedback. Therefore, we rely on mining associa-
tion rules that can be easily understood by users as compared
to other prediction models. This allows us to get feedback
from users about the rules that should not be used for stopping
notifications on their phones. It is worth noting that a simple
machine learning technique such as the decision tree [34] is
likely to find a few more rules than the association rules, how-
ever, the decision tree-based rules mostly have low reliability
because they refer to very small sets of data instances [27].

MINING USER PREFERENCES
In this section we discuss how we extract notification rules
by mining association rules based on different combinations
of notification titles and context modalities including activity,
time and location.

Removing Reminder Notifications
The first step consists of identifying a particular class of noti-
fications that are always dismissed but they should be shown
in any case to users. As discussed earlier, notifications are
dismissed if they are not found to be useful or relevant to
the user’s interest [19, 33]. However, some notifications are
dismissed because they do not require any further action from
the user. These notifications should not be automatically fil-
tered, since they might be relevant for users, even if they are
always dismissed. We refer to such notifications as reminder
notifications in the rest of the paper. Alarm, calendar event
and battery status notifications are some common examples of
reminder notifications.

More formally, in order to define reminder notifications, we
introduce a simple definition of click rate (CR):

CR =
Number of accepted notifications

Total number of notifications
∗100 (1)

If an application’s click rate (CR) is zero then all notifications
from that application are treated as reminder notifications.



Notification Classification
In order to model users’ preferences with respect to receiving
different types of information, we categorize each notifica-
tion based on the information contained in it. A recent study
proposes an approach for modelling interruptibility by using
information type, social circle and context information [24].
The authors of [24] assume that all notifications triggered by
an application are of the same type and categorize them by
using the type of application that triggered them. In other
words, they classify notifications at an abstract level, e.g., chat,
email, systems and so on.

Instead, we do not limit ourselves to categorize a notification
based on the type of application that triggered it because an
application can generate notifications that contain different
types of information. A user might be interested to receive
some but not all types of notifications triggered by a specific
application. For example, a Facebook notification about a new
post on a user’s timeline might not be considered as disruptive
as a game invite notification. In other words, users would
not want an interruptibility management system to completely
stop Facebook notifications, but only those that are annoying,
such as game invites.

Therefore, in order to classify notifications, we perform clus-
tering by considering their titles by means of DBSCAN [16],
a density based algorithm1. A notification title is a short sen-
tence that gives a glimpse of the information contained in it.
The following are some examples of notification titles: “Sign
in to a Wi-Fi network”, “Time to Work”, “Today is Alice’s
birthday”. It is worth noting that in some cases the notification
title contains the sender name along with other text (such as

“Alice commented on your post”) or merely the sender name
(such as “Alice”). Generally, the sender name is attached to
the titles of notifications triggered by chat and online social
networking applications.

The clustering of notifications is carried out through the fol-
lowing steps: i) cleaning notification titles; ii) constructing
a classifier; and iii) clustering notifications. We discuss the
details of each step in detail below.

Cleaning Notification Titles
Notification titles are short sentences phrased in a way that
they are easily understood by users. The most important step
for analyzing these titles is to first clean them in order to
remove the non-informative data.

To analyze the notification titles we follow the standard process
of cleaning text in the following way:

(i) Conversion of the the text to lower-case: this ensures that
the lower-case and the upper-case versions of the same word
are considered the same.

(ii) Removal of punctuation and numbers: these elements of the
text do not contain useful information for the classification
task, but at the same time they might influence it.

1We are aware that notification clustering could be improved by using
the entire notification content (i.e., including also the header of notifi-
cations). However, due to privacy concerns the notification headers
were not recorded in the dataset we used for our evaluation [25].

(iii) Removal of stop words: stop words are the common words
(such as ‘a’, ‘the’, ‘is’ and ‘are’) that generally have quite
high frequency in the text. We remove them to ensure that
they do not affect content-bearing keywords in the clustering
algorithm [12].

(iv) Removal of the sender and application names: we remove
sender and application names because they can lead the clas-
sifier to cluster notifications based on the sender or applica-
tion names. Therefore, for each notification we remove (if
present) the name of the application by which it is triggered.
Moreover, to remove sender names we find and remove
all the words that are not present in the english dictionary
that comes with the qdapDictionaries package [5]. It is
worth noting that in the case of chat and email notifications
that contain only names, we do not remove names and thus
allow the algorithm to classify such notifications based only
on the sender names.

(v) Stemming of words: it is a standardization method to avoid
having multiple versions of words referring to the same
concept by reducing a word down to its root. For instance,
the words ‘comment’, ‘commented’, ‘comments’ and ‘com-
menting’ are all stemmed to ‘comment’).

Constructing a Classifier
In order to train the classifier, we use a bag of words approach
and create a Document-Term Matrix (DTM) – a matrix that
describes the frequency of terms (i.e., words) that occur in a
collection of documents (i.e., notification titles in our case). In
a DTM, rows correspond to documents in the collection and
each term is associated to a column.

To prevent the problem of overfitting the classifier [35], we
compute the term frequency (T F) and remove the terms that
have a T F lower than T Fthreshold . The T F and T Fthreshold are
defined as following:

TF =
Number of notifications in which the word occurs

Total number of notifications
(2)

TFthreshold =
Number of participation days

N * Total number of notifications
(3)

According to the above equation the value of TFthreshold en-
sures that at least one notification containing the term is trig-
gered in N days.

Finally, a DBSCAN-based classifier is constructed by using
the above DTM. To cluster the data the classifier requires two
parameters as inputs: (i) MP, defined as the minimum number
of points required to form a dense region and (ii) ε , defined as
the maximum difference (i.e., number of non-matching words)
between the notification titles of a cluster.

Clustering Notifications
Since the notification titles are relatively short-length sen-
tences, it is possible that notifications from different appli-
cations contain similar words that can lead the classifier to
cluster them together. In order to prevent this problem, for
each application we create a separate classifier by using the
notifications generated by that application. For example, if



there are 15 notifications from 3 applications, we create 3
clustering models and each model is trained using notifica-
tions of separate applications. Finally, when the classifiers are
constructed, we predict the classes of all notifications.

Constructing Association Rules
In order to discover rules about the user’s preferences for re-
ceiving notifications, we use the AIS algorithm [9] – a method
for mining data to discover statistical relationships between
variables. The algorithm scans the data to find the frequent
item sets and computes their support value (discussed later in
this section). Finally, it filters out the list of item sets whose
support value is greater than the given support threshold.

An association rule is represented as X → Y , where X is de-
fined as the antecedent and Y as the consequent. The algorithm
generates rules with the consequent containing only one item.
This means that rules can be in the form of X1∪X2→ Y but
not in the form of X → Y1∪Y2.

To better understand the concept of association rules let us
consider an example where the user: (i) always dismiss Twitter
notifications for who to follow; (ii) accepts Facebook birthday
reminder notifications only in the morning while she is at
home; (iii) does not accept WhatsApp notifications from Alice
while at work. Assuming that notifications about the Twitter
suggestion, Facebook birthday reminder and WhatsApp from
Alice are classified in the classes N1, N2 and N3 respectively,
the following association rules would represent the user’s
preferences in this case:
{N1}→ {Dismiss}
{N2,Home,Morning}→ {Accept}
{N2,Home,A f ternoon}→ {Dismiss}
{N2,Home,Evening}→ {Dismiss}
{N2,Home,Night}→ {Dismiss}
{N2,Work}→ {Dismiss}
{N2,Other}→ {Dismiss}
{N3,Home}→ {Accept}
{N3,Other}→ {Accept}
{N3,Work}→ {Dismiss}
For an association rule X → Y , we define the two parameters:

• Support: the ratio between the number of times X and Y
co-occur and the number of data-instances present in the
given data. It can be represented as the joint probability of
X and Y : P(X ,Y );

• Confidence: the ratio between the number of times Y co-
occurs with X and the number of times X occurs in the given
data. It can be represented as the conditional probability of
X and Y : P(Y | X).

An association rule is created only when it has at least the
minimum support (Smin) and confidence (Cmin). It is worth not-
ing that decreasing the values of either support or confidence
could result in discovering more rules [9].

EVALUATION OF THE RULE-BASED MECHANISM
In this section we discuss the implementation and evaluation of
the mechanism for mining individual-based association rules
about users’ preferences.
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Figure 1. Filtered and remaining terms for notification clustering with
different values of N in T Fthreshold .

Dataset and Evaluation Settings
In order to evaluate the proposed solution, we use the data
collected by means of smartphones during the My Phone and
Me study [25]. From the original dataset, we took a subset
of data considering only the users who participated for at
least 14 days. We also removed the notifications which were
not mapped with the user’s activity, location and arrival time.
Moreover, the dataset contains an attribute to identify whether
a notification is clicked, dismissed or handled on another de-
vice. We did not consider notifications that were handled on
another device. Consequently, the final dataset used in our
analysis comprises 11,185 notifications from 18 users.

We evaluate the discovered rules for predicting users’ response
to notifications by using a k-fold cross validation approach
with the value of k as 10. The prediction results are computed
separately for each user and we aggregate them by computing
the mean and the standard-error with 95% confidence limits.
We divide the set of notifications belonging to each user into a
training set and a test set, where the training set contains 90%
of the data and the rest is considered as the test set.

Defining Configurations
As discussed earlier, we use the T Fthreshold to prevent the prob-
lem of overfitting the DBSCAN-based classifier with sparse
(i.e., infrequent) terms. In order to find an optimal value of
T FT hreshold we create a DTM for all notification titles in the
dataset and compute the number of terms filtered by setting
T FT hreshold with different values of N ∈ [1,7]. Here, we do
not consider values of N greater than 7 because we believe it
would not be useful to include notification terms that do not
arrive at least once in a week.

As shown in Figure 1 there are 3642 unique terms in the
dataset. By setting N = 1, there are chances of underfitting the
model because 3371 terms are removed and only 271 terms
remain in the DTM. Since there is not much difference in the
number of filtered terms with N ∈ [2,7], we use N = 2 for our
analysis, which also ensures that each term is seen by the user
at least once in two days.

In order to satisfy the above constraint, for each user we set the
value of MP to D/2 (D indicates the number of participation
days). This ensures that there are at least D/2 notifications
in each cluster. In other words, notifications of each cluster
arrive at least once in two days. Similarly, for discovering
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Figure 2. Prediction results for association rules discovered by using notification response along with: (a) AR1: notification type; (b) AR2: notification
type and activity; (c) AR3: notification type and arrival time; (d) AR4: notification type and location; (e) AR5: notification type, activity, arrival time
and location.

association rules we set Smin (i.e., minimum support value)
equal to Dparticipate/(2∗Ncount), which ensures that the notifi-
cation interaction pattern covered in each rule has occurred at
least once in two days. Here, Dparticipate indicates the number
of participation days of the user and Ncount refers to the total
number of notifications collected for that user. Moreover, we
set ε to 1 so that each notification title will have at least N−1
(N refers to the number of words in a title) words similar to
other notification titles in its cluster.

Feature Selection
In order to discover association rules about the user’s prefer-
ences we rely on the following features:

(i) notification response: the user’s response (i.e., click or
dismiss) to a notification;

(ii) notification type: the identifier of the cluster to which the
notification belongs;

(iii) arrival time: the arrival time of the notification considering
four time slots – morning (6-12), afternoon (12-16), evening
(16-20) and night (20-24 and 0-6);

(iv) activity: the user’s physical activity (includes still, walk-
ing, running, biking and in vehicle) when the notification
arrived;

(v) location: the user’s location when the notification arrived;

Note that we do not include the alert modality of notifications
for mining rules because we are interested in finding the infor-
mation that users prefer to receive via notifications in different
situations irrespective of their alert modalities.

By using different combinations of these features we construct
the association rules according to the five approaches:

1. AR1: by using notification response with notification type;
2. AR2: by using notification response with notification type

and activity;

3. AR3: by using notification response with notification type
and arrival time;

4. AR4: by using notification response with notification type
and location;

5. AR5: by using notification response with notification type,
activity, arrival time and location;

For all approaches we restrict the consequent to contain only
the notification response and the antecedent is restricted to
never contain the notification response. We introduce this con-
straint because we are only interested to predict the acceptance
of a notification, therefore other items in the consequent would
be of no use and just add extra computational load.

Prediction Results
In this section we present the accuracy of the association rules
discovered with different values of Cmin for all five approach.
In order to assess the discovered association rules, we com-
pare the predicted response with the actual response (i.e., the
ground truth) and compute the accuracy in terms of:

• Recall: ratio between the number of notifications that are
correctly predicted as dismissed and the total number of
notifications that are actually dismissed.

• Precision: ratio between the number of notifications that are
correctly predicted as dismissed and the total number of no-
tifications that are predicted (both correctly and incorrectly)
as dismissed.

In Figure 2 we present the prediction results for the associa-
tion rules constructed by using all five approaches. The results
show that increasing the confidence of association rules de-
creases the recall but improves the precision. This implies that
by increasing the confidence a fewer but more reliable rules
are discovered.
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Figure 3. Prediction results for association rules (with notification title and location) using the online learning approach.

The association rules constructed with approaches AR1 and
AR2 do not show a significant difference. The recall of AR2
is slightly higher when the confidence is below 70%, but the
precision drops as well, which means some extra but unreliable
rules are discovered. On the other hand, the association rules
constructed with AR3 achieves better recall than AR1 and AR2
but its precision consistently remains lower (i.e., under 85%)
as compared to other approaches. This implies that there is no
significant contribution of activity and arrival time in terms of
predicting user’s preferences for receiving notifications.

The approach AR4 (i.e., the association rules that are con-
structed by using the notification response, type and location)
performs better that other approaches in terms of both recall
and precision. Its recall goes up to around 43% without drop-
ping the precision below 79%. Even by combining all features
together in the approach AR5, the results do not improve. As
compared to approach AR4, there is a negligible increment
in the recall of the approach AR5 with a big drop in its pre-
cision. Consequently, our results provide evidence that the
user’s preference for receiving notifications does not depend
on the activity and arrival time, but on the type of information
it contains and the location of the user.

It is worth noting that the high standard-error in the results
demonstrates that our mechanism does not work consistently
for all users. It is due to the fact that users have different pref-
erences for receiving notifications. Moreover, the upper-limit
of the standard-error for precision close to 100% demonstrate
that for some users our mechanism is able to very accurately
predict notifications that are not interesting or useful for them.

Another interesting observation is that the recall of approach
AR3 is always higher than that of AR1 and AR2, but its pre-
cision is instead always lower. We believe that AR3 attains
higher recall because users follow circadian rhythms and dur-
ing different time periods of a day they are present at certain
locations (e.g., at work in the afternoon and at home during
night) [15]. Therefore, in approach AR3 rules are essentially
associated to their behavior at certain locations rather than the
time of notifications’ arrival. Moreover, the precision might be
affected as users’ mobility pattern might vary on some days.

Optimizing the System for High Precision
The key requirement for deploying an interruptibility manage-
ment mechanism in-the-wild is that it should never stop/defer

useful notifications. Therefore, while designing it we should
aim to have fewer false-negatives (i.e., incorrectly predicting
a notification as non-interesting for the user) that could be
achieved by ensuring that the precision remains close to 100%.
However, we could consider a precision of around 90% as
acceptable because it might be possible that a couple of notifi-
cations have been clicked by mistake or to kill time when the
user was bored.

At the same time, the interruptibility management mechanism
should also achieve a significant value for recall in order to
prove its efficacy in filtering notifications that are not useful or
relevant to the user’s interest. We could not obtain a high recall
value because not all dismissed notifications are non-useful.
Instead, some notifications are dismissed because they do not
require any further actions. Though we have already filtered
out reminder notifications before the analysis, there could be
notifications from other applications which are useful, but do
not require any action, such as a chat message “See you at
7pm” and a confirmation email “Ok, bye!”.

We observe that, by using the confidence of 70%, the approach
AR4 is able to achieve around 42% recall with a precision of
84%. However, the drop of 16% precision value brings a risk
that the mechanism could predict some false-negatives. So,
we should compromise by having around 35% recall with a
precision of more than 90% at a confidence of 80%. Here,
even the 35% recall implies that we are able to filter a big
portion of non useful notifications and thus reduce disruption.

ONLINE LEARNING
In the previous section we evaluated our mechanism by using
the batch learning method in which the association rules are
mined by using static data. However, in a real world scenario
such training data is not initially available and therefore, asso-
ciation rules cannot be discovered until a sufficient amount of
data has been collected.

In order to address this issue, we can use an online learning
method in which the association rules are periodically mined
from the data that is collected gradually. Even if this solution
does not remove the problem of initial bootstrapping com-
pletely, the prediction accuracy improves gradually as more
and more training data becomes available. Moreover, by using
an online learning method a system can adapt itself according
to the potential changes in user’s behavior over time.



In order to evaluate this method, we iteratively construct as-
sociation rules with all the notifications collected by the end
of each day and evaluate these rules by using notifications of
the following day. For example, on day N a model is built by
using notifications from day 1 to N−1. Moreover, similar to
the evaluation by using batch learning method we configure
Smin as (N− 1)/(2 ∗Ncount), where Ncount indicates the total
number of notifications collected untill day N−1. This ensues
that the notification interaction pattern covered in each rule
has occurred at least once in two days or at least (N− 1)/2
times in N−1 days.

Figure 3 shows the prediction results for the individualized
rules iteratively constructed on each day with different values
of Cmin by using the online learning method. Rules with Cmin
as 80 and below start filtering notifications from the 3rd day
and by the 7th day they achieve the recall of 25-35% and
precision around 90%. Instead, by the 7th day other rules
could achieve the recall of 10% and precision above 90%.
Interestingly, rules with Cmin as 95% never become stable.
This can be due to the fact that these rules filter notifications
with high reliability which can be confirmed by their precision
always remaining over 90%. On the other hand, rules with
Cmin as 65-70% and 80-90% become stable by the 12th and
9th day respectively.

It is worth noting that given the duration of the dataset, it is not
possible to evaluate the adaptation of the algorithm and con-
firm if the rules maintain their stability over time. It might be
possible that users diverge from their notification interaction
behaviour and the system needs to adapt accordingly. There-
fore, we envisage that the system should use a sliding window
approach, i.e., the algorithm should be trained on the last L
days in order to be able to adapt to changes in user’s behavior.

MYPREF LIBRARY

Overview
Starting from the mechanisms and evaluation we presented
in the previous section, we implemented the MyPref library
– an intelligent interruptibility management library that can
predict the type of notifications that users would prefer to
receive on their mobile phones in specific contexts. The library
learns the user’s preferences for receiving notifications by
mining association rules with the notification and context data
that is supplied to it and predicts the user’s receptivity to the
subsequent notifications. The MyPref library is implemented
for the Android OS and released as an open source project 2.
The goal is to provide developers with a practical generic tool
for intelligent rule-based notifications that can be integrated in
any application, hiding at the same time the complexity related
to the prediction mechanisms.

The MyPref library abstracts the functionalities of the pro-
posed interruptibility mechanism through a set of intuitive
API primitives. The abstractions include clustering of notifica-
tions, mining association rules and predicting the acceptance
of notifications. The library relies on Weka for Android [7]
and the Snowball stemming library [6] for clustering notifica-
tions locally on the phone. Since the computation is performed
2https://github.com/AbhinavMehrotra/PrefMiner

locally, the library also preserves user’s privacy since no data
is transmitted to a back-end server. It offers flexibility to de-
velopers by allowing them to define notification clustering
configurations (i.e., T FT hreshold , ε and MP) as well as the rule
mining configurations (i.e., support, confidence and features
to be used for mining rules).

Finally, the library learns the user’s preferences for receiving
notifications and returns the discovered rules as output. In
order to enable an overlying application to facilitate the trans-
parency of the prediction mechanism to the users, the library
makes the rules human understandable by replacing each no-
tification type with the most frequent3 words of the relevant
notification cluster (we refer to these words as keywords in the
rest of the paper).

For instance, let us consider some examples of hypothetic
keywords in notification clusters: the keywords from the clus-
ter of Facebook’s birthday reminder notifications (such as

“Today is Alice’s birthday.” and “Alice and Chris have birth-
days today. Help them have a great day!”) would be “today”
and “birthday”. The keyword from the cluster of Google Play
Store’s app update notifications (such as “2 applications up-
dated.” and “3 updates available.”) would be “update”. The
keywords from the cluster of systems’s WiFi availability noti-
fications (such as “Wi-Fi networks available” and “Verizon
Wi-Fi available”) would be “Wi-Fi” and “available”.

The overlying application can present these rules to users in
order to ask for their consent and use the rules that are accepted
by them to filter notifications. Later in the section, we will
show a potential approach to take the consent of users for
using the predicted rules in an application.

Moreover, producing rules with keywords instead of cluster
identifiers would reduce the computation time at the arrival
of notifications. This might be fine for applications that are
predicting the acceptance for their own notifications. However,
if an application is managing notifications from third-party
application then the prediction process should be very quick
so that, if required, it can cancel a notification before it alerts
the user (via sound, vibration or LED light).

Evaluation of the MyPref Library
In this section we quantify the performance of the MyPref
library. We use a Nexus 6 phone with 3 GB of RAM and
a quad-core 2.7GHz Krait 450 CPU, running a clean slate
Android 5.0 OS for the performance evaluation of the library.

Source Code and Memory Footprint
MyPref is implemented as a light-weight Android library con-
sisting of 15 Java classes built with 4077 lines of code. We
developed a stub application on top of the library to evaluate
the memory footprint that accounts to 7.559 MB (including
Weka and Snowball stemming libraries). We used third-party
measurement tools, namely Count Lines of Code [2] and An-
droid Dalvik Debug Monitor Server [1], to evaluate the source
code and memory footprint of the library.

3We consider the most frequent after removing all the stop words
and stemming the remaining words.
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Figure 4. Battery charge consumed for mining rules using different ap-
proaches with different number of notifications as an input.

Energy Consumption
A fundamental aspect in designing this class of libraries is the
energy usage and its impact on the phone’s battery life. We
analyze the energy consumption of the library by varying the
amount of data in the input. We characterize the battery charge
consumption for mining association rules for all approaches
(AR1, AR2, AR3, AR4 and AR5). We use Power-Tutor [36] for
taking the battery measurements.

As shown in Figure 4, the battery consumption increases al-
most linearly as the amount of data used for mining the rules
increases. However, as the number of features increases the
energy consumption increases but not dramatically. This im-
plies that most of the energy is consumed for clustering the
notification types and less energy is required for mining the
rules.

Moreover, the battery consumption slightly varies for ap-
proaches AR2, AR3 and AR4 even when they have the same
number of features used. The reason for this difference could
be that these approaches use features which have different
number of classes. For instance, location has three classes:
home, work and other, whereas activity has five classes: still,
walking, running, biking and in vehicle. Increase in the num-
ber of classes in a feature would require more iterations for
discovering rules and thus consume more battery.

Time Complexity
We compute the time required for mining association rules by
using all five approaches for different amounts of training data.
The time complexity of the algorithm is O(Ncount).

As shown in Figure 5 and as expected, the time complexity
linearly increases as the amount of data increases. Quite inter-
estingly, the difference in terms of time required for the com-
putation for the various approaches taken into consideration
increases as the number of notifications increases. Moreover,
it also increases as the number of features used gets larger. For
instance, the library takes not more than 61 seconds for mining
association rules from 1500 notifications for any approach.

IN-THE-WILD EVALUATION
In this section we present an in-the-wild evaluation of
PrefMiner (see Figure 6), a mobile application that is able
learn the user’s preference for receiving different types of no-
tifications and filtering out the notifications that are not useful,
uninteresting and irrelevant to the user.
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Figure 5. Time taken for mining rules using different approaches with a
varying number of notifications in input.

The PrefMiner application is built on top of the MyPref library
discussed and evaluated in the previous section and uses the
notification type and location data (i.e., the approach AR4 as
discussed above) for mining the association rules. The appli-
cation continuously collects the notification data and binds
the user’s current location to each data instance. The rules are
constructed every day when the phone is in charging mode
and not in use so that the application does not directly affect
users’ mobile experience.

As shown in Figure 6.a the newly discovered rules are pre-
sented to the users in a human-readable format to get their
consent. To convert a rule into a human-readable format, we
use the application name, the notification cluster identifier (i.e.,
the keywords provided by the library as a replacement for the
notification type) and location. Some possible examples of
such rules are the following: “Stop notifications from Face-
book that contain ‘candy’ and ‘crush’ words in the title.” and

“Stop notifications from WhatsApp that contain ‘Alice’ words in
the title and arrive at WORK.”

Users can accept the rules, which they think are correctly
discovered, for filtering out notifications on their phones, by
clicking “Yes”. If the user clicks on “Never” for a rule, the
applications stores that rule as a blacklisted rule and never
shows it again in the future. To ensure this, after every rule
mining process, the application removes all blacklisted rules
from the newly discovered rules. Moreover, if the user clicks
on “Not Now”, the rule is re-proposed during the next iteration
of the mining process. Finally, once a rule is accepted by a
user, it becomes active (see Figure 6.c) and the application
starts filtering out all the subsequent notifications according
to the rules that are currently active. Moreover, the user can
click on the "View Filtered Notifications" button (shown in
Figure 6.a) in order to view the list of filtered notifications
along with their time of arrival and the triggering application.

Deployment of PrefMiner
The PrefMiner application was published on the Google Play
Store and advertised through social media and other channels
in our University. We ran the study for the duration of 15
days followed by an exit questionnaire (see Table 1). Over-
all, 18 people participated in the study without any monetary
incentive. However, one user did not answer any questions
about the suggested rules and another user dismissed all the
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Figure 6. PrefMiner application: (a) main screen, (b) self-rule creation,
(c) active rules, (d) pending rules.

rules. Therefore, we considered only the remaining 16 users
for evaluating the application.

To make the application interesting for the users we allowed
them to manually create their own rules. As shown in Fig-
ure 6.b, a manual rule can be created by defining the applica-
tion (selected from a list of installed applications), keywords
and location. In order to ensure that the manual rules do not
affect our experiment we restrict the users from manually cre-
ate any rule during the period of the study (i.e., the first 15
days after the installation of the application). Note that, for
privacy reasons, the user has to give explicit permission after
the installation as required by the Android operating system to
allow PrefMiner to manage notifications. Moreover, to ensure
that the user is aware of data collection, the application also
shows a detailed user consent form.

In-the-wild Evaluation Results
During the study PrefMiner suggested 179 rules to the partic-
ipants out of which 102 rules (i.e., 56.98%) were accepted.
Figure 7 shows the count for accepted and dismissed rules for
each user that are sorted according to their rule acceptance
percentage. The graph shows that there are some users who
accepted most of the rules and some who accepted only a few
rules. Overall, around 70% of the users accepted 50% (and
above) of the suggested rules. In order to find why and what
rules were dismissed by users we analyzed all dismissed rules.
Our results show that most of the dismissed rules are about the
“communication applications” including WhatsApp, Gmail
and Hangouts. The other most dominant app category for
dismissed rules is “system applications” including Bluetooth
Share, Android System and Google Play Store.
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Figure 8. Performance of PrefMiner in filtering notifications.

Question Average Response
Q1. I found the app useful for learning my pref-
erences to filter notifications. 4.25

Q2. The app filtered most of the notifications that
I didn’t want to receive. 4.33

Q3. The app incorrectly filtered notifications that
I wanted to receive. 1.58

Table 1. Exit questionnaire with the average response from users.

During the study the application also collected the notifications
that arrived on the user’s phone. Our results show that each
day a user receives around 71 notifications (with the standard
deviation equal to 22 notifications). We compute the filter
recall as percentage of filtered notifications over the sum of
the notifications dismissed by the users and the filtered ones
(i.e., all the notifications automatically or manually filtered).
The results show that the filter recall achieved by the accepted
rules is 45.81%. More specifically, the average number of
notifications that are successfully filtered everyday is 12 (with
the standard deviation equal to 8). In Figure 8 we show the
filter recall of each user. For some users PrefMiner is able to
identify around 60% of the notifications that users do not want
to receive. On the other hand, the filter recall for some users
is fairly low (approx. 20%). However, it is worth noting that
the system is optimized for high precision so that it does not
filter out any important notifications. Moreover, for each day
on average 7 notifications per user are classified as reminders.

Exit Questionnaire
At the end of the 15-day study, the application asked users to
fill in an exit questionnaire (shown in Table 1) that can be used
to quantify the usefulness and accuracy of PrefMiner accord-
ing to the users. Users were allowed to register their response



on a 5 point Likert scale (1:Strongly disagree - 5:Strongly
agree). Out of the 16 participants only 12 participants reg-
istered their response to the questionnaire. Table 1 lists the
average response to the three questions provided by the partici-
pants. The results demonstrate that users found the application
useful for filtering notifications and according to them it fil-
tered most of the unwanted notifications correctly.

DISCUSSION AND FUTURE WORK
In this paper we have presented PrefMiner that learns the
user’s preference and accordingly manages the subsequent
notifications. To the best of our knowledge, this is the first
study based on both the analysis of a real-world notification
content along with context and the in-the-wild deployment
of a customizable notification system. We believe that our
approach for making prediction techniques transparent to the
users helps an interruptibility management system to build
users’ trust since it reduces the risk of stopping any important
notification. It still reduces the burden from users by stop-
ping 45.81% of notifications that are not considered useful or
important and, thus, minimizes the perceived disruption.

However, the proposed interruptibility management mecha-
nism has some minor limitations. Firstly, it does not focus
on deferring notifications at inopportune moments. Instead, it
aims to stop unnecessary notifications from alerting the user
and thus reduce the overall disruption. As a future plan, we
plan to design and evaluate our mechanism for learning the
moments at which notifications should be deferred and for how
long. Secondly, our mechanism is not able to accurately detect
reminder notifications. Instead, it finds only the applications
for which all notifications are dismissed and labels them as
reminder applications and reminder notifications. We believe
that if we can accurately identify and remove all reminder no-
tifications, our interruptibility management mechanism would
be able to discover more accurate rules and thus the overall
accuracy can be improved. This might be based on the manual
annotation of certain type of notifications, such as standard
Android battery warning messages.

Another limitation is that we could not infer the user response
to notifications that are handled from other devices. Thus, we
have to discard such notifications. We believe that by being
able to detect the user response for such notifications, our
mechanism can start making stable prediction in fewer days
and might also discover some interesting rules across devices.
For this reason, another extension of this study is the design
of a rule-based management system across devices.

Finally, the current implementation of the MyPref library can
only support mobile phones that are configured to use the
English language. This is because these phones receive the
notification titles in English and the current implementation
of our library could classify only the text in this language.
We plan to evolve our library’s capability to support other
languages in the future.

RELATED WORK
The area of mobile interruptibility has received increasing
attention in the past years. Previous studies have explored var-
ious interesting aspects of the problem [8, 11, 10, 14, 25, 30,

33]. For example, Pielot et al. [33] show that users consider
notifications from communication applications (such as mes-
sengers and email clients) as important. These notifications
are perceived as less annoying and are less likely to be dis-
missed compared to notifications from other applications. Felt
et al. [17] found that the user’s perception towards mobile no-
tifications varies strongly. If applications trigger notifications
that are not considered relevant, users tend to get annoyed and
delete them. Fischer et al. [19] show that users’ receptivity is
influenced by their general interest in the notification content,
entertainment value perceived in it and action required by it,
but not the time of delivery. Mehrotra et al. [25] show that
notifications containing important or useful content are often
accepted, despite the disruption caused by them.

At the same time, past studies have proposed interruptibility
management mechanisms for delivering notifications at the in-
ferred opportune moments by using the user’s context [22, 21,
20, 18, 32, 31, 28] and the notification content [24]. In [21] Ho
and Intille suggested that the transition between two physical
activities (such as sitting and walking) can be used as oppor-
tune moments for delivering notifications. Pielot et al. [31]
proposed a model that can predict whether a user will view a
notification within a few minutes with a precision of approxi-
mately 81%. Pejovic and Musolesi [28] proposed a mechanism
that relies on the contextual information (including activity,
location and time of day) to predict opportune moments for
delivering notifications. Mehrotra et al. [24] suggested using
both the contextual information and the notification content
for modeling interruptibility. However, the authors assumed
that an application triggers only a single type of notifications.
Instead, in this work, for the first time, we design an inter-
ruptibility management system that classifies notifications into
different classes based on the information they contain and
learns the user’s preferences for receiving the types of infor-
mation in different situations.

CONCLUSIONS
In this paper we have presented a novel solution for intelligent
notification management based on the automatic extraction of
rules that reflect user’s preferences. The goal of the proposed
approach is to make notifications intelligible to users. We first
evaluate our proposed mechanism with a large-scale dataset
of notifications collected during an interruptibility study. Our
results show that by using the notification title and the user’s
location, we can predict if a message will be dismissed by a
user with a very high precision.

We have also discussed the design of an open source Android
library implementing the interruptibility mechanism and the
implementation of the PrefMiner application built on top of
it. Through an in-the-wild deployment, we have shown that
PrefMiner represents a very effective, yet transparent, solution
for interruptibility management for mobile devices.
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